Skip to main content

Techniques Used in Fish and Fishery Products Analysis

  • Chapter
  • First Online:
Fish and Fishery Products Analysis

Abstract

This chapter discusses about the various fish quality determinants and the instrumental techniques in detail. A detailed description of the conventional and modern technology is included in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott, J. A. (1999). Quality measurement of fruits and vegetables. Postharvest Biology and Technology, 15, 207–225.

    Article  Google Scholar 

  • Akasaki, T., Yanagimoto, T., Yamakami, K., Tomonaga, H., & Sato, S. (2006). Species identification and PCR-RFLP analysis of cytochrome b gene in cod fish (order Gadiformes) products. Journal of Food Science, 71(3), C190–C195.

    Article  CAS  Google Scholar 

  • Akyilmaz, E., Yorganci, E., & Asav, E. (2010). Do copper ions activate tyrosinase enzyme? A biosensor model for the solution. Bioelectrochemistry, 78, 155–160.

    Article  CAS  PubMed  Google Scholar 

  • Amit, S., Somayyeh, P., & Stephane, E. (2013). Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors, 13, 1763–1786. https://doi.org/10.3390/s130201763.

    Article  CAS  Google Scholar 

  • Ansari, S. A., & Husain, Q. (2012). Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnology Advances, 30, 512–523.

    Article  CAS  PubMed  Google Scholar 

  • AOAC. (2000). Official methods of analysis (17th ed.). Gaithersburg: AOAC International. Also valid are: a second revision of this edition (2003); the 16th edition (1995) and the 15th edition (1990). This last was published in Arlington, Virginia, USA, by AOAC International.

    Google Scholar 

  • AOAC International. (2007). Official methods of analysis (AOAC Method 920.39C for Cereal Fat; AOAC Method 960.39 for Meat Fat) 18th ed., 2005; Current through revision 2, 2007 (Online)., Gaithersburg: AOAC International.

    Google Scholar 

  • Asensio, G. L. (2007). PCR-based methods for fish and fishery products authentication. Trends in Food Science and Technology, 18, 558–566.

    Article  CAS  Google Scholar 

  • Asensio, L., Samaniego, L., Miguel, A. P., González, I., García, T., & Martín, R. (2008). Detection of grouper mislabelling in the fish market by an immunostick colorimetric ELISA assay. Food and Agricultural Immunology, 19(2), 141–147. https://doi.org/10.1080/09540100802100202.

    Article  CAS  Google Scholar 

  • Banerjee, P., & Bhunia, A. K. (2009). Mammalian cell-based biosensors for pathogens and toxins. Trends in Biotechnology, 27, 179–188.

    Article  CAS  PubMed  Google Scholar 

  • Bartlett, S. E., & Davidson, W. S. (1992). FINS (forensically informative nucleotide sequencing): a procedure for identifying the animal origin of biological specimens. BioTechniques, 12(3), 408–411.

    CAS  PubMed  Google Scholar 

  • Bhunia, A. K., Geng, T., Lathrop, A., Valadez, A., & Morgan, M. T. (2004). Optical immunosensors for detection of Listeria monocytogenes and salmonella enteritidis from food. Monitoring Food Safety, Agriculture, and Plant Health, 5271, 1–6.

    Google Scholar 

  • Bish, D. L., & Post, J. E. (Eds.). (1989). Modern powder diffraction (Reviews in mineralology, 20). Washington, DC: Mineralogical Society of America.

    Google Scholar 

  • Bjellqvist, B., Kristina, E., Giorgio, R. P., Elisabetta, G., Angelika, G., Reiner, W., & Wilhelm, P. (1982). Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. Journal of Biochemical and Biophysical Methods, 6(4), 317–339. 0165-022X. https://doi.org/10.1016/0165-022X(82)90013-6.

    Article  CAS  PubMed  Google Scholar 

  • Bjornsson, S. (1993). Size-dependant separation of proteoglycans by electrophoresis in gels of pure agarose. Analytical Biochemistry, 210, 292–298.

