Skip to main content

Quantifying Uncertainty in Structural Responses of Polymer Sandwich Composites: A Comparative Analysis of Neural Networks

  • Conference paper
  • First Online:
Advances in Structural Technologies

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 81))

Abstract

The manufacturing and fabrication of complex polymer sandwich composite plates involve various processes and parameters, and the lack of control over them causes uncertain system parameters. It is essential to consider randomness in varying parameters to analyse polymer sandwich composite plates. The present study portrays uncertainty quantification in structural responses (such as natural frequencies) of polymer sandwich composite plates using the surrogate model. The comparative study of artificial neural network (ANN) and polynomial neural network (PNN) for uncertain structural responses of the sandwich plate is presented. The proposed ANN as well as PNN algorithm is found to be convergent with intensive Monte Carlo simulation (MCS) for uncertain vibration responses. The predictability of PNN is observed to be more efficient than that of ANN. Typical material properties, skew angle, fibre orientation angle, number of laminate and core thickness are randomly varied to quantify the uncertainties. The use of both the surrogate models (PNN and ANN) results in a significant saving of computational time and cost compared to that of full-scale intensive finite element-based MCS approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pflug J, Verpoest I (2006) Sandwich materials selection charts. J Sandwich Struct Mater 8(5):407–421

    Article  Google Scholar 

  2. Mukhopadhyay T, Chowdhury R, Chakrabarti A (2016) Structural damage identification: a random sampling-high dimensional model representation approach. Adv Struct Eng 19(6):908–927

    Article  Google Scholar 

  3. Dey TK, Mukhopadhyay T, Chakrabarti A, Sharma UK (2015) Efficient lightweight design of FRP bridge deck . Proc Inst Civil Eng—Struct Build 168(10):697–707

    Article  Google Scholar 

  4. Mahata A, Mukhopadhyay T, Adhikari S (2016) A polynomial chaos expansion based molecular dynamics study for probabilistic strength analysis of nano-twinned copper. Mater Res Express 3:036501

    Article  Google Scholar 

  5. Mukhopadhyay T, Mahata A, Dey S, Adhikari S (2016) Probabilistic analysis and design of HCP nanowires: an efficient surrogate based molecular dynamics simulation approach. J Mater Sci Technol 32(12):1345–1351

    Article  Google Scholar 

  6. Metya S, Mukhopadhyay T, Adhikari S, Bhattacharya G (2017) System reliability analysis of soil slopes with general slip surfaces using multivariate adaptive regression splines. Comput Geotech 87:212–228

    Article  Google Scholar 

  7. Dey S, Mukhopadhyay T, Sahu SK, Adhikari S (2018) Stochastic dynamic stability analysis of composite curved panels subjected to non-uniform partial edge loading. Eur J Mech/A Solids 67:108–122

    Article  MathSciNet  Google Scholar 

  8. Dey S, Mukhopadhyay T, Khodaparast HH, Adhikari S (2016) A response surface modelling approach for resonance driven reliability based optimization of composite shells. Periodica Polytechnica—Civ Eng 60(1):103–111

    Article  Google Scholar 

  9. Karsh PK, Mukhopadhyay T, Dey S (2018a) Spatial vulnerability analysis for the first ply failure strength of composite laminates including effect of delamination. Compos Struct 184:554–567

    Article  Google Scholar 

  10. Naskar S, Mukhopadhyay T, Sriramula S (2018) Probabilistic micromechanical spatial variability quantification in laminated composites. Compos B Eng 151:291–325

    Article  Google Scholar 

  11. Maharshi K, Mukhopadhyay T, Roy B, Roy L, Dey S (2018) Stochastic dynamic behaviour of hydrodynamic journal bearings including the effect of surface roughness. Int J Mech Sci 142–143:370–383

    Article  Google Scholar 

  12. Naskar S, Mukhopadhyay T, Sriramula S, Adhikari S (2017) Stochastic natural frequency analysis of damaged thin-walled laminated composite beams with uncertainty in micromechanical properties. Compos Struct 160:312–334

    Article  Google Scholar 

  13. Mukhopadhyay T, A multivariate adaptive regression splines based damage identification methodology for web core composite bridges including the effect of noise. J Sandwich Struct Mater. https://doi.org/10.1177/1099636216682533

  14. Kumar RR, Mukhopadhyay T, Pandey KM, Dey S (2019) Stochastic buckling analysis of sandwich plates: the importance of higher order modes. Int J Mech Sci 152:630–643

    Article  Google Scholar 

  15. Kumar RR, Karsh PK, Vaishali Pandey KM, Dey S (2019) Stochastic natural frequency analysis of skewed sandwich plates. Eng Computations. https://doi.org/10.1108/EC-01-2019-0034

  16. Mukhopadhyay T, Adhikari S (2017a) Stochastic mechanics of metamaterials. Compos Struct 162:85–97

    Article  Google Scholar 

  17. Mukhopadhyay T, Adhikari S (2016) Free vibration analysis of sandwich panels with randomly irregular honeycomb core. J Eng Mech 142(11):06016008

    Article  Google Scholar 

  18. Mukhopadhyay T, Adhikari S (2017b) Effective in-plane elastic moduli of quasi-random spatially irregular hexagonal lattices. Int J Eng Sci 119:142–179

    Article  Google Scholar 

  19. Mukhopadhyay T, Mahata A, Adhikari S, Asle ZM (2018) Probing the shear modulus of two-dimensional multiplanar nanostructures and heterostructures. Nanoscale 10:5280–5294

    Article  Google Scholar 

  20. Mukhopadhyay T, Mahata A, Adhikari S, Asle ZM (2017) Effective mechanical properties of multilayer nano-heterostructures. Nat Sci Rep 7:15818

    Article  Google Scholar 

  21. Mukhopadhyay T, Mahata A, Adhikari S, Asle Zaeem M (2017) Effective elastic properties of two dimensional multiplanar hexagonal nano-structures, 2D Materials, 4:025006

    Google Scholar 

  22. Mahata A, Mukhopadhyay T, Probing the chirality-dependent elastic properties and crack propagation behavior of single and bilayer stanine. Phys Chem Chem Phys. https://doi.org/10.1039/C8CP03892A

  23. Mukhopadhyay T, Adhikari S, Batou A, Frequency domain homogenization for the viscoelastic properties of spatially correlated quasi-periodic lattices. Int J Mech Sci. https://doi.org/10.1016/j.ijmecsci.2017.09.004

  24. Kumar RR, Mukhopadhyay T, Naskar S, Pandey KM, Dey S (2019) Stochastic low-velocity impact analysis of sandwich plates including the effects of obliqueness and twist. Thin-Walled Struct 145:106411

    Google Scholar 

  25. Karsh PK, Mukhopadhyay T, Dey S (2018b) Stochastic dynamic analysis of twisted functionally graded plates. Compos B Eng 147:259–278

    Article  Google Scholar 

  26. Dey S, Mukhopadhyay T, Spickenheuer A, Gohs U, Adhikari S (2016) Uncertainty quantification in natural frequency of composite plates—an artificial neural network based approach. Adv Compos Lett 25(2):43–48

    Article  Google Scholar 

  27. Dey S, Mukhopadhyay T, Adhikari S (2018) Uncertainty quantification in laminated composites: a meta-model based approach. CRC Press, ISBN, p 9781498784450

    Book  Google Scholar 

  28. Dey S, Naskar S, Mukhopadhyay T, Gohs U, Sriramula S, Adhikari S, Heinrich G (2016) Uncertain natural frequency analysis of composite plates including effect of noise—a polynomial neural network approach. Compos Struct 143:130–142

    Article  Google Scholar 

  29. Dey S, Mukhopadhyay T, Naskar S, Dey TK, Chalak HD, Adhikari S, Probabilistic characterisation for dynamics and stability of laminated soft core sandwich plates. J Sandwich Struct Mater. https://doi.org/10.1177/1099636217694229

  30. Dey S, Mukhopadhyay T, Adhikari S (2017) Metamodel based high-fidelity stochastic analysis of composite laminates: a concise review with critical comparative assessment. Compos Struct 171:227–250

    Article  Google Scholar 

  31. Chalak HD, Chakrabarti A, Iqbal MA, Sheikh AH (2013) Free vibration analysis of laminated soft core sandwich plates. J Vib Acoust 135(1):011013

    Article  Google Scholar 

Download references

Acknowledgements

The first author would like to acknowledge the financial support received from MHRD, Government of India during this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, R.R., Mukhopadhyay, T., Pandey, K.M., Dey, S. (2021). Quantifying Uncertainty in Structural Responses of Polymer Sandwich Composites: A Comparative Analysis of Neural Networks. In: Adhikari, S., Dutta, A., Choudhury, S. (eds) Advances in Structural Technologies. Lecture Notes in Civil Engineering, vol 81. Springer, Singapore. https://doi.org/10.1007/978-981-15-5235-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-5235-9_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-5234-2

  • Online ISBN: 978-981-15-5235-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics