Skip to main content

Breaking the Transmission of TB: A Roadmap to Bridge the Gaps in Controlling TB in Endemic Settings

  • Chapter
  • First Online:
Mycobacterium Tuberculosis: Molecular Infection Biology, Pathogenesis, Diagnostics and New Interventions

Abstract

Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb), remains an enormous health burden with nearly 2 billion people worldwide being affected by it, though only 10% progress to active disease. Currently around 58% of people infected with M.tb are being diagnosed and treated. The lack of a standard research setting and limited resource in terms of early diagnosis of TB lead to high incidence of transmission of TB infection in high-TB-burden countries. Therefore, early diagnosis of TB and an effective vaccination can primarily break the cycle of transmission of TB. Recommended diagnostic tests, currently available, have several limitations, making them unsuitable for resource-limited settings and remote areas. The healthcare settings are the highest risk zones for transmission of drug-resistant M.tb strains. Multidrug-resistant (MDR) TB is resilient to diagnosis and pose major complications to patient’s health during treatment. In order to limit the spread of MDR TB, we need to implement better diagnostic tools and health measures which may eventually interrupt transmission of M.tb from TB patients to uninfected individuals. Complete and correct execution of regime of anti-TB therapies at both the individual and community level could help in minimizing the transmission of TB. This chapter gives an insight on strategies that aid in interruption of transmission of TB, especially in high-TB-burden areas across the globe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BCG:

Bacillus Calmette-Guerin

DNA:

Deoxyribonucleic acid

GoI:

Government of India

LPA:

Line probe assays

LAMP:

Loop-mediated isothermal amplification

MTB:

Mycobacterium tuberculosis

MDR:

Multidrug resistant

NSP:

National Strategic Plan

NHP:

Nonhuman primate

NAATs:

Nucleic acid amplification tests

RNTCP:

Revised National Tuberculosis Control Program

RIF:

Rifampin

TTD:

Time to detection

TB:

Tuberculosis

WHO:

World Health Organization

XDR:

Extensively drug resistant

References

  • Ailinger RL, Dear MR (1997) Latino immigrants’ explanatory models of tuberculosis infection. Qual Health Res 7:521–531

    Article  Google Scholar 

  • Andersen P, Doherty TM (2005) The success and failure of BCG – implications for a novel tuberculosis vaccine. Nat Rev Microbiol 3:656–662

    Article  CAS  Google Scholar 

  • Ayisi JG, van’t Hoog AH, Agaya JA, Mchembere W, Nyamthimba PO, Muhenje O, Marston BJ (2011) Care seeking and attitudes towards treatment compliance by newly enrolled tuberculosis patients in the district treatment programme in rural western Kenya: a qualitative study. BMC Public Health 11:515

    Article  Google Scholar 

  • Calmette A (1927) La Vaccination préventive contre la tuberculose par le “BCG”. Masson et Cie, Paris

    Google Scholar 

  • Denkinger CM, Nicolau I, Ramsay A, Chedore P, Pai M (2013) Are peripheral microscopy centres ready for next generation molecular tuberculosis diagnostics? Eur Respir J 42:544–547

    Article  Google Scholar 

  • Dockrell HM (2016) Towards new TB vaccines: What are the challenges? Pathog Dis 74:ftw016

    Article  Google Scholar 

  • Douglas KS (2010) Decrease in the effectiveness of Bacille Calmette-Guérin Vaccine against pulmonary tuberculosis: a consequence of increased immune suppression by microbial antioxidants, not overattenuation. Clin Infect Dis 51:177–184

    Article  Google Scholar 

  • Fine PEM (1995) Variation in protection by BCG: implications of and for heterologous immunity. Lancet 346:1339–1345

    Article  CAS  Google Scholar 

  • Lambert ML, Van der Stuyft P (2005) Editorial: delays to tuberculosis treatment: shall we continue to blame the victim? Trop Med Int Heal 10:945–946

    Article  CAS  Google Scholar 

  • Liefooghe R, Baliddawa JB, Kipruto EM, Vermeire C, De Munynck AO (1997) From their own perspective. A Kenyan community’s perception of tuberculosis

    Book  Google Scholar 

  • Lin H-H, Ezzati M, Murray M (2007) Tobacco smoke, indoor air pollution and tuberculosis: a systematic review and meta-analysis. PLoS Med 4:e20

    Article  Google Scholar 

  • Nardell EA (2004) Catching droplet nuclei. Am J Respir Crit Care Med 169:553–554. https://doi.org/10.1164/rccm.2401003

    Article  PubMed  Google Scholar 

  • Nathavitharana RR, Hillemann D, Schumacher SG, Schlueter B, Ismail N, Omar SV, Sikhondze W, Havumaki J, Valli E, Boehme C, Denkinger CM (2016) Multicenter noninferiority evaluation of hain genotype MTBDRplus version 2 and Nipro NTM+MDRTB Line probe assays for detection of rifampin and isoniazid resistance. J Clin Microbiol 54:1624–1630

    Article  Google Scholar 

  • Nieuwenhuizen NE, Kulkarni PS, Shaligram U, Cotton MF, Rentsch CA, Eisele B, Grode L, Kaufmann SHE (2017) The recombinant Bacille Calmette-Guérin Vaccine VPM1002: ready for clinical efficacy testing. Front Immunol 8:1147

    Article  Google Scholar 

  • O’Shea MK, Koh GCKW, Munang M, Smith G, Banerjee A, Dedicoat M (2014) Time-to-detection in culture predicts risk of mycobacterium tuberculosis transmission: a cohort study. Clin Infect Dis 59:177–185

