Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 210 Accesses

Abstract

The earliest awareness of the existence of geomagnetic field lines was due to the advent of compass, a navigation instrument intended by Chinese that points north or south. Until 1600, William Gilbert gave the explanation to the principle of compass in his published work. In the early nineteenth century, magnetometers were widely spaced to form a network for the magnetic field measurements on the Earth’s surface. C. F. Gauss was one of leaders of this project and made enormous contributions to the mathematical analysis of Earth’s magnetic field. The next great advance was the discovery of the link between solar and geomagnetic activities in the late nineteenth century by Richard Carrington and other scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alfvén H (1942) Existence of electromagnetic-hydrodynamic waves. Nature 150(3805):405–406

    Article  ADS  Google Scholar 

  2. Allan W, Menk FW, Fraser BJ, Li Y, White SP (1996) Are low-latitude pi2 pulsations cavity/waveguide modes? Geophys Res Lett 23:765C768. https://doi.org/10.1029/96GL00661

    Article  ADS  Google Scholar 

  3. Baker DN (2001) Satellite anomalies due to space storms. Springer, pp 285–311

    Google Scholar 

  4. Baker D, Allen J, Kanekal S, Reeves G (1998) Disturbed space environment may have been related to pager satellite failure. Eos, Trans Am Geophys Union 79(40):477–483

    Article  ADS  Google Scholar 

  5. Baumjohann W, Glassmeier K-H (1984) The transient response mechanism and Pi2 pulsations at substorm onset—review and outlook. Planet Space Sci 32:1361–1370. https://doi.org/10.1016/0032-0633(84)90079-5

    Article  ADS  Google Scholar 

  6. Baumjohann W, Treumann RA (2012) Basic space plasma physics. World Scientific

    Google Scholar 

  7. Bellan P (1994) Alfvén resonancereconsidered: exact equations for wave propagation across a cold inhomogeneous plasma. Phys. Plasmas 1(11):3523–3541. https://doi.org/10.1063/1.870888

    Article  ADS  MathSciNet  Google Scholar 

  8. Brandt PC, Mitchell DG, Roelof EC, Krimigis SM, Paranicas CP, Mauk BH, Saur J, DeMajistre R (2005) ENA imaging: seeing the invisible. Johns Hopkins APL Tech Dig 26(2):143–155

    Google Scholar 

  9. Chen L, Hasegawa A (1974), A theory of long-period magnetic pulsations: 2. Impulse excitation of surface eigenmode. J Geophys Res 79(7):1033–1037. https://doi.org/10.1029/JA079i007p01033

    Article  ADS  Google Scholar 

  10. Claudepierre S et al (2013) Van Allen Probes observation of localized drift resonance between poloidal mode ultra-low frequency waves and 60 keV electrons. Geophys Res Lett 40(17):4491–4497

    Article  ADS  Google Scholar 

  11. Cummings W, O’sullivan R, Coleman P (1969) Standing Alfvén waves in the magnetosphere. J Geophys Res 74(3):778–793. https://doi.org/10.1029/JA074i003p00778

    Article  ADS  Google Scholar 

  12. Daglis I, Baumjohann W, Gleiss J, Orsini S, Sarris E, Scholer M, Tsurutani B, Vassiliadis D (1999) Recent advances, open questions and future directions in solar-terrestrial research. Phys Chem Earth Part C Solar Terr Planet Sci 24(1):5–28

    Google Scholar 

  13. Daglis I, Banaszkiewicz M, Wodnicka E (1994) Coupling of the high-latitude and the equatorial magnetosphere during substorms through the transport/acceleration of ionospheric ions

    Google Scholar 

  14. Dai L et al (2013) Excitation of poloidal standing Alfvén waves through drift resonance wave-particle interaction. Geophys Res Lett 40(16):4127–4132. https://doi.org/10.1002/grl.50800