    Article  CAS  PubMed  Google Scholar 

  • Carrera, E., Garcia, T., Cespedes, A., Gonzalez, I., Sanz, B., Hernandez, P., & Martin, R. (1997). Immuno stick colorimetric ELISA assay for the identification of smoked salmon (Salmosalar), trout (Oncorhynchusmykiss) and bream (Bramaraii). Journal of the Science of Food and Agriculture, 74, 547–550.

    Article  CAS  Google Scholar 

  • Carrera, E., Terni, M., Montero, A., Garcıa, T., Gonzalez, I., & Martın, R. (2014). ELISA-based detection of mislabeled albacore (Thunnus alalunga) fresh and frozen fish fillets. Food and Agricultural Immunology, 25(4), 569–577.

    Article  CAS  Google Scholar 

  • Charu, D., Ishan, P., Himanshu, P., Pramod, W. R., Avinash, C. P., Shanti, B. M., & Sandip, P. (2017). Chapter 9, Electrospun nanofibrous scaffold as a potential carrier of antimicrobial therapeutics for diabetic wound healing and tissue regeneration. In A. M. Grumezescu (Ed.), Nano- and microscale drug delivery systems – Design and fabrication. Amsterdam: Elsevier.

    Google Scholar 

  • Cirka, H. A., Koehler, S. A., Farr, W. W., & Billiar, K. L. (2012). Eccentric rheometry for viscoelastic characterization of small, soft, anisotropic, and irregularly shaped biopolymer gels and tissue biopsies. Annals of Biomedical Engineering, 40(8), 1654–1665. https://doi.org/10.1007/s10439-012-0532-5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Corradini, D. (2011). Handbook of HPLC (2nd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Cullity, B. D. (1978). Elements of X-ray diffraction (2nd ed.). Reading: Addison-Wesley.

    Google Scholar 

  • David, B. M., & Wayne, C. E. (2014). Fat analysis, Chapter 8. In S. S. Nielsen (Ed.), Food analysis laboratory manual (Food science texts series) (4th ed.). Boston: Springer.

    Google Scholar 

  • Eby, G. N. (2004). Principles of environmental geochemistry (pp. 212–214). Pacific Grove: Brooks/Cole-Thomson Learning.

    Google Scholar 

  • Eric, S., Julia, A. D., & Reta, N. (2008). Chapter 8 – Gas chromatography and gas chromatography – Mass spectrometry. In Fire debris analysis (pp. 235–293). London: Elsevier. isbn:978-0-12-663971-1 (For GCdiagram).

    Google Scholar 

  • Fernandez, B., Lobo, L., & Pereiro, R. (2019). Atomic absorption spectrometry – Fundamentals, instrumentation and capabilities. In Encyclopedia of analytical science (Reference module in chemistry, molecular sciences and chemical engineering) (3rd ed., pp. 137–143). Amsterdam: Elsevier.

    Google Scholar 

  • Hayat, M. (2000). Principles and techniques of electron microscopy, biological applications (4th ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Heineman, W. R., & Jensen, W. B. (2006). Leland C. Clark Jr. (1918–2005). Biosensors & Bioelectronics, 21, 1403–1404.

    Article  CAS  Google Scholar 

  • http://rtilab.com/techniques/ftir-analysis/

  • https://www.mee-inc.com/hamm/fourier-transform-infrared-spectroscopy-ftir/

  • Hussain, M., Wackerlig, J., & Lieberzeit, P. A. (2013). Biomimetic strategies for sensing biological species. Biosensors, 3, 89–107.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jena, S., Tokas, R., Thakur, S., & Sahoo, N. K. (2015). Characterization of optical thin films by spectrophotometry and atomic force microscopy. SMC Bulletin, 6(1), 1–9.

