Skip to main content
  • 201 Accesses

Abstract

Plants can be considered as rich and renewable biochemical factory. Plants are primary source of medicine and primary health care. Ayurveda, a traditional medicine system, is totally based on the compounds that isolated from plants. A number of phytochemicals is extractable and used as raw material/intermediates for numerous scientific research and development of new valuable compounds. Various plant secondary metabolites are commercially important and utilized for the production of important pharmaceutical compounds. Plant-based herbal products are cost-effective with higher efficacy and lesser toxicity. Beside the different types of saponins, Sapindus species is also a rich source of variety of other phytocompounds such as alkaloids, phytosterols, phenolic compounds, tannins, flavonoids and glycosides. Every part of Sapindus named leaf, fruit, galls, roots stem contains variety of phytochemicals and that is responsible for the various biological activities. In vitro culture of Sapindus species are also containing good amount of these phytochemicals. The extracts of different parts of this plant also showed free radical scavenging, antimicrobial, reducing potential, anticancer, spermicidal, lipid peroxidation inhibition activity, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Alam, M. N., Bristi, N. J., & Rafiquzzaman, M. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. The Saudi Pharmaceutical Journal, 21, 143–152.

    PubMed  Google Scholar 

  • Arora, B., Bhadauria, P., Tripathi, D., & Sharma, A. (2012). Sapindus emarginatus: Phytochemistry & various biological activities. Indo Global Journal of Pharmaceutical Sciences, 2, 250–257.

    CAS  Google Scholar 

  • Azhar, I., Usmanghani, K., Perveen, S., Ali, M. S., & Ahmad, V. U. (1993). Two triterpenoidal saponins from S. mukorossi Gaertn. Pakistan Journal of Pharmaceutical Sciences, 6, 71–77.

    CAS  PubMed  Google Scholar 

  • Azhar, I., Usmanghani, K., Perveen, S., Ali, M. S., & Ahmad, V. U. (1994). Chemical constituents of S. mukorossi Gaertn. Pakistan Journal of Pharmaceutical Sciences, 7, 33–41.

    CAS  PubMed  Google Scholar 

  • Chappell, J. (2002). The genetics and molecular genetics of terpene and sterol origami. Current Opinion in Plant Biology, 5, 151–157.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, X. Y., Wei, T., Guo, B., Ni, W., & Liu, C. Z. (2005). Cistanche deserticola cell suspension cultures: Phenylethanoid glycosides biosynthesis and antioxidant activity. Process Biochemistry, 40, 3119–3124.

    Article  CAS  Google Scholar 

  • Chirva, V. Y., Kintya, P. K., Sosnovskii, V. A., Krivenchuk, P. E., & Zykova, N. Y. (1970). A tri terpene glycosides of S. mukorossi-D part 2 structure of sapindoside A and sapindoside B. Khim Prir Soedin (Tashk), 6, 218–221.

    CAS  Google Scholar 

  • Chirva, V. Y., Kintya, P. K., Sosnovskii, V. A., & Zolotarev, B. M. (1973a). Tri terpene glycosides of S.mukorossi part 3 structure of sapindoside C. Chem of Natural Compounds (English Transltion of Khim Prir Soedin), 6, 380–381.

    Article  Google Scholar 

  • Chirva, V. Y., Kintya, P. K., Sosnovskii, V. A., & Zolotarev, B. M. (1973b). Triterpene glycosides of S.mukorossi part 5 structure of sapindoside D. Khim Prir Soedin (Tashk), 6, 316–319.

    Google Scholar 

  • Chirva, V. Y., Kintya, P. K., Sosnovskii, V. A., & Zolotarev, B. M. (1973c). Triterpene glycosides of S.mukorossi part 5 structure of sapindoside E. Chemistry of Natural Compounds (English Transltion of Khim Prir Soedin), 6, 440–442.