    Article  ADS  Google Scholar 

  15. Damiano P, Wright A, Sydora R, Samson J (2007) Energy dissipation via electron energization in standing shear Alfvén waves. Phys Plasmas 14(6):062,904. https://doi.org/10.1063/1.2744226

    Article  ADS  Google Scholar 

  16. Darrouzet F, de Keyser J, Pierrard V (2009) The Earth’s plasmasphere: a CLUSTER and IMAGE perspective. Springer Science & Business Media

    Google Scholar 

  17. Delcourt D, Sauvaud J, Pedersen A (1990) Dynamics of single-particle orbits during substorm expansion phase. J Geophys Res 95(A12):20853–20865

    Article  ADS  Google Scholar 

  18. Dungey J (1963) The structure of the exosphere or adventures in velocity space. Geophysics, the Earth’s environment, p 503

    Google Scholar 

  19. Dungey JW (1955) Electrodynamics of the outer atmosphere. Physics of the ionosphere, pp 229–236

    Google Scholar 

  20. Eastwood J, Schwartz S, Horbury T, Carr C, Glassmeier K-H, Richter I, Koenders C, Plaschke F, Wild J (2011) Transient Pc3 wave activity generated by a hot flow anomaly: cluster, Rosetta, and ground-based observations. J Geophys Res 116(A8). https://doi.org/10.1029/2011JA016467

    Article  Google Scholar 

  21. Elkington SR, Sarris TE (2016) The Role of Pc-5 ULF waves in the radiation belts: current understanding and open questions. In: Waves, particles, and storms in geospace: a complex interplay, p 80

    Chapter  Google Scholar 

  22. Elkington SR, Hudson MK, Chan AA (1999) Acceleration of relativistic electrons via drift-resonant interaction with toroidal-mode Pc-5 ULF oscillations. Geophys Res Lett 26(21):3273–3276

    Article  ADS  Google Scholar 

  23. Elkington SR, Hudson MK, Chan AA (2003) Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field. J Geophys Res 108:1116

    Article  Google Scholar 

  24. Farley TA, Walt M (1971) Source and loss processes of protons of the inner radiation belt. J Geophys Res 76(34):8223–8240. https://doi.org/10.1029/JA076i034p08223

    Article  ADS  Google Scholar 

  25. Fei Y, Chan AA, Elkington SR, Wiltberger MJ (2006) Radial diffusion and MHD particle simulations of relativistic electron transport by ULF waves in the September 1998 storm. J Geophys Res 111(A12). https://doi.org/10.1029/2005JA011211

  26. Fenrich F, Samson J (1997) Growth and decay of field line resonances. J Geophys Res 102(A9):20031–20039. https://doi.org/10.1029/97JA01376

    Article  ADS  Google Scholar 

  27. Fok M-C, Moore TE, Brandt PC, Delcourt DC, Slinker SP, Fedder JA (2006) Impulsive enhancements of oxygen ions during substorms. J Geophys Res 111(A10). https://doi.org/10.1029/2006JA011839

  28. Foster J, Wygant J, Hudson M, Boyd A, Baker D, Erickson P, Spence HE (2015) Shock-induced prompt relativistic electron acceleration in the inner magnetosphere. J Geophys Res 120(3):1661–1674. https://doi.org/10.1002/2014JA020642

    Article  Google Scholar 

  29. Fraser BJ, Horwitz J, Slavin J, Dent Z, Mann I (2005) Heavy ion mass loading of the geomagnetic field near the plasmapause and ULF wave implications. Geophys Res Lett 32(4). https://doi.org/10.1029/2004GL021315

    Article  Google Scholar 

  30. Fu S, Wilken B, Zong Q, Pu Z (2001) Ion composition variations in the inner magnetosphere: individual and collective storm effects in 1991. J Geophys Res 106(A12):29683–29704. https://doi.org/10.1029/2000JA900173

    Article  ADS  Google Scholar 

  31. Fujita S, Glassmeier K-H, Kamide K (1996) MHD waves generated by the Kelvin-Helmholtz instability in a nonuniform magnetosphere. J Geophys Res 101(A12):27317–27325. https://doi.org/10.1029/96JA02676