    Google Scholar 

  • Jones, D. B. (1941). Factors for converting percentages of nitrogen in foods and feeds into percentages of proteins (Circular No. 183). Washington, DC: United States Department of Agriculture.

    Google Scholar 

  • Josep, S. E., Ingrid, M. Y., Alessandra, B., & Pier, R. (1996). Fish species identification by isoelectric focusing of parvalbumins in immobilized pH gradients. Electrophoresis, 17, 1380–1385. https://doi.org/10.1002/elps.1150170817.

    Article  Google Scholar 

  • Karousou, E. G., Viola, M., Genasetti, A., Vigetti, D., De Luca, G., Karamanos, N. K., & Passi, A. (2005). Application of polyacrylamide gel electrophoresis of fluorophore-labeled saccharides for analysis of hyaluronan and chondroitin sulfate in human and animal tissues and cell cultures. Biomedical Chromatography, 19(761–765), 21.

    Google Scholar 

  • Kjeldahl, J. (1883). Neue Methodezur Bestimmung des Stickstoffs in organischen Körpern [New method for the determination of nitrogen in organic substances]. Zeitschriftfüranalytische Chemie, 22(1), 366–383.

    Google Scholar 

  • Klug, H. P., & Alexander, L. E. (1974). X-ray diffraction procedures for polycrystalline and amorphous materials (2nd ed.). New York: Wiley.

    Google Scholar 

  • Lawler, D. M. (2016). Turbidity, turbidimetry, and nephelometry. In Encyclopedia of analytical science (3rd ed., pp. 152–163). Kent: Elsevier.

    Google Scholar 

  • Lehotay, S., & Hajslova, J. (2002). Application of gas chromatography in food analysis. Trends in Analytical Chemistry, 21(9–10), 686–697.

    Article  CAS  Google Scholar 

  • Liebson, S. H. (1947). The discharge mechanism of self-quenching Geiger–Mueller counters. Physical Review, 72(7), 602–608.

    Article  CAS  Google Scholar 

  • Liliana, S. C., Ana María, Z. A., & Alfredo, A. A. (2009). Use of enzymatic biosensors as quality indices: A synopsis of present and future trends in the food industry. Chilean Journal of Agricultural Research, 69(2), 270–282.

    Google Scholar 

  • Luca, R., René, S., Susana, R. S., Chantal, M., Vincenzo, G., & Frédérique, J. (2012). Instrumental texture analysis parameters as markers of table-grape and winegrape quality: A review. American Journal of Enology and Viticulture, 63(1), 11–28.

    Article  Google Scholar 

  • Macosko, C. W. (1994). Rheology – Principles, measurements and applications. New York: Wiley-VCH.

    Google Scholar 

  • Magdalena, M., & Edward, P. (2007). Species identification of meat by electrophoretic methods. Acta Scientiarum Polonorum, Technologia Alimentaria, 6(1), 5–16.

    Google Scholar 

  • Marta, J., Iva, M., Joanna, N., & Katarzyna, S. (2019). Recent applications of bacteriophage-based electrodes: A mini-review. Electrochemistry Communications, 99, 11–19.

    Article  CAS  Google Scholar 

  • Mecke, A., Dittrich, C., & Meier, W. (2006). Biomimetic membranes designed from amphiphilic block copolymers. Soft Matter, 2, 751–759.

    Article  CAS  PubMed  Google Scholar 

  • Mezger, T. (2011). The Rheology Handbook (3rd Rev. ed., , pp. 324–334). Hanover: Vincentz Network.

    Google Scholar 

  • Michael, T. (2008). AMC technical briefs in Analytical Methods Committee AMCTB, 29, issn:1757-5958.

    Google Scholar 

  • Michael, L. S., Gene, A. S., Neil, C. S., & Gregg, A. N. (1991). New evidence on the hydrothermal system in Long Valley caldera, California, from wells, fluid sampling, electrical geophysics, and age determinations of hot-spring deposits. Journal of Volcanology and Geothermal Research, 48(3–4), 229–263.

