Skip to main content

Developments of Impedance Source Inverters

  • Chapter
  • First Online:
Impedance Source Inverters

Abstract

The developments of impedance source inverters are presented in this chapter, where improvements such as boost ability enhancement and parameter optimization are presented based on which many popular and practical derived topologies from original Z-source inverter are introduced systematically. Section 3.2 introduces the topology improvements with constant boost ratio, which overcome the inherited drawbacks of original Z-source inverters without enhancing boost factors. Section 3.3 presents the family of high boost ratio impedance source inverters which is proposed to enhance the gain based on the previous impedance source inverters. Then a plenty of multilevel and multiplex impedance source inverters are presented to suit for various applications in Sect. 3.4. After that, several novel impedance source inverters with parameter optimization are unfolded in Sect. 3.5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U.R. Prasanna, A.K. Rathore, Dual three-pulse modulation-based high-frequency pulsating DC link two-stage three-phase inverter for electric/hybrid/fuel cell vehicles applications. IEEE J. Emerg. Sel. Top. Power Electron. 2(3), 477–486 (2014)

    Article  Google Scholar 

  2. D. Debnath, K. Chatterjee, Two-stage solar photovoltaic-based stand-alone scheme having battery as energy storage element for rural deployment. IEEE Trans. Industr. Electron. 62(7), 4148–4157 (2015)

    Article  Google Scholar 

  3. Y.F. Wang, L.K. Xue, C.S. Wang, P. Wang, W. Li, Interleaved high-conversion-ratio bidirectional DC-DC converter for distributed energy-storage systems—circuit generation, analysis, and design. IEEE Trans. Power Electron. 31(8), 5547–5561 (2016)

    Article  Google Scholar 

  4. O. Ellabban, H. Abu-Rub, Z-Source inverter: topology improvements review. IEEE Ind. Electron. Mag. 10(1), 6–24 (2016)

    Article  Google Scholar 

  5. L. Liu, H. Li, Y. Zhao, X. He, Z. J. Shen, 1 MHz cascaded Z-source inverters for scalable grid-interactive photovoltaic (PV) applications using GaN device, in Proceedings of the 2011 IEEE Energy Conversion Congress and Exposition (ECCE) (2011), pp. 2738–2745

    Google Scholar 

  6. Y. Zhou, L. Liu, H. Li, A high-performance photovoltaic module-integrated converter (MIC) based on cascaded quasi-Z-source inverters (qZSI) Using eGaN FETs. IEEE Trans. Power Electron. 28(6), 2727–2738 (2013)

    Article  Google Scholar 

  7. D. Sun, B. Ge, F.Z. Peng, H. Abu-Rub, D. Bi, Y. Liu, A new grid-connected PV system based on cascaded H-bridge quasi-Z source inverter, in Proceedings of the 2012 IEEE International Symposium on Industrial Electronics (ISIE) (2012), pp. 951–956

    Google Scholar 

  8. Y. Fayyad, L. Ben-Brahim, Multilevel cascaded Z source inverter for PV power generation system, in Proceedings of the 2012 International Conference on Renewable Energy Research and Applications (ICRERA) (2012), pp. 1–6

    Google Scholar 

  9. Y. Liu, B. Ge, H. Abu-Rub, F.Z. Peng, A modular multilevel space vector modulation for photovoltaic quasi-Z-source cascade multilevel inverters, in Proceedings of the 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC) (2013), pp. 714–718

    Google Scholar 

  10. Y. Liu, B. Ge, H. Abu-Rub, F.Z. Peng, An effective control method for quasi-Z-source cascade multilevel inverter-based grid-tie single-phase photovoltaic power system. IEEE Trans. Ind. Informat. 10(1), 399–407 (2014)

    Article  Google Scholar 

  11. Y. Xue, B. Ge, F.Z. Peng, Reliability, efficiency, and cost comparisons of MW scale photovoltaic inverters, in Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE) (2012), pp. 1627–1634

    Google Scholar 

  12. S. Qu, W. Yongyu, On control strategy of Z‐source inverter for grid integration of direct-driven wind power generator, in 31st Chinese Control Conference (CCC), pp. 6720–6723, 25–27 July 2012

    Google Scholar 

  13. X. Wang, D.M. Vilathgamuwa, K.J. Tseng, C.J. Gajanayake, Controller design for variable-speed permanent magnet wind turbine generators interfaced with Z-source inverter, in Proceedings of the International Conference on Power Electronics and Drive Systems (PEDS) (2009), pp. 752–757