    Article  Google Scholar 

  • RNTCP (2017) World TB day slogans

    Google Scholar 

  • Rodrigues LC, Diwan VK, Wheeler JG (1993) Protective effect of BCG against Tuberculous meningitis and Miliary Tuberculosis: a meta-analysis. Int J Epidemiol 22:1154–1158

    Article  CAS  Google Scholar 

  • Sharma N, Malhotra R, Taneja DK, Saha R, Ingle GK (2007) Awareness and perception about tuberculosis in the general population of Delhi. Asia Pacific J Public Health 19:10–15

    Article  CAS  Google Scholar 

  • Sharma KS, Katoch K, Sarin R, Balambal R, Kumar Jain N, Patel N, Murthy KJR, Singla N, Saha PK, Khanna A, Singh U, Kumar S, Sengupta A, Banavaliker JN, Chauhan DS, Sachan S, Wasim M, Tripathi S, Dutt N, Jain N, Joshi N, Penmesta SRR, Gaddam S, Gupta S, Khamar B, Dey B, Mitra DK, Arora SK, Bhaskar S, Rani R (2017) Efficacy and safety of Mycobacterium indicus pranii as an adjunct therapy in category II pulmonary tuberculosis in a randomized trial. Sci Rep 7:3354

    Article  Google Scholar 

  • Springett VH, Sutherland I (1994) A re-examination of the variations in the efficacy of BCG vaccination against tuberculosis in clinical trials. Tuber Lung Dis 75:227–233

    Article  CAS  Google Scholar 

  • Steingart KR, Henry M, Ng V, Hopewell PC, Ramsay A, Cunningham J, Urbanczik R, Perkins M, Aziz MA, Pai M (2006) Fluorescence versus conventional sputum smear microscopy for tuberculosis: a systematic review. Lancet Infect Dis 6(9):570–581

    Article  Google Scholar 

  • Tameris MD, Hatherill M, Landry BS, Scriba TJ, Snowden MA, Lockhart S, Shea JE, McClain JB, Hussey GD, Hanekom WA, Mahomed H, McShane H, MVA85A 020 Trial Study Team the M 020 TS (2013) Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet 381:1021–1028

    Article  CAS  Google Scholar 

  • Tollefson D, Ngari F, Mwakala M, Gethi D, Kipruto H, Cain K, Bloss E (2016) Under-reporting of sputum smear-positive tuberculosis cases in Kenya. Int J Tuberc Lung Dis 20:1334–1341

    Article  CAS  Google Scholar 

  • Trauer JM, Denholm JT, McBryde ES (2014) Construction of a mathematical model for tuberculosis transmission in highly endemic regions of the Asia-pacific. J Theor Biol 358:74–84

    Article  Google Scholar 

  • Trébucq A, Enarson DA, Chiang CY, Van Deun A, Harries AD, Boillot F, Detjen A, Fujiwara PI, Graham SM, Monedero I, Rusen ID, Rieder HL (2011) Xpert ® MTB/RIF for national tuberculosis programmes in low-income countries: when, where and how? Int J Tuberc Lung Dis 15:1567–1572

    Article  Google Scholar 

  • Trunz B Bourdin, Fine PEM DC (2006) Articles. Lancet 367:1173–1180

    Article  Google Scholar 

  • UNITAID (2016) UNITAID

    Google Scholar 

  • UNITAID (2017) Tuberc diagnostics technol landscape

    Google Scholar 

  • Van Der Meeren O, Hatherill M, Nduba V, Wilkinson RJ, Muyoyeta M, Van Brakel E, Ayles HM, Henostroza G, Thienemann F, Scriba TJ, Diacon A, Blatner GL, Demoitié M-A, Tameris M, Malahleha M, Innes JC, Hellström E, Martinson N, Singh T, Akite EJ, Khatoon Azam A, Bollaerts A, Ginsberg AM, Evans TG, Gillard P, Tait DR (2018) Phase 2b controlled trial of M72/AS01E vaccine to prevent Tuberculosis. N Engl J Med 379:1621–1634

    Article  Google Scholar 

  • Wandwalo ER, Mørkve O (2000) Delay in tuberculosis case-finding and treatment in Mwanza, Tanzania. Int J Tuberc Lung Dis 4(2):133–138

    CAS  PubMed  Google Scholar 

  • WHO (2014) TB Global 2014

    Google Scholar 

  • WHO (2016) World Health Organization Geneva

    Google Scholar 

  • WHO (2017) Global Tuberculosis report 2017-main text

    Google Scholar 

  • WHO (2018) WHO Global Tuberculosis report

    Google Scholar 

  • Wilson ME, Fineberg HV, Colditz GA (1995) Geographic latitude and the efficacy of bacillus Calmette-Guérin vaccine. Clin Infect Dis 20:982–991

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasreen Z. Ehtesham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, P., Samal, J., Zarin, S., Elangovan, R., Hasnain, S.E., Ehtesham, N.Z. (2019). Breaking the Transmission of TB: A Roadmap to Bridge the Gaps in Controlling TB in Endemic Settings. In: Hasnain, S., Ehtesham, N., Grover, S. (eds) Mycobacterium Tuberculosis: Molecular Infection Biology, Pathogenesis, Diagnostics and New Interventions. Springer, Singapore. https://doi.org/10.1007/978-981-32-9413-4_24

Download citation

Publish with us

Policies and ethics