    Google Scholar 

  • Militsopoulou, M., Lamari, F., & Karamanos, N. K. (2003). Capillary electrophoresis: A tool for studying interactions of glycans/proteoglycans with growth factors. Journal of Pharmaceutical and Biomedical Analysis, 32, 823–828.

    Article  CAS  PubMed  Google Scholar 

  • Minunni, M. (2003). Biosensors based on nucleic acid interaction. Spectroscopy, 17, 613–625.

    Article  CAS  Google Scholar 

  • Moore, D. M., & Reynolds, R. C., Jr. (1997). X-ray diffraction and the identification and analysis of clay minerals (2nd ed.). New York: Oxford University Press.

    Google Scholar 

  • Moretti, V. M., Turchini, G. M., Bellagamba, F., & Caprino, F. (2003). Traceability issues in fishery and aquaculture products. Veterinary Research Communications, 27(1), 497–505.

    Article  PubMed  Google Scholar 

  • Mostovenko, E., Hassan, C., Rattke, J., Deelder, A. M., van Veelen, P. A., & Palmblad, M. (2013). Comparison of peptide and protein fractionation methods in proteomics. EuPA Open Proteomics, 1, 30–37.

    Article  CAS  Google Scholar 

  • Naik, K. M., Srinivas, D., Sasi, B., & Basha, S. K. J. (2017). Biosensors in food processing – A review. International Journal of Pure & Applied Bioscience, 5(4), 1219–1227. https://doi.org/10.18782/2320-7051.5546.

    Article  Google Scholar 

  • Nikhil, B., Pawan, J., Nello, F., & Pedro, E. (2016). Introduction to biosensors. Essays in Biochemistry, 60, 1–8. https://doi.org/10.1042/EBC20150001.

    Article  Google Scholar 

  • Nordberg, G. F., Fowler, B. A., & Nordberg, M. (2015). Handbook on the toxicology of metals (4th ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Parikha, M. (2016). Biosensors and their applications – A review. Journal of Oral Biology and Craniofacial Research, 6, 153–159.

    Article  Google Scholar 

  • Pavao, M. S. G., Mourao, P. A. S., Mulloy, B., & Tollefsen, D. M. (1995). A unique dermatan sulfate like glycosaminoglycans from ascidian: Its structure and the effect of its unusual sulfation pattern on anticoagulant activity. The Journal of Biological Chemistry, 270, 31027–31036.

    Article  CAS  PubMed  Google Scholar 

  • Putnis, A. (1992). Introduction to mineral sciences (Chapter 3, pp. 41–80). Cambridge: Cambridge University Press.

    Google Scholar 

  • Rechnitz, G. A. (1978). Biochemical electrodes uses tissues slice. Chemical and Engineering News, 56, 16–21.

    Google Scholar 

  • Reich, E., & Schibli, A. (2007). High-performance thin-layer chromatography for the analysis of medicinal plants (Illustrated ed.). New York: Thieme. isbn:978-3-13-141601-8.

    Google Scholar 

  • Romero, G., Díaz, J. R., Sabater, J. M., & Perez, C. (2012). Evaluation of commercial probes for on-line electrical conductivity measurements during goat gland milking process. Sensors, 12(4), 4493–4513. https://doi.org/10.3390/s120404493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosalee, S. R., & Morrissey, T. M. (2008). DNA-based methods for the identification of commercial fish and seafood species. Comprehensive Reviews in Food Science and Food Safety, 7, 280–295.

    Article  Google Scholar 

  • Rutherford, E., & Geiger, H. (1908). An electrical method of counting the number of α particles from radioactive substances. Proceedings of the Royal Society (London), Series A, 81(546), 141–161.

    Article  Google Scholar 

  • Senturk, E., Aktop, S., Sanlibaba, P., & Tezel, B. U. (2018). Biosensors: A novel approach to detect food-borne pathogens. Applied Microbiology, 4, 151. https://doi.org/10.4172/2471-9315.1000151.

