Skip to main content

Degradation of Organic Pollutants in Drinking Water by Non-thermal Plasma

  • Conference paper
  • First Online:
  • 374 Accesses

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 580))

Abstract

Water is a scarce resource that is continuously threatened by pollution, growing population and strain on available reservoirs due to fast developing economies. A problem of considerable concern is posed by anthropogenic pollutants, foremost artificial organic compounds. Especially pharmaceutical residues with their intended stability are found in increasing concentrations in potable water in regions such as Chennai. Despite high standards and blanket coverage of water purification technologies for water, currently available methods most likely fail to remove many of the accumulating pharmaceuticals sufficiently. This shortcoming includes advanced oxidation technologies that are currently investigated, such as UV exposures, ozonation, hydrogen peroxide admixture and combinations of these approaches. The objective of this paper is the development of a novel and flexible technology for water purification. The immediate target is the removal of pharmaceutical residues in drinking water but other pollutants and also wastewaters will be addressed as well. Using non-thermal plasma, the closed process does not require chemical supplies or direct manual processes control. Therefore, the technology is appropriate in conditions where it is difficult to maintain a supply infrastructure. The method is only relying on electrical energy and can be adopted according to pollution levels and also operated as batch process by a discontinued power supply. With this approach, methods based on electrical power only are intended as a corner stone of a smart water treatment management that can be implemented at different locations along the supply chain on different scale. Accordingly, it is specifically anticipated a suitable enabler of smart grids.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E. Commission, Environment and Water: proposal to reduce water pollution risks, In: European Commission, European Commission—Press release

    Google Scholar 

  2. Hirsch R, Ternes T, Haberer K, Kratz K-L (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225:109–118

    Article  Google Scholar 

  3. Fatta-Kassinos D, Meric S, Nikolaou A (2011) Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Anal Bioanal Chem 399:251

    Article  Google Scholar 

  4. Balakrishna K, Rath A, Praveen Kumar R, Guruge KS, Subedi B (2017) A review of the occurence of pharmaceuticals and personal care products in Indian water bodies. Ecotoxicol Environ Safety 137:113

    Article  Google Scholar 

  5. Satapathy SS, Ray SK (2014) Pharmaceutical residues in India: impact on aquatic environment. Curr Sci 107:1634

    Google Scholar 

  6. WHO Report 2012, www.who.int/water_sanitation_health/publications/2012/pharmaceuticals/en/

  7. Hillenbrand Th et al. Texte 87/2014, Environmental research of the Federal Ministry of the Environment, Nature Conservation, Building and Nuclear Safety. www.umweltbundesamt.de

  8. Giri R, Ozaki H, Ota S, Takanami R, Taniguchi S (2010) Degradation of common pharmaceuticals and personal care products in mixed solutions by advanced oxidation techniques. Int J Environ Sci Technol 7:251–260

    Article  Google Scholar 

  9. Huber MM, Canonica S, Park G-Y, von Gunten U (2003) Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ Sci Technol 37:1016–1024

    Article  Google Scholar 

  10. Poyatos J, Munio M, Almecija M, Torres J, Hontoria E, Osorio F (2010) Advanced oxidation processes for wastewater treatment: state of the art. Water Air Soil Pollut 205:187–204

    Article  Google Scholar 

  11. Ikehata K, Jodeiri Naghashkar N, Gamal El-Din M (2006) Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone Sci Eng 28:353–414

    Article  Google Scholar 

  12. Banaschik R et al (2015) Water Res 84:127

    Article  Google Scholar 

  13. Kolb JF, Joshi RP, Xiao S, Schoenbach KH (2008) Streamers in water and other dielectric liquids. J Phys D Appl Phys 41:234007

    Article  Google Scholar 

  14. Umweltbundesamt, Arzneimittel in der Umwelt - vermeiden, reduzieren, überwachen, Hintergrund, April 2014

    Google Scholar 

  15. Lukes P et al (2008) Ultraviolet radiation from the pulsed corona discharge in water. Plasma Sources Sci Technol 17:024012

    Article  Google Scholar 

  16. An W et al (2007) Underwater streamer propagation analyzed from detailed measurements of pressure release. J Appl Phys 101:053302

    Article  Google Scholar 

  17. Sarkisov GS et al (2006) Observation of electric field enhancement in a water streamer using Kerr effect. J Appl Phys 99:083304

    Article  Google Scholar 

  18. Malik MA et al (2001) Water purification by electrical discharges. Plasma Sources Sci Technol 10:82

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilakantan Ajay Krishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ajay Krishnan, N., Kolb, J., Azzam, R., Kaltenborn, U., Sarathi, R. (2020). Degradation of Organic Pollutants in Drinking Water by Non-thermal Plasma. In: Pillai, R., et al. ISGW 2018 Compendium of Technical Papers. ISGW 2018. Lecture Notes in Electrical Engineering, vol 580. Springer, Singapore. https://doi.org/10.1007/978-981-32-9119-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9119-5_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9118-8

  • Online ISBN: 978-981-32-9119-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics