Skip to main content

Abstract

Herbal, animal and agricultural activities that have been applied to meet human needs in harmony with nature throughout human history have not harmed the ecosystem and have not caused environmental problems. However, the current ecosystem balance continues to deteriorate as a result of classical agricultural practices to get more products from the unit area to meet the food needs of the rapidly growing population. Therefore, new approaches to agricultural production and techniques such as nanotechnology are needed. In this context, nanoparticles that form the basis of nanotechnology have emerged as a versatile platform for solving the problems encountered. Nanoparticles have the potential in agricultural applications to be used in plant nutrition, plant and animal breeding and in the fight against herbicides and harmful insects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldao DC, Šárka E, Ulbrich P, Menšíková E (2018) Starch nanoparticles-two ways of their preparation. Czech J Food Sci 36:133–138

    Article  CAS  Google Scholar 

  • Al-Samarrai AM (2012) Nanoparticles as alternative to pesticides in management plant diseases-a review. Int J Sci Res Publ 2(4):1–4

    Google Scholar 

  • Aras S, Soydam-Aydın S, Fazlıoğlu A, Cansaran-Duman D, Büyük İ, Derici K (2015) RNA interference in plants. Turk Hij Deney Biyol Derg 72(3):255–262

    Article  Google Scholar 

  • Bhattacharyya A, Bhaumik A, Rani PU, Mandal S, Epidi TT (2010) Nano-particles – a recent approach to insect pest control. Afr J Biotechnol 9(24):3489–3493

    CAS  Google Scholar 

  • Dias MC, Santos C, Pinto G, Silva AMS, Silva S (2018) Titanium dioxide nanoparticles impaired both photochemical and non-photochemical phases of photosynthesis in wheat. Protoplasma 256(1):69–78

    Article  PubMed  Google Scholar 

  • El-Ghamry AM, Mosa AA, Alshaal TA, ElRamady HR (2018) Nanofertilizers vs. biofertilizers: new insights. Environ Biodivers Soil Secur 2:51–72

    Article  Google Scholar 

  • Elmer W, White JC (2018) The future of nanotechnology in plant pathology. Annu Rev Phytopathol 56:111–133

    Article  CAS  PubMed  Google Scholar 

  • Faraji J, Sepehri A (2018) Titanium dioxide nanoparticles and sodium nitroprusside alleviate the adverse effects of cadmium stress on germination and seedling growth of wheat (Triticum aestivum L.). Univ Sci 23(1):61–87

    Article  Google Scholar 

  • Hao Y, Fang P, Ma C, White JC, Xiang Z, Wang H, Zhang Z, Rui Y, Xing B (2019) Engineered nanomaterials inhibit Podosphaera pannosa infection on rose leaves by regulating phytohormones. Environ Res 170:1–6

    Article  CAS  PubMed  Google Scholar 

  • Hussain A, Ali S, Rizwan R, Rehman MZ, Javed MR, Imran M, Chatha SAS, Nazir R (2018) Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants. Environ Pollut 242(Part B):1518–1526

    Article  CAS  PubMed  Google Scholar 

  • Hussein HS, Shaarawy HH, Hussien NH, Hawash SI (2019) Preparation of nano-fertilizer blend from banana peels. Bull Natl Res Cent 43:26. https://doi.org/10.1186/s42269-019-0058-1

    Article  Google Scholar 

  • Jhanzab HM, Razzaq A, Bibi Y, Yasmeen F, Yamaguchi H, Hitachi K, Tsuchida K, Komatsu S (2019) Proteomic analysis of the effect of inorganic and organic chemicals on silver nanoparticles in wheat. Int J Mol Sci 20(4):825

    Article  CAS  PubMed Central  Google Scholar 

  • Le VN, Rui Y, Gui X, Li X, Liu S, Han Y (2014) Uptake, transport, distribution and bio-effects of SiO2 nanoparticles in Bt-transgenic cotton. J Nanobiotechnol 12:50

    Article  Google Scholar 

  • León-Silva S, Arrieta-Cortes R, Fernández-Luqueño F, López-Valdez F (2018) Design and production of nanofertilizers. In: López-Valdez F, Fernández-Luqueño F (eds) Agricultural nanobiotechnology. Springer, Cham, pp 17–31

    Chapter  Google Scholar 

  • Li W, Zheng Y, Zhang H, Liu Z, Su W, Chen S, Liu Y, Zhuang J, Lei B (2016) Phytotoxicity, uptake, and translocation of fluorescent carbon dots in mung bean plants. ACS Appl Mater Interfaces 8:19939–19945

    Article  CAS  PubMed  Google Scholar 

  • Li R, He J, Xie H, Wang W, Bose SK, Sun Y, Hu J, Yin H (2019) Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (Triticum aestivum L.). Int J Biol Macromol 126:91–100

    Article  CAS  PubMed  Google Scholar 

  • López-Moreno ML, de la Rosa G, Hernández-Viezcas JÁ, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma X, Wang C (2010) Fullerene nanoparticles affect the fate and uptake of trichloroethylene in phytoremediation systems. Environ Eng Sci 27(11):989–992

    Article  CAS  Google Scholar 

  • Mahakham W, Theerakulpisut P, Maensiri S, Phumying S, Sarmah AK (2016) Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. Sci Total Environ 573:1089–1102

    Article  CAS  PubMed  Google Scholar 

  • Mahakham W, Sarmah AK, Maensiri S, Theerakulpisut P (2017) Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci Rep 7:8263

    Article  PubMed  PubMed Central  Google Scholar 

  • Marchiol L (2018) Nanotechnology in agriculture: new opportunities and perspectives. In: New visions in plant science. InTechOpen, London, pp 121–141. https://doi.org/10.5772/intechopen.74425

    Chapter  Google Scholar 

  • Mehta CM, Srivastava R, Arora S, Sharma AK (2016) Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech 6:254

    PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay SS, Sharma S (2013) Nanoscience and nanotechnology: cracking prodigal farming. J Bionano Sci 7:1–5

    Article  Google Scholar 

  • Ogunyemi SO, Abdallah Y, Zhang M, Fuad H, Hong X, İbrahim E, Masum MMI, Hossain A, Mo J, Li B (2019) Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. Oryzae. Artif Cells Nanomed Biotechnol 47(1):341–352

    Article  CAS  PubMed  Google Scholar 

  • Oh JW, Chun SC, Chandrasekaran M (2019) Preparation and in vitro characterization of chitosan nanoparticles and their broad-spectrum antifungal action compared to antibacterial activities against phytopathogens of tomato. Agronomy 9(1):21

    Article  CAS  Google Scholar 

  • Pathak VM, Kumar N (2017) Dataset on the superabsorbent hydrogel synthesis with SiO2 nanoparticle and role in water restoration capability of agriculture soil. Data Brief 13:291–294

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajput V, Minkina T, Fedorenko A, Sushkova S, Mandzhieva S, Lysenko V, Duplii N, Fedorenko G, Dvadnenko K, Ghazaryan K (2018) Toxicity of copper oxide nanoparticles on spring barley (Hordeum sativum distichum). Sci Total Environ 645:1103–1113

    Article  CAS  PubMed  Google Scholar 

  • Saharan V, Kumaraswamy RV, Choudhary RC, Kumari S, Pal A, Raliya R, Biswas P (2016) Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. J Agric Food Chem 64(31):6148–6155

    Article  CAS  PubMed  Google Scholar 

  • Shinde S, Paralikar P, Ingle AP, Rai M (2018) Promotion of seed germination and seedling growth of Zea mays by magnesium hydroxide nanoparticles synthesized by the filtrate from Aspergillus niger. Arab J Chem. https://doi.org/10.1016/j.arabjc.2018.10.001

  • Siddiqi KS, Husen A (2016) Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. J Trace Elem Med Biol 40:10–23

    Article  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi M (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds mill.). Saudi J Biol Sci 21(1):13–17

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Singh NB, Afzal S, Singh T, Hussain I (2017) Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. J Mater Sci 53:185–201. https://doi.org/10.1007/s10853-017-1544-1

    Article  CAS  Google Scholar 

  • Srivastava G, Das CK, Das A, Singh SK, Roy M, Kim H, Sethy N, Kumar A, Sharma RK, Singh SK, Philip D, Das M (2014) Seed treatment with iron pyrite (FeS2) nanoparticles increases the production of spinach. RSC Adv 4(102):58495–58504. https://doi.org/10.1039/C4RA06861K

    Article  CAS  Google Scholar 

  • Tang Y, He R, Zhao J, Nie G, Xu L, Xing B (2016) Oxidative stressinduced toxicity of CuO nanoparticles and related toxicogenomic responses in Arabidopsis thaliana. Environ Pollut 212:605–614

    Article  CAS  PubMed  Google Scholar 

  • Taran N, Storozhenko V, Svietlova N, Batsmanova L, Shvartau V, Kovalenko M (2017) Effect of zinc and copper nanoparticles on drought resistance of wheat seedlings. Nanoscale Res Lett 12(1):60

    Article  PubMed  PubMed Central  Google Scholar 

  • Worrall EA, Hamid A, Mody AT, Mitter N, Pappu HR (2018) Nanotechnology for plant disease management. Agronomy 8:285. https://doi.org/10.3390/agronomy8120285

    Article  CAS  Google Scholar 

  • Zhang R, Meng Z, Abid MA, Zhao X (2018) Novel pollen magnetofection system for transformation of cotton plant with magnetic nanoparticles as gene carriers. In: Zhang B (ed) Transgenic cotton. Methods in molecular biology, vol 1902. Humana Press, New York

    Google Scholar 

  • Zhao X, Meng Z, Wang Y, Chen W, Sun C, Cui B, Cui J, Yu M, Zeng Z, Guo S, Luo D, Cheng JQ, Zhang R, Cui H (2018) Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nat Plants 3:956–964

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Altindal, N., Altindal, D. (2020). Agriculture and Nanoparticles. In: Ghorbanpour, M., Bhargava, P., Varma, A., Choudhary, D. (eds) Biogenic Nano-Particles and their Use in Agro-ecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-15-2985-6_4

Download citation

Publish with us

Policies and ethics