    Google Scholar 

  14. S.M. Dehghan, M. Mohamadian, A.Y. Varjani, A new variable-speed wind energy conversion system using permanent-magnet synchronous generator and Z-Source inverter. IEEE Trans. Energy Convers. 24(3), 714–724 (2009)

    Article  Google Scholar 

  15. U. Supatti, F.Z. Peng, Z-source inverter with grid connected for wind power system, in Proceedings of the 2009 IEEE Energy Conversion Congress and Exposition (ECCE) (2009), pp. 398–403

    Google Scholar 

  16. T. Maity, H. Prasad, V.R. Babu, Study of the suitability of recently proposed quasi Z-source inverter for wind power conversion, in Proceedings of the 2014 International Conference on Renewable Energy Research and Application (ICRERA) (2014), pp. 837–841

    Google Scholar 

  17. W.‐T. Franke, M. Mohr, F.W. Fuchs, Comparison of a Z-source inverter and a voltage‐source inverter linked with a DC/DC-boost-converter for wind turbines concerning their efficiency and installed semiconductor power, in Proceedings of the 2008 IEEE Power Electronics Specialists Conference (PESC) (2008), pp. 1814–1820

    Google Scholar 

  18. Y. Liu, B. Ge, F.Z. Peng, H. Abu-Rub, A.T. De Almeida, F.J.T.E. Ferreira, Quasi-Z-Source inverter based PMSG wind power generation system, in Proceedings of the 2011 IEEE Energy Conversion Congress and Exposition (ECCE) (2011), pp. 291–297

    Google Scholar 

  19. B.K. Ramasamy, A. Palaniappan, S.M. Yakoh, Direct-drive low-speed wind energy conversion system incorporating axial-type permanent magnet generator and Z-source inverter with sensorless maximum power point tracking controller. IET Renew. Power Gener. 7(3), 284–295 (2013)

    Article  Google Scholar 

  20. F.Z. Peng, M. Shen, K. Holland, Application of Z-Source inverter for traction drive of fuel cell-battery hybrid electric vehicles. IEEE Trans. Power Electron. 22(3), 1054–1061 (2007)

    Article  Google Scholar 

  21. S.M. Dehghan, M. Mohamadian, A. Yazdian, Hybrid electric vehicle based on bidirectional Z-Source nine-switch inverter. IEEE Trans. Veh. Commun. 59(6), 2641–2653 (2010)

    Article  Google Scholar 

  22. F. Guo, L. Fu, C. Lin, C. Li, W. Choi, J. Wang, Development of an 85-kW bidirectional quasi-Z-source inverter with DC-Link feed-forward compensation for electric vehicle applications. IEEE Trans. Power Electron. 28(12), 5477–5488 (2013)

    Article  Google Scholar 

  23. P. Liu, H.P. Liu, Permanent-magnet synchronous motor drive system for electric vehicles using bidirectional Z-source inverter. IET Electrical Systems in Transportation 2(4), 178–185 (2012)

    Article  Google Scholar 

  24. Q. Lei, D. Cao, F.Z. Peng, Novel loss and harmonic minimized vector modulation for a current-fed quasi-Z-source inverter in HEV motor drive application. IEEE Trans. Power Electron. 29(3), 1344–1357 (2014)

    Google Scholar 

  25. F.Z. Peng, Z-source inverter. IEEE Trans. Ind. Applicat. 39(2), 504–510 (2003)

    Article  Google Scholar 

  26. J. Rabkowski, The bidirectional Z-source inverter for energy storage application, in Proceedings of the European Conference on Power Electronics and Applications, pp. 1–10, 2–5 Sept 2007

    Google Scholar 

  27. M. Shen, F.Z. Peng, Operation modes and characteristics of the Z-source inverter with small inductance or low power factor. IEEE Trans. Ind. Electron. 55(1), 89–96 (2008)

    Article  Google Scholar 

  28. Y. Tang, S. Xie, C. Zhang, Z. Xu, Improved Z-source inverter with reduced Z-source capacitor voltage stress and soft-start capability. IEEE Trans. Power Electron. 24(2), 409–415 (2009)

    Article  Google Scholar 

  29. L. Yang, D. Qiu, B. Zhang, G. Zhang, A high-performance Z-source inverter with low capacitor voltage stress and small inductance, in Proceedings of the 29th Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 2331–2337, 16–20 Mar 2014

    Google Scholar 

  30. J. Wei, Y. Tang, S. Xie, Grid-connected PV system based on the series Z-source inverter, in Proceedings of the 5th IEEE Conference on Industrial Electronics and Applications, ICIEA (2010), pp. 532–537

