Skip to main content

Cryogenic Machining of AZ31B Magnesium Alloy for Bio-implant Applications

  • Conference paper
  • First Online:
Advances in Forming, Machining and Automation (AIMTDR 2018)

Abstract

Magnesium and its alloys are slowly entering into the field of bio-implants as a substitute to currently used materials because of their mechanical properties and physiological benefits. However, the magnesium alloys corrode much before than the bone is fully healed because of their high corrosion rate in physiological environment of body. In this experiment, AZ31B magnesium alloy has been subjected to turning operation under dry and cryogenic environment. This research is an attempt to study the effects of cutting speed and feed rate on forces, surface roughness, temperature and microstructure. Furthermore, a comparative study is done on the effects of machining environment on these factors. The results show that a combination of high cutting speed and low feed rate with cryogenic environment gives the best surface finish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, Q., Shu, D., Hu, C., Zhao, Z., Yuan, B.: Grain refinement in an as-cast AZ61 magnesium alloy processed by multi-axial forging under the multitemperature processing procedure. Mater. Sci. Eng. A 541, 98–104 (2012). https://doi.org/10.1016/j.msea.2012.02.009

  2. Poinern, G.E.J., Brundavanam, S., Fawcett, D.: Biomedical magnesium alloys: a review of material properties, surface modifications and potential as a biodegradable orthopaedic implant. Am. J. Biomed. Eng. 2(6), 218–240 (2012). https://doi.org/10.5923/j.ajbe.20120206.02

  3. Radha, R., Sreekanth, D.: Insight of magnesium alloys and composites for orthopaedic implant applications—a review. J. Magnes. Alloys 5, 286–312 (2017). https://doi.org/10.1016/j.jma.2017.08.003

    Article  CAS  Google Scholar 

  4. Song, G.L.: Corrosion behavior and prevention strategies for magnesium (Mg) alloys. General Motors Corporation, USA. https://doi.org/10.1533/9780857098962.1.3

  5. Zhang, E., Yang, L., Xu, J., Chen, H.: Microstructure, mechanical properties and bio-corrosion properties of Mg-Si(-Ca,Zn) alloy for biomedical application. Acta Biomater. 6, 1756–1762 (2010). https://doi.org/10.1016/j.actbio.2009.11.024

  6. Chen, Y., Xu, Z., Smith, C., Sankar, J.: Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 10, 4561–4573 (2014). https://doi.org/10.1016/j.actbio.2014.07.005

  7. Uddin, M.S., Rosman, H., Hall, C., Murphy, P.: Enhancing the corrosion resistance of biodegradable Mg-based alloy by machining-induced surface integrity: influence of machining parameters on surface roughness and hardness. Int. J. Adv. Manuf. Technol. 90, 2095–2108 (2017). https://doi.org/10.1007/s00170-016-9536-x

  8. Nasr, M.N.A., Outeiro, J.C.: Sensitivity analysis of cryogenic cooling on machining of magnesium alloy AZ31B-O. Procedia CIRP 31, 264–269 (2015). https://doi.org/10.1016/j.procir.2015.03.030

  9. Pu, Z.: Cryogenic machining and burnishing of AZ31B magnesium alloy for enhanced surface integrity and functional performance. Thesis and dissertations—Mechanical engineering. 5 (2012). http://uknowledge.uky.edu/me_etds/5

  10. Yildiz, Y., Nalbant, M.: A review of cryogenic cooling in machining processes. Int. J. Mach. Tools Manuf. 48, 947–964 (2008). https://doi.org/10.1016/j.ijmachtools.2008.01.008

  11. Dinesh, S., Senthilkumar, V., Asokan, P., Arulkirubakaran, D.: Effect of cryogenic cooling on machinability and surface quality of bio-degradable ZK60 Mg alloy. Mater. Des. 87, 1030–1036 (2015). https://doi.org/10.1016/j.matdes.2015.08.099

    Article  CAS  Google Scholar 

  12. Pu, Z., Outeiro, J.C., Batista, A.C., Dillon Jr., O.W., Puleo, D.A., Jawahir, I.S.: Surface integrity in dry and cryogenic machining of AZ31B Mg alloy with varying cutting edge radius tools. Procedia Eng. 19, 282–287 (2011). https://doi.org/10.1016/j.proeng.2011.11.113

    Article  CAS  Google Scholar 

  13. Shi, K., Zhang, D., Ren, J., Yao, C., Huang, X.: Effect of cutting parameters on machinability characteristics in milling of magnesium alloy with carbide tool. Adv. Mech. Eng. 8(1), 1–9 (2016). https://doi.org/10.1177/1687814016628392

  14. Magadum, S., Arun Kumar, S., Yoganath, V.G., Srinivasa, C.K., GuruMurthy, T.: Evaluation of tool life and cutting forces in cryogenic machining of hardened steel. Procedia Mater. Sci. 5, 2542–2549 (2014). https://doi.org/10.1016/j.mspro.2014.07.506

  15. Dilip Jerold, B., Pradeep Kumar, M.: Experimental comparison of carbon-dioxide and liquid nitrogen cryogenic coolants in turning of AISI 1045 steel. Cryogenics 52, 569–574 (2012). https://doi.org/10.1016/j.cryogenics.2012.07.009

  16. Malleswara Rao, J.N., Sumalatha, M., Kesava Rao, V.V.S., Anurupa, V., Srivalli, G.: Variation of surface roughness with feed rate on mild steel components produced by CNC lathe. Int. Res. J. Eng. Technol. 3(06) (2016)

    Google Scholar 

  17. Danish, M., Ginta, T. L., Habib, K., Carou, D., Rani, A. M. A., Saha, B. B.: Thermal analysis during turning of AZ31 magnesium alloy under dry and cryogenic conditions. Int. J. Adv. Manuf. Technol. 91, 2855–2868 (2017). https://doi.org/10.1007/s00170-016-9893-5

  18. Pu, Z., Song, G.-L., Yang, S., Outeiro, J.C., Dillon Jr., O.W., Puleo, D.A., Jawahir, I.S.: Grain refined and basal textured surface produced by burnishing for improved corrosion performance of AZ31B Mg alloy. Corros. Sci. 57, 192–201 (2012). https://doi.org/10.1016/j.corsci.2011.12.018

    Article  CAS  Google Scholar 

  19. Al-Dolaimy, K.A.: Effect of cutting parameters on surface roughness in turning operations. Al-Qadisiyah J. Eng. Sci. 9(4) (2016)

    Google Scholar 

  20. Paul, S., Dhar, N.R., Chattopadhyay, A.B.: Beneficial effects of cryogenic cooling over dry and wet machining on tool wear and surface finish in turning AISI 1060 steel. J. Mater. Process. Technol. 116, 44–48 (2001). https://doi.org/10.1016/S0924-0136(01)00839-1

    Article  CAS  Google Scholar 

  21. Viswanathan, R., Ramesh, S., Subburam, V.: Measurement and optimization of performance characteristics in turning of Mg alloy under dry and MQL conditions. Measurement (2018). https://doi.org/10.1016/j.measurement.2018.02.018

  22. Pu, Z., Dillon Jr., O.W., Jawahir, I.S., Puleo, D.A.: Microstructural changes of AZ31 magnesium alloys induced by cryogenic machining and its influence on corrosion resistance in simulated body fluid for biomedical applications. In: Proceedings of the ASME 2010 International Manufacturing Science and Engineering Conference MSEC2010, October 12–15, 2010, Erie, Pennsylvania, USA. https://doi.org/10.1115/msec2010-34234

  23. Rotella, G., Umbrello, D.: Finite element modeling of microstructural changes in dry and cryogenic cutting of Ti6Al4V alloy. CIRP Ann. Manuf. Technol. (2014). https://doi.org/10.1016/j.cirp.2014.03.074

  24. Swaminathan, S., Shankar, M.R., Lee, S., Hwang, J., King, A.H., Kezar, R.F., Rao, B.C., Brown, T.L., Chandrasekar, S., Compton, W.D., Trumble, K.P.: Large strain deformation and ultra-fine grained materials by machining. Mater. Sci. Eng. A 410–411, 358–363 (2005). https://doi.org/10.1016/j.msea.2005.08.139

  25. Aramcharoen, A.: Influence of cryogenic cooling on tool wear and chip formation in turning of titanium alloy. Preocedia CIRP 46, 83–86 (2016). https://doi.org/10.1016/j.procir.2016.03.184

    Article  Google Scholar 

  26. Bermingham, M.J., Palanisamy, S., Kent, D., Dargusch, M.S.: A comparison of cryogenic and high pressure emulsion cooling technologies on tool life and chip morphology in Ti-6Al-4V cutting. J. Mater. Process. Technol. 212, 752–765 (2012). https://doi.org/10.1016/j.jmatprotec.2011.10.027

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. S. Balan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tibrewal, V., Dak, K., Himanshu, A., Kumar, H., Kuppan, P., Balan, A.S.S. (2019). Cryogenic Machining of AZ31B Magnesium Alloy for Bio-implant Applications. In: Shunmugam, M.S., Kanthababu, M. (eds) Advances in Forming, Machining and Automation. AIMTDR 2018. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-32-9417-2_19

Download citation

Publish with us

Policies and ethics