Skip to main content

Introduction

  • Chapter
  • First Online:
Book cover Pattern Analysis of the Human Connectome
  • 399 Accesses

Abstract

Pattern analysis of brain connectome attracts increasing attention in recent years. In this chapter, we first gave a brief review of multimodal brain imaging and brain connectome, and then we discussed some basic concepts of multivariate pattern analysis of brain connectome and its application in neuropsychiatric disorders, including feature extraction, dimensionality reduction, classifier design, and performance evaluation. Finally, we introduced the content of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ogawa, S., Tank, W.L., Menon, R., Ellermann, M.L., Kim, G.L., Merkle, H., Ugurbil, K.: Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. 89(13), 5951–5955 (1992). arXiv:https://www.pnas.org/content/89/13/5951.full.pdf, https://doi.org/10.1073/pnas.89.13.5951. https://www.pnas.org/content/89/13/5951

    Article  CAS  Google Scholar 

  2. Friston, J.L.: Modalities, modes, and models in functional neuroimaging. Science 326(5951), 399–403 (2009). arXiv:https://science.sciencemag.org/content/326/5951/399.full.pdf, https://doi.org/10.1126/science.1174521. https://science.sciencemag.org/content/326/5951/399

    Article  CAS  PubMed  Google Scholar 

  3. Smith, M.L.: The future of FMRI connectivity. NeuroImage 62(2), 1257–1266 (2012), 20 years of fMRI. http://www.sciencedirect.com/science/article/pii/S1053811912000390. https://doi.org/10.1016/j.neuroimage.2012.01.022

    Article  PubMed  Google Scholar 

  4. Karas, G., Burton, E., Rombouts, S., van Schijndel, R., O’Brien, J., Scheltens, P., McKeith, I., Williams, D., Ballard, C., Barkhof, F.: A comprehensive study of gray matter loss in patients with alzheimer’s disease using optimized voxel-based morphometry. NeuroImage 18(4), 895–907 (2003). https://doi.org/10.1016/S1053-8119(03)00041-7. http://www.sciencedirect.com/science/article/pii/S1053811903000417

    Article  CAS  PubMed  Google Scholar 

  5. Burton, J.L., McKeith, I.G., Burn, J.L., Williams, D.L., O’Brien, T.L.: Cerebral atrophy in Parkinson’s disease with and without dementia: a comparison with Alzheimer’s disease, dementia with Lewy bodies and controls. Brain 127(4), 791–800 (2004). https://doi.org/10.1093/brain/awh088. arXiv:http://oup.prod.sis.lan/brain/article-pdf/127/4/791/1116046/awh088.pdf

    Article  PubMed  Google Scholar 

  6. Zeng, L.-L., Xie, L., Shen, H., Luo, Z., Fang, P., Hou, Y., Tang, B., Wu, T., Hu, D.: Differentiating patients with parkinson’s disease from normal controls using gray matter in the cerebellum. The Cerebellum 16(1), 151–157 (2017). https://doi.org/10.1007/s12311-016-0781-1.

    Article  PubMed  Google Scholar 

  7. Bernasconi, N., Duchesne, S., Janke, A., Lerch, J., Collins, D., Bernasconi, A.: Whole-brain voxel-based statistical analysis of gray matter and white matter in temporal lobe epilepsy. NeuroImage 23(2), 717–723 (2004). https://doi.org/10.1016/j.neuroimage.2004.06.015. http://www.sciencedirect.com/science/article/pii/S1053811904003246

    Article  CAS  PubMed  Google Scholar 

  8. Chen, S., Xia, W., Li, L., Liu, J., He, Z., Zhang, Z., Yan, L., Zhang, J., Hu, D.: Gray matter density reduction in the insula in fire survivors with posttraumatic stress disorder: a voxel-based morphometric study. Psychiatr. Res.: Neuroimaging 146(1), 65–72 (2006). https://doi.org/10.1016/j.pscychresns.2005.09.006. http://www.sciencedirect.com/science/article/pii/S0925492705001514

    Article  PubMed  Google Scholar 

  9. Kubicki, M., Shenton, M., Salisbury, D., Hirayasu, Y., Kasai, K., Kikinis, R., Jolesz, F., McCarley, R.: Voxel-based morphometric analysis of gray matter in first episode schizophrenia. NeuroImage 17(4), 1711–1719 (2002). https://doi.org/10.1006/nimg.2002.1296. http://www.sciencedirect.com/science/article/pii/S1053811902912966