    Article  Google Scholar 

  • Eklund, P. C., Langvik, O. K., Warna, J. P., Salmi, T. O., Willfor, S. M., & Sjoholm, R. E. (2005). Chemical studies on antioxidant mechanisms and free radical scavenging properties of lignans. Organic and Biomolecular Chemistry, 21, 3336–3347.

    Article  CAS  Google Scholar 

  • Fan, C. Q., & Yue, J. M. (2003). Biologically active phenols from Saussurea medusa. Bioorganic & Medicinal Chemistry, 11, 703–708.

    Article  CAS  Google Scholar 

  • Fauconneau, B., Waffo-teguop, P., Huguet, F., Barrier, L., Decendit, A., & Mjzrillon, J. M. (1997). Comparative study of radical scavenger and antioxidant properties of phenolic compounds from Vitis vinifera cell cultures using in vitro test. Life Sciences, 61, 2103–2110.

    Article  CAS  PubMed  Google Scholar 

  • Francis, G., Kerem, Z., Makkar, H., & Becker, K. (2002). The biological action of saponins in animal systems: A review. The British Journal of Nutrition, 88, 587–605.

    Article  CAS  PubMed  Google Scholar 

  • George, B., & Shanmugam, S. (2014). Phytochemical screening and antimicrobial activity of fruits extract of Sapindus mukorossi. International Journal of Current Microbiology and Applied Sciences, 3, 604–611.

    Google Scholar 

  • George, E. F., Hall, M. A., & Klerk, J. D. (2008). Plant propagation by tissue culture. The Background Springer, 1, 65–75.

    Google Scholar 

  • Giri, L., Dhyani, P., Rawata, S., Bhatta, I. D., Nandia, S. K., Rawala, R. S., & Pande, V. (2012). In vitro production of phenolic compounds and antioxidant activity in callus suspension cultures of Habenaria edgeworthii: A rare Himalayan medicinal orchid. Industrial Crops and Products, 39, 1–6.

    Article  CAS  Google Scholar 

  • Gordon, M. H. (1990). The mechanism of antioxidant action in vitro, in food antioxidants. In B. J. F. Hudson (Ed.), Applied sciences (pp. 1–18). London: Elesvier.

    Google Scholar 

  • Goyal, S., Kumar, D., Menaria, G., & Singla, S. (2014). Medicinal plants of the genus sapindus (sapindaceae) – A review of their botany, phytochemistry, biological activity and traditional uses. Journal of Drug Delivery and Therapeutics, 4, 7–20.

    Google Scholar 

  • Gulcin, I., Berashvili, D., & Gepdiremen, A. (2005). Antiradical and antioxidant activity of total anthocyanins from Perilla pankenensis Decne. The Journal of Ethnopharmacology, 101, 287–293.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, D. R., & Ahmed, B. (1990). Emarginatosides B and C: Two new saponins from Sapindus emarginatus fruits. Indian Journal of Chemistry, 29B, 268–270.

    CAS  Google Scholar 

  • Hamburger, M., Scalanin, I., Hostettmann, K., Dyatmiko, W., & Sutarjadi. (2007). Acetylated saponins with molluscicidal activity from Sapindus rarak: Unambiguous structure determination by proton nuclear magnetic resonance and quantitative analysis. Phytochemical Analysis, 3, 231–237.

    Article  Google Scholar 

  • Hegazi, G. A. E. (2011). In vitro studies on Delonix elata L. – An endangered medicinal plant. World Applied Sciences Journal, 14, 679–686.

    Google Scholar 

  • Hempel, J., Pforte, H., Raab, B., Engst, W., Bohm, H., & Jacobasch, G. (1999). Flavonols and flavones of parsley cell suspension culture change the antioxidative capacity of plasma in rats. Nahrung, 43, 201–204.

    Article  CAS  PubMed  Google Scholar 

  • Huang, C., Liao, S. C., Chang, F. R., Kuo, Y. H., & Wu, Y. C. (2003). Molluscicidal Saponins from Sapindus mukorossi. Journal of Agricultural and Food Chemistry, 51, 4916–4919.

    CAS  PubMed  Google Scholar 

  • Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53, 1841–1856.

    Article  CAS  PubMed  Google Scholar 

  • Huang, H. C., Tsai, W. J., Morris-Natschke, S. L., Tokuda, H., Lee, K. H., & Wu, Y. C. (2006). Sapinmusaponins F-J, bioactive tirucallane-type saponins from the galls of Sapindus mukorossi. Journal of Natural Products, 69, 763–767.

    CAS  PubMed  Google Scholar 

  • Huang, H. C., Tsai, W. J., Liaw, C. C., Wu, S. H., Wu, Y. C., & Kuo, Y. H. (2007). Anti-platelet aggregation triterpene saponins from the galls of Sapindus mukorossi. Chemical & Pharmaceutical Bulletin (Tokyo), 55, 1412–1415.

    CAS  Google Scholar 

  • Jain, D., Daima, H. K., Kachhwaha, S., & Kothari, S. L. (2009). Synthesis of plant mediated silver nanoparticles using papaya fruit extract and evaluation of their antimicrobial activities. Digest Journal of Nanomaterials and Biostructures, 4, 557–563.

    Google Scholar 

  • Janero, D. R. (1990). Malondialdehyde and thiobarbituric acidreactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radical Biology & Medicine, 9, 515–540.

    Article  CAS  Google Scholar 

  • Kalinowska, M., Zimowski, J., Paczkowski, C., & Wojciechowski, Z. A. (2005). The formation of sugar chains in triterpenoid saponins and glycoalkaloids. Phytochemistry Reviews, 4, 237–257.

    Article  CAS  Google Scholar 

  • Keser, S., Celik, S., Turkoglu, S., Yilmaz, O., & Turkoglu, I. (2012). Hydrogen peroxide radical scavenging and total antioxidant activity of Hawthorn. Chemistry Journal, 2, 9–12.

    CAS  Google Scholar 

  • Kim, S., Yang, M., Lee, O., & Kang, S. (2011). The antioxidant activity and the bioactive compound content of Stevia rebaudiana water extract. Food Science and Technology, 44, 1328–1332.

    CAS  Google Scholar 

  • Kimata, H., Nakashima, T., Kokubun, S., Nakayama, K., Mitima, Y., Kitahara, T., & Tanaka, O. (1983). Saponins of pericarps of Sapindus mukorossi Garetn. and solubilisation of monodesmosides by bisdesmosides. Chemical & Pharmaceutical Bulletin, 31, 1998–2005.

    Article  CAS  Google Scholar 

  • Kirby, J., & Keasling, J. D. (2009). Biosynthesis of plant isoprenoids: Perspectives for microbial engineering. Annual Review of Plant Biology, 60, 335–355.

    Article  CAS  PubMed  Google Scholar 

  • Koleva, I. I., Van Beek, T. A., Linseen, J. P. H., De Groot, & Evstatieva, L. N. (2002). Screening of plant extracts for antioxidant activity: A comparative study on three testing methods. Phytochemical Analysis, 10, 178–182.

    Google Scholar 

  • Kovacheva, E., Georgiev, M., Pashova, S., Angelova, M., & Ilieva, M. (2006). Radical quenching by rosmarinic acid from Lavandula vera MM cell culture. Zeitschrift für Naturforschung, 61C, 517–520.

    Article  Google Scholar 

  • Krishnan, P. N., Decruse, S. W., & Radha, R. K. (2011). Conservation of medicinal plants of Western Ghats, India and its sustainable utilization through in vitro technology. In Vitro Cellular & Developmental Biology: Plant, 47, 110–122.

    Article  Google Scholar 

  • Kumar, V., Murthy, K. N., Bhamid, S., Sudha, C. G., & Ravishankar, G. A. (2005). Genetically modified hairy roots of Withania somnifera Dunal: A potent source of rejuvenating principles. Rejuvenation Research, 8, 37–45.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, V., Moyo, M., Gruz, J., Subrtova, M., & Staden, J. V. (2015). Phenolic acid profiles and antioxidant potential of Pelargonium sidoides callus cultures. Industrial Crops and Products, 77, 402–408.