    Article  ADS  Google Scholar 

  32. Gallagher D, Adrian ML (2007) Two-dimensional drift velocities from the IMAGE EUV plasmaspheric imager. J Appl Spectr 69(3):341–350

    Google Scholar 

  33. Gazey N et al (1997) EISCAT/CRRES observations: Nightside ionospheric ion outflow and oxygen-rich substorm injections. Ann Geophys 14(10):1032–1043. https://doi.org/doi.org/10.1007/s00585-996-1032-4

    Article  ADS  Google Scholar 

  34. Goldstein J, Sandel B (2005) The global pattern of evolution of plasmaspheric drainage plumes. Inner magnetosphere interactions: new perspectives from imaging, vol 159. Geophysical monograph series, pp 1–22

    Google Scholar 

  35. Gonzalez WD, Tsurutani BT, De Gonzalez ALC (1999) Interplanetary origin of geomagnetic storms. Space Sci Rev 88(3–4):529–562

    Article  ADS  Google Scholar 

  36. Greenwald R, Walker A (1980) Energetics of long period resonant hydromagnetic waves. Geophys Res Lett 7(10):745–748. https://doi.org/10.1029/GL007i010p00745

    Article  ADS  Google Scholar 

  37. Hamlin DA, Karplus R, Vik RC, Watson KM (1961) Mirror and azimuthal drift frequencies for geomagnetically trapped particles. J Geophys Res 66(1):1C4. https://doi.org/10.1029/JZ066i001p00,001

  38. Hao Y et al (2014) Interactions of energetic electrons with ULF waves triggered by interplanetary shock: Van Allen Probes observations in the magnetotail. J Geophys Res 119(10):8262–8273. https://doi.org/10.1002/2014JA020023

    Article  Google Scholar 

  39. Hasegawa A (1969) Drift mirror instability in the magnetosphere. Phys Fluids 12(12):2642–2650

    Article  ADS  Google Scholar 

  40. Hasegawa H, Tsui KH, Assis AS (1983) A theory of long period magnetic pulsations, 3. Local field line oscillations. Geophys Res Lett 10:765–767. https://doi.org/10.1029/GL010i008p00765

    Article  ADS  Google Scholar 

  41. Horwitz J, Comfort R, Chappell C (1984) Thermal ion composition measurements of the formation of the new outer plasmasphere and double plasmapause during storm recovery phase. Geophys Res Lett 11(8):701–704. https://doi.org/10.1029/GL011i008p00701

    Article  ADS  Google Scholar 

  42. Hughes WJ (1994) Magnetospheric ULF waves: A tutorial with a historical perspective. Solar wind sources of magnetospheric ultra-low-frequency waves, pp 1–11

    Google Scholar 

  43. Hughes W, Southwood D (1976) The screening of micropulsation signals by the atmosphere and ionosphere. J Geophys Res 81(19):3234–3240. https://doi.org/10.1029/JA081i019p03234

    Article  ADS  Google Scholar 

  44. Hughes W, Southwood D, Mauk B, McPherron R, Barfield J (1978) Alfvén waves generated by an inverted plasma energy distribution. Nature 275(5675):43–45. https://doi.org/10.1038/275043a0

    Article  ADS  Google Scholar 

  45. Keika K, Kistler LM, Brandt PC (2013) Energization of O+ ions in the Earth’s inner magnetosphere and the effects on ring current buildup: A review of previous observations and possible mechanisms. J Geophys Res 118(7):4441–4464. https://doi.org/10.1002/jgra.50371

    Article  Google Scholar 

  46. Keiling A, Takahashi K (2011) Review of Pi2 Models. Space Sci Rev 161:63–148

    Article  ADS  Google Scholar 

  47. Kepko L, Kivelson M (1999) Generation of Pi2 pulsations by bursty bulk flows. J Geophys Res 104(A11):25021–25034. https://doi.org/10.1029/1999JA900361

    Article  ADS  Google Scholar 

  48. Kepko L, Kivelson M, Yumoto K (2001) Flow bursts, braking, and Pi2 pulsations. J Geophys Res 106(A2):1903–1915. https://doi.org/10.1029/2000JA000158

    Article  ADS  Google Scholar 

  49. Kepko L, Spence HE (2003) Observations of discrete, global magnetospheric oscillations directly driven by solar wind density variations. J Geophys Res 108(A6). https://doi.org/10.1029/2002JA009676

  50. Kepko L, Spence HE, Singer H (2002) ULF waves in the solar wind as direct drivers of magnetospheric pulsations. Geophys Res Lett 29(8). https://doi.org/10.1029/2001GL014405

    Article  Google Scholar 

  51. Kivelson MG, Southwood DJ (1983) Charged particle behavior in low-frequency geomagnetic pulsations: 3. Spin phase dependence. J Geophys Res 88(A1):174–182

    Article  ADS  Google Scholar 

  52. Kivelson MG, Southwood DJ (1985) Charged particle behavior in low-frequency geomagnetic pulsations: 4. Compressional waves. J Geophys Res 90(A2):1486–1498

    Article  ADS  Google Scholar 

  53. Lemaire JF, Gringauz KI (2005) The Earth’s plasmasphere. Cambridge University Press

    Google Scholar 

  54. Li X, Baker D, Temerin M, Larson D, Lin R, Reeves G, Looper M, Kanekal S, Mewaldt R (1997) Are energetic electrons in the solar wind the source of the outer radiation belt? Geophys Res Lett 24(8):923–926. https://doi.org/10.1029/97GL00543

    Article  ADS  Google Scholar 

  55. Liu H et al (2016) Compressional ULF wave modulation of energetic particles in the inner magnetosphere. J Geophys Res 121(7):6262C6276. https://doi.org/10.1002/2016JA022706

    ADS  Google Scholar 

  56. Liu W, Sarris T, Li X, Elkington S, Ergun R, Angelopoulos V, Bonnell J, Glassmeier K (2009) Electric and magnetic field observations of Pc4 and Pc5 pulsations in the inner magnetosphere: a statistical study. J Geophys Res 114(A12). https://doi.org/10.1029/2009JA014243

    Article  Google Scholar 

  57. Liu W, Sarris T, Li X, Ergun R, Angelopoulos V, Bonnell J, Glassmeier K (2010), Solar wind influence on Pc4 and Pc5 ULF wave activity in the inner magnetosphere. J Geophys Res 115(A12). https://doi.org/10.1029/2010JA015299

    Google Scholar 

  58. Lui A, McEntire R, Krimigis S, Keath E (1986) Acceleration of energetic oxygen (E\(>\)137 keV) in the storm-time ring current. In: Ion acceleration in the magnetosphere and ionosphere, pp 149–152. https://doi.org/10.1029/GM038p0149

    Google Scholar 

  59. Lyons LR, Thorne RM (1973) Equilibrium structure of radiation belt electrons. J Geophys Res 78(13):2142–2149. https://doi.org/10.1029/JA078i013p02142

    Article  ADS  Google Scholar 

  60. Mann IR et al (2013) Discovery of the action of a geophysical synchrotron in the Earths Van Allen radiation belts. Nat Commun 4. https://doi.org/10.1038/ncomms3795

  61. Mann IR, Wright AN, Mills KJ, Nakariakov VM (1999) Excitation of magnetospheric waveguide modes by magnetosheath flows. J Geophys Res 104(A1):333–353. https://doi.org/10.1029/1998JA900026

    Article  ADS  Google Scholar 

  62. Mathie R, Mann I (2000) A correlation between extended intervals of ULF wave power and storm-time geosynchronous relativistic electron flux enhancements. Geophys Res Lett 27(20):3261–3264. https://doi.org/10.1029/2000GL003822