    Article  CAS  PubMed  Google Scholar 

  10. Zeng, L.-L., Shen, H., Liu, L., Fang, P., Liu, Y., Hu, D.: State-dependent and trait-related gray matter changes in nonrefractory depression. NeuroReport 26(2), 57–65 (2015). https://journals.lww.com/neuroreport/Fulltext/2015/01020/State_dependent_and_trait_related_gray_matter.3.aspx

    Article  PubMed  Google Scholar 

  11. Hill, J., Inder, T., Neil, J., Dierker, D., Harwell, J., Van Essen, D.: Similar patterns of cortical expansion during human development and evolution. Proc. Natl. Acad. Sci. 107(29), 13135–13140 (2010). arXiv:https://www.pnas.org/content/107/29/13135.full.pdf, https://doi.org/10.1073/pnas.1001229107. https://www.pnas.org/content/107/29/13135

    Article  CAS  Google Scholar 

  12. Wilke, M., Krägeloh-Mann, I., Holland, K.L.: Global and local development of gray and white matter volume in normal children and adolescents. Exp. Br. Res. 178(3), 296–307 (2007). https://doi.org/10.1007/s00221-006-0732-z

    Article  Google Scholar 

  13. Maguire, A.L., Woollett, K., Spiers, J.L.: London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. Hippocampus 16(12), 1091–1101 (2019). https://doi.org/10.1002/hipo.20233

    Article  Google Scholar 

  14. Evans, C.L., He, Y., Chen, J.L.: Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb. Cortex 17(10), 2407–2419 (2007). arXiv:http://oup.prod.sis.lan/cercor/article-pdf/17/10/2407/17296816/bhl149.pdf, https://doi.org/10.1093/cercor/bhl149

    Article  PubMed  Google Scholar 

  15. Bassett, S.L., Bullmore, E., Verchinski, A.L., Mattay, S.L., Weinberger, R.L., Meyer-Lindenberg, A.: Hierarchical organization of human cortical networks in health and schizophrenia. J. Neurosci. 28(37), 9239–9248 (2008). arXiv:http://www.jneurosci.org/content/28/37/9239.full.pdf, https://doi.org/10.1523/JNEUROSCI.1929-08.2008. http://www.jneurosci.org/content/28/37/9239

    Article  CAS  PubMed  Google Scholar 

  16. Basser, P., Mattiello, J., LeBihan D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994). https://doi.org/10.1016/S0006-3495(94)80775-1. http://www.sciencedirect.com/science/article/pii/S0006349594807751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Behrens, T., Berg, J.L., Jbabdi, S., Rushworth, M., Woolrich, M.: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain?. NeuroImage 34(1), 144–155 (2007). https://doi.org/10.1016/j.neuroimage.2006.09.018. http://www.sciencedirect.com/science/article/pii/S1053811906009360

    Article  CAS  PubMed  Google Scholar 

  18. Fjell, M.L., Engvig, A., Tamnes, K.L., Grydeland, H., Walhovd, B.L., Westlye, T.L., Ostby, Y., Dale, M.L., Bjørnerud, A., Due-Tønnessen, P.: Life-span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry. Cereb. Cortex 20(9), 2055–2068 (2009). arXiv:http://oup.prod.sis.lan/cercor/article-pdf/20/9/2055/17303951/bhp280.pdf, https://doi.org/10.1093/cercor/bhp280

    Article  PubMed  Google Scholar 

  19. Ingalhalikar, M., Smith, A., Parker, D., Satterthwaite, D.L., Elliott, A.L., Ruparel, K., Hakonarson, H., Gur, E.L., Gur, C.L., Verma, R.: Sex differences in the structural connectome of the human brain. Proc. Natl. Acad. Sci. 111(2), 823–828 (2014). arXiv:https://www.pnas.org/content/111/2/823.full.pdf, https://doi.org/10.1073/pnas.1316909110. https://www.pnas.org/content/111/2/823

    Article  CAS  Google Scholar 

  20. Fang, P., Zeng, L.-L., Shen, H., Wang, L., Li, B., Liu, L., Hu, D.: Increased cortical-limbic anatomical network connectivity in major depression revealed by Diffusion Tensor Imaging. PLoS ONE 7(9), 1–10 (2012). https://doi.org/10.1371/journal.pone.0045972

    CAS  Google Scholar 

  21. Raichle, E.L.: A brief history of human brain mapping. Trends Neurosci. 32(2), 118–126 (2009). https://doi.org/10.1016/j.tins.2008.11.001. http://www.sciencedirect.com/science/article/pii/S0166223608002658

    Article  CAS  PubMed  Google Scholar 

  22. Fox, D.L., Raichle, E.L.: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711 (2007). https://doi.org/10.1038/nrn2201

    Article  CAS  PubMed  Google Scholar 

  23. Biswal, B., Zerrin Yetkin, F., Haughton, M.L., Hyde, S.L.: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34(4), 537–541 (2019). https://doi.org/10.1002/mrm.1910340409

    Article  Google Scholar 

  24. Friston, J.L.: Functional and effective connectivity in neuroimaging: a synthesis. Hum. Brain Mapp. 2(1), 56–78 (2019). https://doi.org/10.1002/hbm.460020107

    Article  Google Scholar 

  25. McKeown, M.J., Jung, T.-P., Makeig, S., Brown, G., Kindermann, S.L., Lee, T.-W., Sejnowski, J.L.: Spatially independent activity patterns in functional MRI data during the stroop color-naming task. Proc. Natl. Acad. Sci. 95(3), 803–810 (1998). arXiv:https://www.pnas.org/content/95/3/803.full.pdf, https://doi.org/10.1073/pnas.95.3.803. https://www.pnas.org/content/95/3/803

    Article  CAS  Google Scholar 

  26. Friston, J.L., Frith, D.L., Liddle, F.L., Frackowiak, R.S.J.: Functional connectivity: the principal-component analysis of large (PET) data sets. J. Cereb. Blood Flow Metab. 13(1), 5–14 (1993), pMID: 8417010. https://doi.org/10.1038/jcbfm.1993.4

    Article  CAS  PubMed  Google Scholar 

  27. Sun, T.L., Miller, M.L., D’Esposito, M.: Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data. NeuroImage 21(2), 647–658 (2004). https://doi.org/10.1016/j.neuroimage.2003.09.056. http://www.sciencedirect.com/science/article/pii/S1053811903006062

    Article  PubMed  Google Scholar 

  28. Cordes, D., Haughton, V., Carew, D.L., Arfanakis, K., Maravilla, K.: Hierarchical clustering to measure connectivity in fMRI resting-state data. Magn. Reson. Imaging 20(4), 305–317 (2002). https://doi.org/10.1016/S0730-725X(02)00503-9. http://www.sciencedirect.com/science/article/pii/S0730725X02005039

    Article  PubMed  Google Scholar 

  29. Greicius, D.L., Krasnow, B., Reiss, L.L., Menon, V.: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. 100(1), 253–258 (2003). arXiv:https://www.pnas.org/content/100/1/253.full.pdf, https://doi.org/10.1073/pnas.0135058100. https://www.pnas.org/content/100/1/253

    Article  CAS  Google Scholar 

  30. Fox, D.L., Snyder, Z.L., Vincent, L.L., Corbetta, M., Van Essen, C.L., Raichle, E.L.: The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. 102(27), 9673–9678 (2005). arXiv:https://www.pnas.org/content/102/27/9673.full.pdf, https://doi.org/10.1073/pnas.0504136102. https://www.pnas.org/content/102/27/9673

    Article  CAS  Google Scholar 

  31. Beckmann Christian, F., Marilena, D., Devlin Joseph, T., Smith Stephen, M.: Investigations into resting-state connectivity using independent component analysis. Philos. Trans. R. Soc. B: Biol. Sci. 360(1457), 1001–1013 (2019). https://doi.org/10.1098/rstb.2005.1634

    Article  Google Scholar 

  32. Damoiseaux, S.L., Rombouts, S.A.R.B., Barkhof, F., Scheltens, P., Stam, J.L., Smith, M.L., Beckmann, F.L.: Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. 103(37), 13848–13853 (2006). arXiv:https://www.pnas.org/content/103/37/13848.full.pdf, https://doi.org/10.1073/pnas.0601417103. https://www.pnas.org/content/103/37/13848

    Article  CAS  Google Scholar 

  33. Friston, J.L., Frith, D.L., Frackowiak, R.S.J.: Time-dependent changes in effective connectivity measured with PET. Hum. Brain Mapp. 1(1), 69–79 (2019). https://doi.org/10.1002/hbm.460010108

    Article  Google Scholar 

  34. Friston, J.L., Ungerleider, G.L., Jezzard, P., Turner, R.: Characterizing modulatory interactions between areas V1 and V2 in human cortex: a new treatment of functional MRI data. Hum. Brain Mapp. 2(4), 211–224 (2019). https://doi.org/10.1002/hbm.460020403

    Article  Google Scholar 

  35. Friston, K., Harrison, L., Penny, W.: Dynamic causal modelling. NeuroImage 19(4), 1273–1302 (2003). https://doi.org/10.1016/S1053-8119(03)00202-7. http://www.sciencedirect.com/science/article/pii/S1053811903002027