    Article  CAS  Google Scholar 

  • Kuo, Y., Huang, H. C., Kuo, L. M. Y., Hsu, Y. W., Lee, K. H., Chang, F. R., & Wu, Y. C. (2005). New demmarane-type saponins from galls of S. mukorossi. Journal of Agricultural and Food Chemistry, 53, 4722–4727.

    Article  CAS  PubMed  Google Scholar 

  • Lai, H. Y., & Lim, Y. Y. (2011). Evaluation of antioxidant activities of the methanolic extracts of selected ferns in Malaysia. International Journal of Environmental Science and Development, 2, 442–447.

    Article  Google Scholar 

  • Lee, M. H., Jeong, J. H., Seo, J. W., Shin, C. G., Kim, Y. S., In, J. G., Yang, D. C., Yi, J. S., & Choi, Y. E. (2004). Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant & Cell Physiology, 45, 976–984.

    Article  CAS  Google Scholar 

  • Lee, W. S., Kim, J. R., Han, J. M., Jang, K. C., Sok, D. E., & Jeong, T. S. (2006). Antioxidant activities of abietane diterpenoids isolated from Torreya nucifera leaves. Journal of Agricultural and Food Chemistry, 54, 5369–5374.

    Article  CAS  PubMed  Google Scholar 

  • Linde, H. (1979). Uberinhaltsstoffe der perikarpein von S. mukorossi gaertn. Archives of Pharmacal Research, 312, 416–425.

    CAS  Google Scholar 

  • Liu, C. Z., Murch, S. J., El Demerdash, M., & Saxena, P. K. (2004). Artemisia judaica L: Micropropagation and antioxidant activity. Journal of Biotechnology, 110, 63–71.

    Article  CAS  PubMed  Google Scholar 

  • Lugato, D., Simao, M. J., Garcia, R., Mansur, E., & Pacheco, G. (2014). Determination of antioxidant activity and phenolic content of extracts from in vivo plants and in vitro materials of Passiflora alata Curtis. Plant Cell, Tissue and Organ Culture, 118, 339–346.

    Article  CAS  Google Scholar 

  • Maisarah, A. M., Nurul-Amira, B., Asmah, R., & Fauziah, O. (2013). Antioxidant analysis of different parts of Carica papaya. International Food Research Journal, 20, 1043–1048.

    Google Scholar 

  • McDonald, S., Prenzler, P. D., Autolovich, M., & Robards, K. (2001). Phenolic content and antioxidant activity of olive extracts. Food Chemistry, 73, 73–84.

    Article  CAS  Google Scholar 

  • Nabavi, S. M., Ebrahimzadeh, M. A., Nabavi, S. F., Hamidinia, A., & Bekhradnia, A. R. (2008). Determination of antioxidant activity, phenol and flavonoids content of Parrotia persica Mey. Pharmacology Online, 2, 560–567.

    Google Scholar 

  • Nagvani, V., Madhavi, Y., Rao, D. B., Rao, P. K., & Rao, T. R. (2010). Free radical scavenging activity and qualitative analysis of polyphenols by RP-HPLC inn the flowers of Couroupita guianensis Aubl. The Electronic Journal of Environmental, Agricultural and Food Chemistry, 9, 1471–1484.

    Google Scholar 

  • Ni, W., Hua, Y., Liu, H. Y., Teng, R. W., Kong, Y. C., Hu, X. Y., & Chen, C. X. (2006). Tirucallane-type triterpenoid saponins from the roots of S. mukorossi. Chemical and Pharmaceutical Bulletin, 54, 1443–1446.

    Article  CAS  PubMed  Google Scholar 

  • Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351–358.