    Article  ADS  Google Scholar 

  63. McPherron R (2005) Magnetic pulsations: their sources and relation to solar wind and geomagnetic activity. Surv Geophys 26(5):545–592. https://doi.org/10.1007/s10712-005-1758-7

    Article  ADS  Google Scholar 

  64. Millan R, Thorne R (2007) Review of radiation belt relativistic electron losses. J Atmos Sol Terr Phys 69(3):362–377

    Article  ADS  Google Scholar 

  65. Min K et al (2017) Second harmonic poloidal waves observed by Van Allen Probes in the dusk-midnight sector. J Geophys Res 122(3):3013–3039. https://doi.org/10.1002/2016JA023770

    Article  Google Scholar 

  66. Mitchell DG, Roelof EC, Hamilton DC, Retterer KC, Mende S et al (2003) Global imaging of O+ from IMAGE/HENA. Space Sci Rev 109:63–75. https://doi.org/10.1023/B:SPAC.0000007513.55076.00

    Article  ADS  Google Scholar 

  67. Miyoshi Y, Jordanova V, Morioka A, Thomsen M, Reeves G, Evans D, Green J (2006) Observations and modeling of energetic electron dynamics during the october 2001 storm. J Geophys Res 111(A11). https://doi.org/10.1029/2005JA011351

  68. Moldwin MB, Downward L, Rassoul H, Amin R, Anderson R (2002) A new model of the location of the plasmapause: CRRES results. J Geophys Res 107(A11)

    Google Scholar 

  69. Moore T, Fok M-C, Delcourt D, Slinker S, Fedder J (2007) Global aspects of solar wind-ionosphere interactions. J Atmos Terr Phys 69(3):265–278. https://doi.org/doi.org/10.1016/j.jastp.2006.08.009

    Article  ADS  Google Scholar 

  70. Murphy KR, Mann IR, Sibeck DG (2015) On the dependence of storm time ULF wave power on magnetopause location: impacts for ULF wave radial diffusion. Geophys Res Lett 42(22):9676–9684. https://doi.org/10.1002/2015GL066592

    Article  ADS  Google Scholar 

  71. Northrop TG (1963) Adiabatic charged-particle motion. Rev Geophys 1(3):283–304

    Article  ADS  Google Scholar 

  72. Nosé M, Koshiishi H, Matsumoto H, Keika K, Koga K, Goka T, Obara T, et al (2010), Magnetic field dipolarization in the deep inner magnetosphere and its role in development of O+-rich ring current. J Geophys Res 115(A9). https://doi.org/10.1029/2010JA015321

    Article  Google Scholar 

  73. Ohtani S, Brandt P, Mitchell D, Singer H, Nosé M, Reeves G, Mende S (2005) Storm-substorm relationship: variations of the hydrogen and oxygen energetic neutral atom intensities during storm-time substorms. J Geophys Res 110(A7). https://doi.org/10.1029/2004JA010954

  74. Olson JV (1999) Pi2 pulsations and substorm onsets: a review. J Geophys Res 104(A8):17499–17520. https://doi.org/10.1029/1999JA900086

    Article  ADS  Google Scholar 

  75. Pokhotelov D, Rae I, Murphy K, Mann I (2016) Effects of ULF wave power on relativistic radiation belt electrons: 8–9 October 2012 geomagnetic storm. J Geophys Res 121:11766–11779. https://doi.org/10.1002/2016JA023130

    Article  Google Scholar 

  76. Pope JH (1964) An explanation for the apparent polarization of some geomagnetic micropulsations (pearls). J Geophys Res 69(3):399–405. https://doi.org/10.1029/JZ069i003p00399

    Article  ADS  Google Scholar 

  77. Radoski HR, McClay JF (1967) The hydromagnetic toroidal resonance. J Geophys Res 72(19):4899–4903. https://doi.org/10.1029/JZ072i019p04899

    Article  ADS  Google Scholar 

  78. Rankin R, Kabin K, Marchand R (2006) Alfvén field line resonances in arbitrary magnetic field topology. Adv Space Res 38(8):1720–1729

    Article  ADS  Google Scholar 

  79. Reeves GD et al (2016) Energy-dependent dynamics of kev to mev electrons in the inner zone, outer zone, and slot regions. J Geophys Res 121(1):397–412. https://doi.org/10.1002/2015JA021569

    Article  Google Scholar 

  80. Reinisch BW, Moldwin MB, Denton RE, Gallagher DL, Matsui H, Pierrard V, Tu J (2009) Augmented empirical models of plasmaspheric density and electric field using IMAGE and CLUSTER data. In: The Earths plasmasphere, pp 231–261

    Chapter  Google Scholar 

  81. Ren J et al (2017) Low-energy (\(<\) 200 eV) electron acceleration by ULF waves in the plasmaspheric boundary layer: Van Allen Probes observation. J Geophys Res 122(10):9969–9982. https://doi.org/10.1002/2017JA024316

    ADS  Google Scholar 

  82. Ren J, Zong QG, Zhou XZ, Rankin R, Wang YF (2016) Interaction of ULF waves with different ion species: pitch angle and phase space density implications. J Geophys Res 121(10):9459–9472. https://doi.org/10.1002/2016JA022995

    ADS  Google Scholar 

  83. Samson J, Harrold B, Ruohoniemi J, Greenwald R, Walker A (1992) Field line resonances associated with MHD waveguides in the magnetosphere. Geophys Res Lett 19(5):441–444. https://doi.org/10.1029/92GL00116

    Article  ADS  Google Scholar 

  84. Sandel BR, Denton MH (2007) Global view of refilling of the plasmasphere. Geophys Res Lett 34(17)

    Google Scholar 

  85. Sandel B, Goldstein J, Gallagher D, Spasojevic M (2003) Extreme ultraviolet imager observations of the structure and dynamics of the plasmasphere. Space Sci Rev 109(1):25–46

    Article  ADS  Google Scholar 

  86. Sheldon R, Spence H, Fennell J (1998) Observation of the 40 keV field-aligned ion beams. Geophys Res Lett 25(10):1617–1620. https://doi.org/10.1029/98GL01054

    Article  ADS  Google Scholar 

  87. Singer HJ, Hughes WJ, Russell CT (1982) Standing hydromagnetic waves observed by ISEE 1 and 2: radial extent and harmonic. J Geophys Res 87:3519–3529. https://doi.org/10.1029/JA087iA05p03519

    Article  ADS  Google Scholar 

  88. Singh A, Singh R, Siingh D (2011) State studies of Earth’s plasmasphere: a review. Planet Space Sci 59(9):810–834

    Article  ADS  Google Scholar 

  89. Southwood DJ, Hughes WJ (1985) Concerning the structure of Pi 2 pulsations. Space Sci Rev 90(A1):386C392. https://doi.org/10.1029/JA090iA01p00386

    Article  Google Scholar 

  90. Southwood D, Hughes W (1983) Theory of hydromagnetic waves in the magnetosphere. Space Sci Rev 35(4):301–366

    Article  ADS  Google Scholar 

  91. Southwood DJ, Kivelson MG (1981) Charged particle behavior in low-frequency geomagnetic pulsations. I transverse waves. J Geophys Res 86:5643–5655. https://doi.org/10.1029/JA086iA07p05643

    Article  ADS  Google Scholar 

  92. Southwood D, Dungey J, Etherington R (1969) Bounce resonant interaction between pulsations and trapped particles. Planet Space Sci 17(3):349–361

    Article  ADS  Google Scholar 

  93. Spasojević M, Frey H, Thomsen M, Fuselier S, Gary S, Sandel B, Inan U (2004) The link between a detached subauroral proton arc and a plasmaspheric plume. Geophys Res Lett 31(4)

    Google Scholar 

  94. Takahashi K, McEntire R, Lui A, Potemra T (1990) Ion flux oscillations associated with a radially polarized transverse Pc 5 magnetic pulsation. J Geophys Res 95(A4):3717–3731. https://doi.org/10.1029/JA095iA04p03717

    Article  ADS  Google Scholar 

  95. Takahashi K, Ohtani S, Anderson BJ (1995) Statistical analysis of Pi 2 pulsations observed by the AMPTE CCE spacecraft in the inner magnetosphere. J Geophys Res 100(A11):21,929C21,941. https://doi.org/10.1029/95JA01849

    Article  Google Scholar 

  96. Thorne RM, Horne RB (1997) Modulation of electromagnetic ion cyclotron instability due to interaction with ring current O+ during magnetic storms. J Geophys Res 102(A7):14155–14163. https://doi.org/10.1029/96JA04019

    Article  ADS  Google Scholar 

  97. Tsutomu T (1965) Transmission and coupling resonance of hydromagnetic disturbances in the non-uniform Earth’s magnetosphere. Sci Rep Tohoku Univ Ser 5 Geophys 17(2):43–72

    Google Scholar 

  98. Turner DL, Shprits Y, Hartinger M, Angelopoulos V (2012) Explaining sudden losses of outer radiation belt electrons during geomagnetic storms. Nat Phys 8(3):208–212. https://doi.org/10.1038/nphys2185

    Article  Google Scholar 

  99. Van Allen JA, Ludwig GH, Ray EC, McIlwain C (1958) Observation of high intensity radiation by satellites 1958 Alpha and Gamma. Department of Physics, State University of Iowa

    Google Scholar 

  100. Walsh B, Foster J, Erickson P, Sibeck D (2014) Simultaneous ground-and space-based observations of the plasmaspheric plume and reconnection. Science 343(6175):1122–1125

    Article  ADS  Google Scholar 

  101. Walsh B, Phan T, Sibeck D, Souza V (2014) The plasmaspheric plume and magnetopause reconnection. Geophys Res Lett 41(2):223–228. https://doi.org/10.1002/2013GL058802

    Article  ADS  Google Scholar 

  102. Wei C, Dai L, Duan S, Wang C, Wang Y (2019) Multiple satellites observation evidence: High-m Poloidal ULF waves with time-varying polarization states. Earth Planet Phys 3:1–14. https://doi.org/10.26464/epp2019021

  103. Williams D (1981) Ring current composition and sources: an update. Planet Space Sci 29(11):1195–1203

    Article  ADS  Google Scholar 

  104. Williams D (1983) The Earth’s ring current: causes, generation, and decay. Space Sci Rev 34(3):223–234

    Article  ADS  Google Scholar 

  105. Williams D (1985) Dynamics of the Earth’s ring current: theory and observation. Space Sci Rev 42(3–4):375–396. https://doi.org/10.1007/BF00214994

    Article  ADS  Google Scholar 

  106. Wright AN, Allan W (1996) Are two-fluid effects relevant to ULF pulsations? J Geophys Res 101(A11):24991–24996. https://doi.org/10.1029/96JA01947

    Article  ADS  Google Scholar 

  107. Wygant J et al (2000) Polar spacecraft based comparisons of intense electric fields and Poynting flux near and within the plasma sheet-tail lobe boundary to UVI images: an energy source for the aurora. J Geophys Res 105(A8):18675–18692. https://doi.org/10.1029/1999JA900500

    Article  ADS  Google Scholar 

  108. Yang B, Zong Q-G, Fu SY, Li X, Korth A, Fu HS, Yue C, Reme H (2011) The role of ULF waves interacting with oxygen ions at the outer ring current during storm times. J Geophys Res 116. https://doi.org/10.1029/2010JA015683