    Article  CAS  PubMed  Google Scholar 

  36. Goebel, R., Roebroeck, A., Kim, D.-S., Formisano, E.: Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and granger causality mapping. Magn. Reson. Imaging 21(10), 1251–1261 (2003). https://doi.org/10.1016/j.mri.2003.08.026. http://www.sciencedirect.com/science/article/pii/S0730725X03003370

    Article  PubMed  Google Scholar 

  37. Horwitz, B., Tagamets, M.-A., McIntosh, A.R. Neural modeling, functional brain imaging, and cognition. Trends Cogn. Sci. 3(3), 91–98 (1999). https://doi.org/10.1016/S1364-6613(99)01282-6. http://www.sciencedirect.com/science/article/pii/S1364661399012826

    Article  CAS  PubMed  Google Scholar 

  38. Esposito, F., Bertolino, A., Scarabino, T., Latorre, V., Blasi, G., Popolizio, T., Tedeschi, G., Cirillo, S., Goebel, R., Salle, D.L.: Independent component model of the default-mode brain function: assessing the impact of active thinking. Brain Res. Bull. 70(4), 263–269 (2006). https://doi.org/10.1016/j.brainresbull.2006.06.012. http://www.sciencedirect.com/science/article/pii/S0361923006002073

    Article  PubMed  Google Scholar 

  39. Fornito, A., Harrison, J.L., Zalesky, A., Simons, S.L.: Competitive and cooperative dynamics of large-scale brain functional networks supporting recollection. Proc. Natl. Acad. Sci. 109(31), 12788–12793 (2012). arXiv:https://www.pnas.org/content/109/31/12788.full.pdf, https://doi.org/10.1073/pnas.1204185109. https://www.pnas.org/content/109/31/12788

    Article  CAS  Google Scholar 

  40. Rao, A.L., Sun, T.L., D’Esposito, M., Miller, M.L.: Functional connectivity of cortical networks involved in bimanual motor sequence learning. Cereb. Cortex 17(5), 1227–1234 (2006). arXiv:http://oup.prod.sis.lan/cercor/article-pdf/17/5/1227/991520/bhl033.pdf, https://doi.org/10.1093/cercor/bhl033

    Article  PubMed  Google Scholar 

  41. Lewis, M.L., Baldassarre, A., Committeri, G., Romani, L.L., Corbetta, M.: Learning sculpts the spontaneous activity of the resting human brain. Proc. Natl. Acad. Sci. 106(41), 17558–17563 (2009). arXiv:https://www.pnas.org/content/106/41/17558.full.pdf, https://doi.org/10.1073/pnas.0902455106. https://www.pnas.org/content/106/41/17558

    Article  CAS  Google Scholar 

  42. Horovitz, G.L., Fukunaga, M., de Zwart, A.L., van Gelderen, P., Fulton, C.L., Balkin, J.L., Duyn, H.L.: Low frequency bold fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum. Brain Mapp. 29(6), 671–682 (2019). https://doi.org/10.1002/hbm.20428

    Article  Google Scholar 

  43. Horovitz, G.L., Braun, R.L., Carr, S.L., Picchioni, D., Balkin, J.L., Fukunaga, M., Duyn, H.L.: Decoupling of the brain’s default mode network during deep sleep. Proc. Natl. Acad. Sci. 106(27), 11376–11381 (2009). arXiv:https://www.pnas.org/content/106/27/11376.full.pdf, https://doi.org/10.1073/pnas.0901435106. https://www.pnas.org/content/106/27/11376

    Article  CAS  Google Scholar 

  44. Boveroux, P., Vanhaudenhuyse, A., Bruno, M.-A., Noirhomme, Q., Lauwick, S., Luxen, A., Degueldre, C., Plenevaux, A., Schnakers, C., Phillips, C., Brichant, J.-F., Bonhomme, V., Maquet, P., Greicius, D.L., Laureys, S., Boly, M.: Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology 113(5), 1038–1053 (2010). https://doi.org/10.1097/aln.0b013e3181f697f5

    Article  CAS  PubMed  Google Scholar 

  45. Allen, A.L., Damaraju, E., Plis, M.L., Erhardt, B.L., Eichele, T., Calhoun, D.L.: Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24(3), 663–676 (2012). arXiv:http://oup.prod.sis.lan/cercor/article-pdf/24/3/663/14099596/bhs352.pdf, https://doi.org/10.1093/cercor/bhs352

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kiviniemi, V., Vire, T., Remes, J., Elseoud, A.L., Starck, T., Tervonen, O., Nikkinen, J.: A sliding time-window ICA reveals spatial variability of the default mode network in time. Brain Connect. 1(4), 339–347 (2011), pMID: 22432423. https://doi.org/10.1089/brain.2011.0036