    Article  CAS  PubMed  Google Scholar 

  • Oleszek, W. A. (2000). Saponins. In Natural foods antimicrobial systems. Boca Raton: CRC Press, LLC.

    Google Scholar 

  • Orwa, C., Mutua, A., Kindt, R., Jamnadass, R., & Simons, A. (2009). Agroforestree database: A tree reference and selection guide version 4.0. http://www.worldagroforestry.org/af/treedb/

  • Pal, R., Girhepunjem, K., Shrivastav, N., Hussain, M. M., & Thirumoorthy. (2011). Antioxidant and free radical scavenging activity of ethanolic extract of Morinda citrifolia. Annals of Biological Research, 2, 127–131.

    Google Scholar 

  • Pandey, N., Chaurasia, J. K., Tiwari, O. P., & Tripathi, Y. B. (2007). Antioxidant properties of different fractions of tubers from Pueraria tuberosa Linn. Food Chemistry, 105, 219–222.

    Article  CAS  Google Scholar 

  • Parsaeimehr, A., Sargsyan, E., & Javidni, K. (2010). A comparative study of the antibacterial, antifungal and antioxidant activity and total content of phenolic compounds of cell cultures and wild plants of three endemic species of Ephedra. Molecules, 15, 1668–1678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen, M., & Simmonds, M. S. (2003). Rosmarinic acid. Phytochemistry, 62, 121–125.

    Article  CAS  PubMed  Google Scholar 

  • Phillips, D. R., Rasbery, J. M., Bartel, B., & Matsuda, S. P. T. (2006). Biosynthetic diversity in plant triterpene cyclization. Current Opinion in Plant Biology, 9, 305–314.

    Article  CAS  PubMed  Google Scholar 

  • Ravindra, P. V., & Narayan, M. S. (2003). Antioxidant activity of the anthocyanin from carrot (Daucus carota) callus culture. International Journal of Food Sciences and Nutrition, 54, 349–355.

    Article  CAS  PubMed  Google Scholar 

  • Ravishankara, M. N., Shrivastava, N., Padh, H., & Rajani, M. (2002). Evaluation of antioxidant properties of root bark of Hemidesmus indicus R. Br. (Anantmul). Phytomedicine, 9, 153–160.

    Article  CAS  PubMed  Google Scholar 

  • Ruch, R. J., Cheng, S. J., & Klaunig, J. E. (1989). Prevention of cytotoxicity and inhibition of intracellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis, 10, 1003–1008.

    Article  CAS  PubMed  Google Scholar 

  • Saxena, D., Pal, R., Dwivedi, A. K., & Singh, S. (2004). Characterization of sapindosides in Sapindus mukorossi saponin (Reetha saponin) and quantitative determination of sapindoside B. Journal of Scientific and Industrial Research, 63, 181–186.

    CAS  Google Scholar 

  • Sengupta, A., Basu, S. P., & Saha, S. (1975). Triglyceride composition of S. mukorossi seed oil. Lipids, 10, 33–40.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, N., & Patni, V. (2013). Comparative analysis of total flavonoids, quercetin content and antioxidant activity of in vivo and in vitro plant parts of Grewia asiatica Mast. International Journal of Pharmacy and Pharmaceutical Sciences, 5, 464–469.

    CAS  Google Scholar 

  • Sharma, A., Sati, S. C., Sati, O. P., Sati, D., & Kothiyal, S. K. (2011). Chemical constituents and bioactivities of genus Sapindus. International Journal of Research in Ayurveda and Pharmacy, 2, 403–409.

    CAS  Google Scholar 

  • Singh, R., Rai, M. K., & Kumari, N. (2015). Somatic embryogenesis and plant regeneration in Sapindusn mukorossi Gaertn. from leaf-derived callus induced with 6-Benzylaminopurine. Applied Biochemistry and Biotechnology, 177, 498–510.

    CAS  PubMed  Google Scholar 

  • Soobrattee, M. A., Neergheen, V. S., Luximon-Ramma, A., Aruoma, O. I., & Bahorun, T. (2005). Phenolics as potential antioxidant therapeutic agents: Mechanisms and actions. Mutation Research, 579, 200–213.