    Article  Google Scholar 

  109. Yang B, Zong Q-G, Wang Y, Fu S, Song P, Fu H, Korth A, Tian T, Reme H (2010) Cluster observations of simultaneous resonant interactions of ULF waves with energetic electrons and thermal ion species in the inner magnetosphere. J Geophys Res 115(A2). https://doi.org/10.1029/2009JA014542

    Article  Google Scholar 

  110. Yeoman TK, Wright D, Baddeley L (2006) Ionospheric signatures of ULF waves: active radar techniques. In: Synthesis and new directions, magnetospheric ULF waves, pp 273–288

    Chapter  Google Scholar 

  111. Yumoto K, Saito T, Tsurutani BT, Smith EJ, Akasofu S-I (1984) Relationship between the IMF magnitude and Pc 3 magnetic pulsations in the magnetosphere. J Geophys Res 89(A11):9731–9740. https://doi.org/10.1029/JA089iA11p09731

    Article  ADS  Google Scholar 

  112. Zhao L, Zhang H, Zong Q (2017) Global ULF waves generated by a hot flow anomaly. Geophys Res Lett 44(11):5283C5291. https://doi.org/10.1002/2017GL073249

    Article  ADS  Google Scholar 

  113. Zhou X-Z, Wang Z-H, Zong Q-G, Rankin R, Kivelson MG, Chen X-R, Blake JB, Wygant JR, Kletzing CA (2016) Charged particle behavior in the growth and damping stages of ultralow frequency waves: theory and Van Allen Probes observations. J Geophys Res. https://doi.org/10.1002/2016JA022447

    ADS  Google Scholar 

  114. Zhou X-Z et al (2015) Imprints of impulse-excited hydromagnetic waves on electrons in the Van Allen radiation belts. Geophys Res Lett 42(15):6199–6204. https://doi.org/10.1002/2015GL064988

    Article  ADS  Google Scholar 

  115. Zhu X, Kivelson MG (1989) Global mode ULF pulsations in a magnetosphere with a nonmonotonic Alfvén velocity profile. J Geophys Res 94(A2):1479–1485

    Article  ADS  Google Scholar 

  116. Zong Q-G et al (2007) Ultralow frequency modulation of energetic particles in the dayside magnetosphere. Geophys Res Lett 34(12):105–+. https://doi.org/10.1029/2007GL029915

  117. Zong Q-G et al (2009) Energetic electrons response to ULF waves induced by interplanetary shocks in the outer radiation belt. J Geophys Res 114(A10):204. https://doi.org/10.1029/2009JA014,393

    Article  Google Scholar 

  118. Zong QG, Wilken B, Fu SY, Fritz T, Pu ZY, Hasebe N, Williams DJ (2001) Ring current oxygen ions in the magnetosheath caused by magnetic storm. J Geophys Res 106:25–541. https://doi.org/10.1029/2000JA000127

    Article  Google Scholar 

  119. Zong Q-G, Wang YF, Yang B, Fu SY, Pu ZY, Xie L, Fritz TA (2008) Recent progress on ULF wave and its interactions with energetic particles in the inner magnetosphere. Sci China Ser E Technol Sci 51(10):1620–1625. https://doi.org/10.1007/s11431-008-0253-z

    Article  Google Scholar 

  120. Zong Q-G, Wang YF, Zhang H, Fu SY, Zhang H, Wang CR, Yuan CJ, Vogiatzis I (2012) Fast acceleration of inner magnetospheric hydrogen and oxygen ions by shock induced ULF waves. J Geophys Res 117(A11):206. https://doi.org/10.1029/2012JA018,024

    Article  Google Scholar 

  121. Zong Q, Rankin R, Zhou X (2017) The interaction of ultra-low-frequency pc3-5 waves with charged particles in Earths magnetosphere. Rev Mod Plasma Phys 1(1):10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Ren .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ren, J. (2019). Background and Motivation. In: ULF Waves’ Interaction with Cold and Thermal Particles in the Inner Magnetosphere. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-32-9378-6_1

Download citation

Publish with us

Policies and ethics