    Article  Google Scholar 

  • Steinke, D., & Hanner, R. (2011). The FISH-BOL collaborators’ protocol. Mitochondrial DNA, 22, 10–14.

    Article  CAS  PubMed  Google Scholar 

  • Szczesniak, A. S. (2002). Texture is a sensory property. Food Quality and Preference, 13, 215–225.

    Article  Google Scholar 

  • Tavakoli, J., & Tang, Y. (2017). Hydrogel based sensors for biomedical applications: An updated review. Polymers, 9(8), 364. https://doi.org/10.3390/polym9080364.

    Article  CAS  PubMed Central  Google Scholar 

  • Thevenot, D. R., Toth, K., Durst, R. A., & Wilson, G. S. (1999). Electrochemical biosensors: Recommended definitions and classification. Pure and Applied Chemistry, 71, 2333–2348.

    Article  CAS  Google Scholar 

  • Thevenot, D. R., Toth, K., Durst, R. A., & Wilson, G. S. (2001). Electrochemical biosensors: Recommended definitions and classification. Biosensors & Bioelectronics, 16, 121–131.

    Article  CAS  Google Scholar 

  • Torun, O., Boyaci, I., Temur, E., & Tamer, U. (2012). Comparison of sensing strategies in SPR biosensor for rapid and sensitive enumeration of bacteria. Biosensors & Bioelectronics, 37, 53–60.

    Article  CAS  Google Scholar 

  • Venugopal, V. (2002). Biosensors in fish production and quality control. Biosensors & Bioelectronics, 17, 147–157.

    Article  CAS  Google Scholar 

  • Vijayalakshmi, V., Khalil, A., Olga, K., Kamila, O., & Catherine, A. (2010). An overview of food borne pathogen detection: In the perspective of biosensors. Biotechnology Advances, 28, 232–254.

    Article  CAS  Google Scholar 

  • Vogel, A. I., Tatchell, A. R., Furnis, B. S., Hannaford, A. J., & Smith, P. W. G. (1989). Vogel’s textbook of practical organic chemistry (5th ed.). Harlow: Longman. isbn:978-0-582-46236-6.

    Google Scholar 

  • Volpi, N., & Maccari, F. (2002). Detection of submicrogram quantities of glycosaminoglycans on agarose gels by sequential staining with toluidine blue and stains-all. Electrophoresis, 23, 4060–4066.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J. (1998). DNA biosensors based on peptide nucleic acid (PNA) recognition layers. A review. Biosensors and Bioelectronics, 13, 757–762. 11.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J. (2008). Electrochemical glucose biosensors. Chemical Reviews, 108, 814–825.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., & Weller, C. L. (2006). Recent advances in extraction of nutraceuticals from plants. Trends in Food Science & Technology, 17(6), 300–312.

    Article  CAS  Google Scholar 

  • Ward, R. D., Hanner, R., & Hebert, P. D. N. (2009). The campaign to DNA barcode all fishes, FISH-BOL. Journal of Fish Biology, 74, 329–356.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, K., & Walker, J. (2010). Principles and techniques of biochemistry and molecular biology (7th ed.). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Wittebole, X., De Roock, S., & Opal, S. M. (2014). A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence, 5, 226–235. https://doi.org/10.4161/viru.25991.

    Article  PubMed  Google Scholar 

  • Woolfe, M., & Primrose, S. (2004). Food forensics: Using DNA technology to combat misdescription and fraud. Trends in Biotechnology, 22(5), 222–226.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mathew, S., Raman, M., Kalarikkathara Parameswaran, M., Rajan, D.P. (2019). Techniques Used in Fish and Fishery Products Analysis. In: Fish and Fishery Products Analysis. Springer, Singapore. https://doi.org/10.1007/978-981-32-9574-2_5

Download citation

Publish with us

Policies and ethics