    Article  CAS  PubMed  Google Scholar 

  • Sreekala-devi, R., Radhamany, P. M., & Gayathri Devi, V. (2013). Investigation of the antioxidant principles from Psilanthus travancorensis (WT. ARN.) Leroy – An unexplored taxon of Rubiaceae. International Journal of Pharmaceutical Sciences, 5, 13–17.

    Google Scholar 

  • Suhagia, B. N., Rathod, I. S., & Sindhu, S. (2011). Sapindus mukorossi (Areetha): An overview. International Journal of Pharmaceutical Sciences and Research, 2, 1905–1913.

    CAS  Google Scholar 

  • Tadhani, M. B., Patel, V. H., & Subhash, R. (2007). In vitro antioxidant activities of Stevia rebaudiana leaves and callus. Journal of Food Composition and Analysis, 20, 323–329.

    Article  CAS  Google Scholar 

  • Takagi, K., Park, E. H., & Kato, H. (1980). Anti-inflammatory activities of hederagenin and crude saponin isolated from Sapindus mukorossi Gaertn. Chemical & Pharmaceutical Bulletin (Tokyo), 28, 1183–1188.

    CAS  Google Scholar 

  • Taylor, J. L. S., Rabe, T., McGaw, L. J., Jager, A. K., & Van-Staden, J. (2001). Towards the scientific validation of traditional medicinal plants. Plant Growth Regulation, 34, 23–37.

    Article  CAS  Google Scholar 

  • Teng, R. W., Ni, W., Hau, Y., & Chen, C. X. (2003). Two new tirucallane-type triterpenoid saponins from Sapindus mukorossi. Acta Botanica Sinica, 45, 369–372.

    CAS  Google Scholar 

  • Tepe, B., Daferera, D., Sokmen, A., Sokmen, M., & Polissiou, M. (2005). Antimicrobial and antioxidant activities of the essential oil and various extracts of Salvia tomentosa Miller (Lamiaceae). Food Chemistry, 90, 333–340.

    Article  CAS  Google Scholar 

  • Terahara, N., Callebaut, A., Ohba, R., Nagata, T., Ohnishi-Kameyama, M., & Suzuki, M. (2001). Acylated anthocyanidin 3-sophoroside-5-glucosides from Ajuga reptans flowers and the corresponding cell cultures. Phytochemistry, 58, 493–500.

    Article  CAS  PubMed  Google Scholar 

  • Trajtemberg, S. P., Apostolo, N. M., & Fernadez, G. (2006). Calluses of Cynara cardunculus var. cardunculus cardoon (Asteraceae): Determination of cynarine and chlorogenic acid by automated high-performance capillary electrophoresis. In Vitro Cellular & Developmental Biology: Plant, 42, 534–537.

    Article  CAS  Google Scholar 

  • Trojanowska, M. R., Osbourn, A. E., Daniels, M. J., & Threlfall, D. R. (2000). Biosynthesis of avenacins and phytosterols in roots of Avena sativa cv. Image. Phytochemistry, 54, 153–164.

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay, A., & Singh, D. K. (2012). Pharmacological effects of Sapindus mukorossi. Revista do Instituto de Medicina Tropical de São Paulo, 54, 273–280.

    Article  PubMed  Google Scholar 

  • Upadhyay, R., Chaurasia, J. K., Tiwari, K. N., & Singh, K. (2013). Comparative antioxidant study of stem and stem induced callus of Phyllanthus fraternus webster – An important antiviral and hepatoprotective plant. Applied Biochemistry and Biotechnology, 171, 2153–2164.

    Article  CAS  PubMed  Google Scholar 

  • Vincken, J. P., Heng, L., & Gruppen, H. (2007). Saponins, classification and occurrence in the plant kingdom. Phytochemistry, 68, 275–297.

    Article  CAS  PubMed  Google Scholar 

  • Vogelsang, K., Schneider, B., & Petersen, M. (2006). Production of rosmarinic acid and a new rosmarinic acid 3-O-beta-D-glucoside in suspension cultures of the hornwort Anthoceros agrestis Paton. Planta, 223, 369–373.

    Article  CAS  PubMed  Google Scholar 

  • Wijeratne, S. S., & Cuppett, S. L. (2007). Potential of rosemary (Rosmarinus officinalis L.) diterpenes in preventing lipid hydroperoxide-mediated oxidative stress in Caco-2 cells. Journal of Agricultural and Food Chemistry, 55, 1193–1199.

    Article  CAS  PubMed  Google Scholar 

  • Xu, R., Fazio, G. C., & Matsuda, S. P. T. (2004). On the origins of triterpenoid skeletal diversity. Phytochemistry, 65, 261–291.

    Article  CAS  PubMed  Google Scholar 

  • Yao, H. K., Hui, C. H., Li-Ming, Y. K., Ya-Wen, H., Kuo-Hsiung, L., & Fang-Rong, C. (2005). New dammarane-type saponins from the galls of Sapindus mukorossi. Journal of Agricultural and Food Chemistry, 53, 4722–4727.

    Article  CAS  Google Scholar 

  • Yen, G. C., & Chen, H. Y. (1995). Antioxidant activity of various tea extracts in relation to their anti-mut agenicity. Journal of Agricultural and Food Chemistry, 43, 27–32.

    Article  CAS  Google Scholar 

  • Young, I. S., & Wood, J. V. (2001). Antioxidants in health and disease. Journal of Clinical Pathology, 54, 176–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, L., Zhao, M., Wang, J., Cui, C., Yang, B., Jiang, Y., & Zhao, Q. (2008). Antioxidant, immunomodulatory and anti-breast cancer activities of phenolic extract from pine (Pinus massoniana Lamb.) bark. Innovative Food Science and Emerging Technologies, 9, 122–128.

    Article  Google Scholar 

  • Zhu, H., Wang, Y., Liu, Y., Xia, Y., & Tang, T. (2010). Analysis of flavonoids in Portulaca oleracea L. by UV–Vis spectrophotometry with comparative study on different extraction technologies. Food Analytical Methods, 3, 90–97.

    Article  Google Scholar 

  • Zikova, N. I., & Krivenchuk, P. E. (1994). Chemical study of flavonoids from the leaves of Sapindus mukorossi Gaertn. Farmatsevtychnyi Zhurnal Article in Ukranian, 25, 43–45.

    Google Scholar 

  • Ni, W., Hua, Y., Teng, R. W., Kong, Y. C., & Chen, C. X. (2004). New tirucallane-type triterpenoid saponins from Sapindus mukorossi. Journal of Asian Natural Product Research, 6, 205–209.

    Article  CAS  Google Scholar 

  • Miller, H. E. (1971). A simplified method for the evaluation of antioxidants. Journal of the American Oil Chemists Society, 48, 91–91.

    Article  CAS  Google Scholar 

  • Havsteen, B. (1983). Flavonoids, a class of natural products of high pharmacological potency. Biochemical Pharmacology, 32, 1141–1148.

    Article  CAS  PubMed  Google Scholar 

  • Abreu, A., Carulla, J. E., Lascano, C. E., Diaz, T. E., Kreuzer, M., & Hess, H. D. (2004). Effects of Sapindus saponaria fruits on ruminal fermentation and duodenal nitrogen flow of sheep fed a tropical grass diet with and without legume. Journal of Animal Sciences, 82, 1392–1400.

    CAS  Google Scholar 

  • Lemos, T. L. G., Mendes, A. L., Sousa, M. P., & Braz-Filho, R. (1992). New saponin from Sapindus saponaria. Fitoterapia, 93, 515–517.

    Google Scholar 

  • Lemos, T. L. G., Sousa, M. P., Mendes, A. L., & Braz-Filho, R. (1994). Saponin from Sapindus saponaria. Fitoterapia, 95, 557–558.