    Article  PubMed  Google Scholar 

  47. Chang, C., Glover, H.L.: Time-frequency dynamics of resting-state brain connectivity measured with fMRI. NeuroImage 50(1), 81–98 (2010). https://doi.org/10.1016/j.neuroimage.2009.12.011. http://www.sciencedirect.com/science/article/pii/S1053811909012981

    Article  PubMed  Google Scholar 

  48. Hutchison, M.L., Womelsdorf, T., Gati, S.L., Everling, S., Menon, S.L.: Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques. Hum. Brain Mapp. 34(9), 2154–2177 (2019). https://doi.org/10.1002/hbm.22058

    Article  Google Scholar 

  49. Jones, T.L., Vemuri, P., Murphy, C.L., Gunter, L.L., Senjem, L.L., Machulda, M.L., Przybelski, A.L., Gregg, E.L., Kantarci, K., Knopman, S.L., Boeve, F.L., Petersen, C.L., Jack, R.L., Jr.: Non-stationarity in the resting brain’s modular architecture. PLoS ONE 7(6), 1–15 (2012). https://doi.org/10.1371/journal.pone.0039731

    Google Scholar 

  50. Hutchison, M.L., Womelsdorf, T., Allen, A.L., Bandettini, A.L., Calhoun, D.L., Corbetta, M., Penna, D.L., Duyn, H.L., Glover, H.L., Gonzalez-Castillo, J., Handwerker, A.L., Keilholz, S., Kiviniemi, V., Leopold, A.L., de Pasquale, F., Sporns, O., Walter, M., Chang, C.: Dynamic functional connectivity: promise, issues, and interpretations. NeuroImage 80:360–378 (2013), mapping the Connectome. https://doi.org/10.1016/j.neuroimage.2013.05.079. http://www.sciencedirect.com/science/article/pii/S105381191300579X

    Article  PubMed  Google Scholar 

  51. Haynes, J.-D., Rees, G.: Decoding mental states from brain activity in humans. Nat. Rev. Neurosci. 7, 523 (2006). https://doi.org/10.1038/nrn1931

    Article  CAS  PubMed  Google Scholar 

  52. Gong, Q., Wu, Q., Scarpazza, C., Lui, S., Jia, Z., Marquand, A., Huang, X., McGuire P, Mechelli, A.: Prognostic prediction of therapeutic response in depression using high-field MR imaging. NeuroImage 55(4), 1497–1503 (2011). https://doi.org/10.1016/j.neuroimage.2010.11.079. http://www.sciencedirect.com/science/article/pii/S1053811910015570

    Article  PubMed  Google Scholar 

  53. Draganski, B., Chu, C., Jack, J., Clifford, R., Stonnington, M.L., Ashburner, J., Rohrer, D.L., Fox, C.L., Scahill, I.L., Frackowiak, R.S.J., Klöppel, S.: Automatic classification of MR scans in Alzheimer’s disease. Brain 131(3), 681–689 (2008). https://doi.org/10.1093/brain/awm319. arXiv:http://oup.prod.sis.lan/brain/article-pdf/131/3/681/898663/awm319.pdf

    Article  PubMed  Google Scholar 

  54. Uddin, Q.L., Menon, V., Young, B.L., Ryali, S., Chen, T., Khouzam, A., Minshew, J.L., Hardan, Y.L.: Multivariate searchlight classification of structural magnetic resonance imaging in children and adolescents with autism. Biol. Psychiatr. 70(9), 833–841 (2011), genetic and Environmental Contributors to Disturbed Cortical Development in Developmental Disorders. https://doi.org/10.1016/j.biopsych.2011.07.014. http://www.sciencedirect.com/science/article/pii/S000632231100727X

    Article  PubMed  PubMed Central  Google Scholar 

  55. Desikan, S.L., Cabral, J.L., Hess, P.L., Dillon, P.L., Glastonbury, M.L., Weiner, W.L., Schmansky, J.L., Greve, N.L., Salat, H.L., Buckner, L.L., Fischl, B.: Alzheimer’s Disease Neuroimaging Initiative. Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer’s disease*. Brain 132(8), 2048–2057 (2009). arXiv:http://oup.prod.sis.lan/brain/article-pdf/132/8/2048/743415/awp123.pdf, https://doi.org/10.1093/brain/awp123

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yoon, U., Lee, J.-M., Im, K., Shin, Y.-W., Cho, H.L., Kim, Y.L., Kwon, S.L., Kim, I.L.: Pattern classification using principal components of cortical thickness and its discriminative pattern in schizophrenia. NeuroImage 34(4), 1405–1415 (2007). https://doi.org/10.1016/j.neuroimage.2006.11.021. http://www.sciencedirect.com/science/article/pii/S1053811906011232

    Article  PubMed  Google Scholar 

  57. Mwangi, B., Douglas Steele, J., Matthews, K., Ebmeier, P.L.: Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder. Brain 135(5), 1508–1521 (2012). arXiv:http://oup.prod.sis.lan/brain/article-pdf/135/5/1508/17865265/aws084.pdf, https://doi.org/10.1093/brain/aws084

    Article  PubMed  Google Scholar 

  58. Ardekani, A.L., Tabesh, A., Sevy, S., Robinson, G.L., Bilder, M.L., Szeszko, R.L.: Diffusion tensor imaging reliably differentiates patients with schizophrenia from healthy volunteers. Hum. Brain Mapp. 32(1), 1–9 (2019). https://doi.org/10.1002/hbm.20995

    Article  Google Scholar 

  59. Walther, B.L., Chai, B., Caddigan, E., Beck, M.L., Fei-Fei, L.: Simple line drawings suffice for functional MRI decoding of natural scene categories. Proc. Natl. Acad. Sci. 108(23), 9661–9666 (2011). arXiv:https://www.pnas.org/content/108/23/9661.full.pdf, https://doi.org/10.1073/pnas.1015666108. https://www.pnas.org/content/108/23/9661

    Article  CAS  Google Scholar 

  60. Fu, H.L., Mourao-Miranda, J., Costafreda, G.L., Khanna, A., Marquand, F.L., Williams, C.L., Brammer, J.L.: Pattern classification of sad facial processing: toward the development of neurobiological markers in depression. Biol. Psychiatr. 63(7), 656–662 (2008), the Neurobiology and Therapeutics of Antidepressant-Resistant Depression. https://doi.org/10.1016/j.biopsych.2007.08.020. http://www.sciencedirect.com/science/article/pii/S0006322307008773

    Article  PubMed  Google Scholar 

  61. Shirer, R.L., Greicius, D.L., Rykhlevskaia, E., Ryali, S., Menon, V.: Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb. Cortex 22(1), 158–165 (2011). arXiv:http://oup.prod.sis.lan/cercor/article-pdf/22/1/158/14096754/bhr099.pdf, https://doi.org/10.1093/cercor/bhr099

    Article  PubMed  PubMed Central  Google Scholar 

  62. Dosenbach, N.U.F., Nardos, B., Cohen, L.L., Fair, A.L., Power, D.L., Church, A.L., Nelson, M.L., Wig, S.L., Vogel, C.L., Lessov-Schlaggar, N.L., Barnes, A.L., Dubis, W.L., Feczko, E., Coalson, S.L., Pruett, R.L., Barch, M.L., Petersen, E.L., Schlaggar, L.L.: Prediction of individual brain maturity using fMRI. Science 329(5997), 1358–1361 (2010). arXiv:https://science.sciencemag.org/content/329/5997/1358.full.pdf, https://doi.org/10.1126/science.1194144. https://science.sciencemag.org/content/329/5997/1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Craddock, C.L., Holtzheimer, E.L., III, Hu, P.L., Mayberg, S.L.: Disease state prediction from resting state functional connectivity. Magn. Reson. Med. 62, 1619–1628 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  64. Shen, H., Wang, L., Liu, Y., Hu, D.: Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI. NeuroImage 49(4), 3110–3121 (2010). https://doi.org/10.1016/j.neuroimage.2009.11.011. http://www.sciencedirect.com/science/article/pii/S1053811909011951

    Article  PubMed  Google Scholar 

  65. Zhu, C.-Z., Zang, Y.-F., Cao, Q.-J., Yan, C.-G., He, Y., Jiang, T.-Z., Sui, M.-Q., Wang, Y.-F.: Fisher discriminative analysis of resting-state brain function for attention-deficit/hyperactivity disorder. NeuroImage 40(1), 110–120 (2008). https://doi.org/10.1016/j.neuroimage.2007.11.029. http://www.sciencedirect.com/science/article/pii/S1053811907010610

    Article  PubMed  Google Scholar 

  66. Li, X., Zhu, D., Jiang, X., Jin, C., Zhang, X., Guo, L., Zhang, J., Hu, X., Li, L., Liu, T.: Dynamic functional connectomics signatures for characterization and differentiation of PTSD patients. Hum. Brain Mapp. 35(4), 1761–1778 (2019). https://doi.org/10.1002/hbm.22290

    Article  Google Scholar 

  67. Brodersen, H.L., Schofield, M.L., Leff, P.L., Ong, S.L., Lomakina, I.L., Buhmann, M.L., Stephan, E.L.: Generative embedding for model-based classification of fMRI data. PLoS Comput. Biol. 7(6), 1–19 (2011). https://doi.org/10.1371/journal.pcbi.1002079

    Article  CAS  Google Scholar 

  68. Pereira, F., Mitchell, T., Botvinick, M.: Machine learning classifiers and fMRI: a tutorial overview. NeuroImage 45(1, Supplement 1), S199–S209 (2009), mathematics in Brain Imaging. https://doi.org/10.1016/j.neuroimage.2008.11.007. http://www.sciencedirect.com/science/article/pii/S1053811908012263

    Article  PubMed  Google Scholar 

  69. Li, Y., Namburi, P., Yu, Z., Guan, C., Feng, J., Gu, Z.: Voxel selection in fMRI data analysis based on sparse representation. IEEE Trans. Biomed. Eng. 56(10), 2439–2451 (2009)

    Article  PubMed  Google Scholar 

  70. Ryali, S., Supekar, K., Abrams, A.L., Menon, V.: Sparse logistic regression for whole-brain classification of fMRI data. NeuroImage 51(2), 752–764 (2010). https://doi.org/10.1016/j.neuroimage.2010.02.040. http://www.sciencedirect.com/science/article/pii/S1053811910002089

    Article  PubMed  Google Scholar 

  71. Martino, D.L., Valente, G., Staeren, N., Ashburner, J., Goebel, R., Formisano, E.: Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. NeuroImage 43(1), 44–58 (2008). https://doi.org/10.1016/j.neuroimage.2008.06.037. http://www.sciencedirect.com/science/article/pii/S1053811908007854

    Article  PubMed  Google Scholar 

  72. Shen, X., Meyer, G.L.: Low-dimensional embedding of fMRI datasets. NeuroImage 41(3), 886–902 (2008). https://doi.org/10.1016/j.neuroimage.2008.02.051. http://www.sciencedirect.com/science/article/pii/S1053811908001869

    Article  PubMed  Google Scholar 

  73. Hardoon, R.L., Mourão-Miranda, J., Brammer, M., Shawe-Taylor, J.: Unsupervised analysis of fMRI data using kernel canonical correlation. NeuroImage 37(4), 1250–1259 (2007). https://doi.org/10.1016/j.neuroimage.2007.06.017. http://www.sciencedirect.com/science/article/pii/S1053811907005708

    Article  PubMed  Google Scholar 

  74. Duda, O.L., Hart, E.L., Stork, G.L.: Pattern Classification. Wiley, New York (2012)

    Google Scholar 

  75. Vapnik, V.: The Nature of Statistical Learning Theory. Springer Science & Business Media, New York (2013)

    Google Scholar 

  76. Dai, Z., Yan, C., Wang, Z., Wang, J., Xia, M., Li, K., He, Y.: Discriminative analysis of early alzheimer’s disease using multi-modal imaging and multi-level characterization with multi-classifier (M3). NeuroImage 59(3), 2187–2195 (2012). https://doi.org/10.1016/j.neuroimage.2011.10.003. http://www.sciencedirect.com/science/article/pii/S1053811911011645

    Article  PubMed  Google Scholar 

  77. Liu, F., Wee, C.-Y, Chen, H., Shen, D.: Inter-modality relationship constrained multi-modality multi-task feature selection for alzheimer’s disease and mild cognitive impairment identification. NeuroImage 84, 466–475 (2014). https://doi.org/10.1016/j.neuroimage.2013.09.015. http://www.sciencedirect.com/science/article/pii/S1053811913009518

    Article  PubMed  Google Scholar 

  78. Orrù, G., Pettersson-Yeo, W., Marquand, F.L., Sartori, G., Mechelli, A.: Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci. Biobehav. Rev. 36(4), 1140–1152 (2012). https://doi.org/10.1016/j.neubiorev.2012.01.004. http://www.sciencedirect.com/science/article/pii/S0149763412000139

    Article  Google Scholar 

  79. Bishop, M.L., Nasrabadi, M.L.: Pattern recognition and machine learning. J. Electron. Imaging 16(4), 049901–049902 (2007)

    Article  Google Scholar 

  80. Shi, J., Malik, J.: Normalized cuts and image segmentation, Departmental Papers (CIS), pp. 888–905 (2000)

    Google Scholar 

  81. Wang, F., Zhao, B., Zhang, C.: Linear time maximum margin clustering. IEEE Trans. Neural Netw. 21(2), 319–332 (2010)

    Article  PubMed  Google Scholar 

  82. Li, Y.-F., Tsang, W.L., Kwok, J., Zhou, Z.-H.: Tighter and convex maximum margin clustering. In: van Dyk, D., Welling, M. (eds.) Artificial Intelligence and Statistics, pp. 344–51. PMLR (2009)