    Google Scholar 

  • Kasai, R., Nishi, M., Mizutani, K., Miyahara, I., Moriya, T., Miyahara, K., & Tanaka, O. (1988). Trifolioside II an acrylic sesquiterpene oligoglycoside from pericarp of S. trifoliatus. Phytochemistry, 27, 2309–2311.

    Article  Google Scholar 

  • Mahabusarakam, W., Towers, G. H. N., Tuntiwachwuttikul, P., & Wiriyachitra, P. (1990). Pesticidal triterpenoid saponins of the pericarps of S. emargiaus. Journal of the Science Society of Thailand, 16, 187.

    Article  Google Scholar 

  • Matkowski, A. (2008). Plant in vitro culture for the production of antioxidants — A review. Biotechnology Advances, 26, 548–560.

    Article  CAS  PubMed  Google Scholar 

  • Ochiai, T., Ohno, S., Soeda, S., Tanaka, H., Shoyama, Y., & Shimeno, H. (2004). Crocin prevents the death of rat pheochromyctoma (PC-12) cells by its antioxidant effects stronger than those of alpha-tocopherol. Neuroscience Letters, 362, 61–64.

    Article  CAS  PubMed  Google Scholar 

  • Vanisree, M., & Tsay, H. S. (2004). Plant cell cultures — An alternative and efficient source for the production of biologically important secondary metabolites. International Journal of Applied Science and Engineering, 2, 29–48.

    Google Scholar 

  • Pavlov, A., Georgiev, V., & Ilieva, M. (2005). Betalain biosynthesis by red beet (Beta vulgaris L.) hairy root culture. Process Biochemistry, 40, 1531–1533.

    Article  CAS  Google Scholar 

  • Pavlov, A., & Bley, T. (2006). Betalains biosynthesis by Beta vulgaris L. hairy root culture in a temporary immersion cultivation system. Process Biochemistry, 41, 848–852.

    Article  CAS  Google Scholar 

  • Verpoorte, R., Contin, A., & Memelink, J. (2002). Biotechnology for the production of plant secondary metabolites. Phytochemistry Reviews, 1, 13–25.

    Article  CAS  Google Scholar 

  • Morikawa, T., Xie, Y., Asao, Y., Okamoto, M., Yamashita, C., Muraoka, O., Matsuda, H., Pongpiriyadacha, Y., Yuan, D., & Yoshikawa, M. (2009). Oleanane type triterpene oligoglycosides with pancreatic lipase inhibitory activity from the pericarps of S. rarak. Phytochemistry, 70, 1166–1172.

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro, A., Zani, C. L., Alves, T. M. A., Mendes, N. M., Hamburger, M., & Hostettmann, K. (1995). Molluscicidal saponins from the pericarp of Sapindus saponaria. International Journal of Pharmacology, 33, 177–180.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Further Readings

Further Readings

  • Augustin, J. M., Kuzina, V., Anderson, S. B., & Bak, S. (2011). Molecular activities, biosynthesis an evolution of triterpenoid saponins. Phytochemistry, 72, 435–457.

  • Singh, R. (2015). Somatic embryogenesis and phytochemical analysis of Sapindus mukorossi Gaertn. PhD thesis, Banaras Hindu University, Varanasi, UP, India.

  • Singh, R., & Kumari, N. (2015). Comparative determination of phytochemicals and antioxidant activity from leaf and fruit of Sapindus mukorossi Gaertn. – A valuable medicinal tree. Industrial Crops and Products, 73, 1–8.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R., Sharma, B. (2019). Phytochemical Analysis and Pharmaceutical Development from Sapindus spp.. In: Biotechnological Advances, Phytochemical Analysis and Ethnomedical Implications of Sapindus species. Springer, Singapore. https://doi.org/10.1007/978-981-32-9189-8_5

Download citation

Publish with us

Policies and ethics