    Google Scholar 

  83. Xu, L., Neufeld, J., Larson, B., Schuurmans, D.: Maximum margin clustering. In: Advances in Neural Information Processing Systems, pp. 1537–44. Cambridge/London: MIT Press (2005)

    Google Scholar 

  84. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006). https://doi.org/10.1016/j.patrec.2005.10.010. http://www.sciencedirect.com/science/article/pii/S016786550500303X

    Article  Google Scholar 

  85. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  CAS  PubMed  Google Scholar 

  86. Sun, Y., Wang, X., Tang, X.: Hybrid deep learning for face verification. IEEE Trans. Pattern Anal. Mach. Intell. 38(10), 1997–2009 (2016). https://doi.org/10.1109/TPAMI.2015.2505293

    Article  PubMed  Google Scholar 

  87. Kim, J., Calhoun, D.L., Shim, E., Lee, J.-H.: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia. NeuroImage 124, 127–146 (2016). https://doi.org/10.1016/j.neuroimage.2015.05.018. http://www.sciencedirect.com/science/article/pii/S1053811915003985

    Article  PubMed  Google Scholar 

  88. Hazlett, C.L., Gu, H., Munsell, C.L., Kim, H.L., Styner, M., Wolff, J.L., Elison, T.L., Swanson, R.L., Zhu, H., Botteron, N.L., Collins, L.L., Constantino, N.L., Dager, R.L., Estes, M.L., Evans, C.L., Fonov, S.L., Gerig, G., Kostopoulos, P., McKinstry RC, Pandey, J., Paterson, S., Pruett, R.L., Schultz, T.L., Shaw, W.L., Zwaigenbaum, L., Piven, J., IBIS Network, Clinical Sites, Data Coordinating Center, Image Processing Core, Statistical Analysis.: Early brain development in infants at high risk for autism spectrum disorder. Nature 542(7641), 348–351 (2017). https://doi.org/10.1038/nature21369. http://europepmc.org/articles/PMC5336143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Suk, H.-I., Lee, S.-W., Shen, D., The Alzheimer’s Disease Neuroimaging Initiative.: Latent feature representation with stacked auto-encoder for ad/mci diagnosis. Brain Struct. Funct. 220(2), 841–859 (2015). https://doi.org/10.1007/s00429-013-0687-3

    Article  PubMed  Google Scholar 

  90. Kawahara, J., Brown, J.L., Miller, P.L., Booth, G.L., Chau, V., Grunau, E.L., Zwicker, G.L., Hamarneh, G.: Brainnetcnn: convolutional neural networks for brain networks; towards predicting neurodevelopment. NeuroImage 146, 1038–1049 (2017). https://doi.org/10.1016/j.neuroimage.2016.09.046. http://www.sciencedirect.com/science/article/pii/S1053811916305237

    Article  PubMed  Google Scholar 

  91. Zhao, Y., Dong, Q., Chen, H., Iraji, A., Li, Y., Makkie, M., Kou, Z., Liu, T.: Constructing fine-granularity functional brain network atlases via deep convolutional autoencoder. Med. Image Anal. 42, 200–211 (2017). https://doi.org/10.1016/j.media.2017.08.005. http://www.sciencedirect.com/science/article/pii/S1361841517301287

    Article  PubMed  PubMed Central  Google Scholar 

  92. Arbabshirani, R.L., Plis, S., Sui, J., Calhoun, D.L.: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls. NeuroImage 145, 137–65 (2017), individual Subject Prediction. https://doi.org/10.1016/j.neuroimage.2016.02.079. http://www.sciencedirect.com/science/article/pii/S105381191600210X

    Article  PubMed  Google Scholar 

  93. Guo, X., Dominick, C.L., Minai, A.L., Li, H., Erickson, A.L., Lu, J.L.: Diagnosing autism spectrum disorder from brain resting-state functional connectivity patterns using a deep neural network with a novel feature selection method. Front. Neurosci. 11, 460 (2017). https://doi.org/10.3389/fnins.2017.00460. https://www.frontiersin.org/article/10.3389/fnins.2017.00460

  94. Vieira, S., Pinaya, H.L., Mechelli, A.: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applications. Neurosci. Biobehav. Rev. 74, 58–75 (2017). https://doi.org/10.1016/j.neubiorev.2017.01.002. http://www.sciencedirect.com/science/article/pii/S0149763416305176

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, D., Zeng, LL. (2019). Introduction. In: Pattern Analysis of the Human Connectome. Springer, Singapore. https://doi.org/10.1007/978-981-32-9523-0_1

Download citation

Publish with us

Policies and ethics