    Google Scholar 

  31. Y. Zhu, M. Chen, X. Lee, Y. Tsutomu, A novel quasi-resonant soft-switching Z-source inverter, in Proceedings of the IEEE International Conference on Power and Energy (PECon), pp. 292–297, 2–5 Dec 2012

    Google Scholar 

  32. A.S. Khlebnikov, S.A. Kharitonov, Application of the Z-source converter for aircraft power generation systems, in Proceedings of the 9th International Workshop and Tutorials on Electron Devices and Materials, EDM, pp. 211–215, 1–5 July 2008

    Google Scholar 

  33. E.C. dos Santos, J.H.G. Muniz, E.P.X.P. Filho, E.R.C. Da Silva, Dc-ac three-phase fourwire Z-source converter with hybrid PWM strategy, in Proceedings of the 36th Annual Conference on IEEE Industrial Electronics Society, IECON, pp. 409–414, 7–10 Nov 2010

    Google Scholar 

  34. A.S. Khlebnikov, S.A. Kharitonov, P.A. Bachurin, A.V. Geist, D.V. Makarov, Modeling of dual Z-source inverter for aircraft power generation, in Proceedings of the International Conference and Seminar of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), pp. 373–376, 30 June 2011–4 July 2011

    Google Scholar 

  35. P.A. Bachurin, D.V. Makarov, A.V. Geist, M.V. Balagurov, D.A. Shtein, Z-source inverter with neutral point, in Proceedings of the 14th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), pp. 255–258, 1–5 July 2013

    Google Scholar 

  36. V. Erginer, M.H. Sarul, Modified reduced common mode current modulation techniques for Z-Source inverter used in photovoltaic systems, in Proceedings of the 4th Power Electronics, Drive Systems and Technologies Conference (PEDSTC), pp. 459–464, 13–14 Feb 2013

    Google Scholar 

  37. P.E.P. Ferraz, F. Bradaschia, M.C. Cavalcanti, F.A.S. Neves, G.M.S. Azevedo, A modified Z-source inverter topology for stable operation of transformerless photovoltaic systems with reduced leakage currents, in Proceedings of the 2011 Brazilian Power Electronics Conference (COBEP), pp. 615–622, 11–15 Sept 2011

    Google Scholar 

  38. J. Anderson, F.Z. Peng, Four quasi-Z-Source inverters, 2008 IEEE Power Electronics Specialists Conference, Rhodes (2008), pp. 2743–2749

    Google Scholar 

  39. S. Jiang, F.Z. Peng, Transmission-line theory based distributed Z-source networks for power conversion, in Proceedings of the 26th Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1138–1145, 6–11 Mar 2011

    Google Scholar 

  40. F. Gao, P.C. Loh, F. Blaabjerg, C.J. Gajanayake, Operational analysis and comparative evaluation of embedded Z-Source inverters, in Proceedings of the IEEE Power Electronics Specialists Conference, PESC, pp. 2757–2763, 15–19 June 2008

    Google Scholar 

  41. M. Zhu, K. Yu, F.L. Luo, Switched inductor Z-source inverter. IEEE Trans. Power Electron. 25(8), 2150–2158 (2010)

    Article  Google Scholar 

  42. A.-V. Ho, T.-W. Chun, H.-G. Kim, Extended boost active-switched-capacitor/switched-inductor quasi-z-source inverters. IEEE Trans. Power Electron. 30(10), 5681–5690 (2015)

    Article  Google Scholar 

  43. M. Zhu, K. Yu, F.L. Luo, Topology analysis of a switched-inductor Z-source inverter, in Proceedings of the 5th IEEE Conference on Industrial Electronics and Applications, pp. 364–369, 15–17 June 2010

    Google Scholar 

  44. M. Ismeil, M. Orabi, R. Kennel, O. Ellabban, H. Abu-Rub, Experimental studies on a three phase improved switched Z-source inverter, in Proceedings of the Applied Power Electronics Conference and Exposition, APEC, pp. 1248–1254, 16–20 Mar 2014

    Google Scholar 

  45. M.-K. Nguyen, Y.-C. Lim, G.-B. Cho, Switched-inductor quasi-Z-source inverter. IEEE Trans. Power Electron. 26(11), 3183–3191 (2011)

    Article  Google Scholar 

  46. K. Deng, J. Zheng, J. Mei, Novel switched inductor quasi-Z-source inverter. J. Power Electron. 14(1), 11–21 (2014)

    Article  Google Scholar 

  47. F. Ahmed, H. Cha, S. Kim, H. Kim, Switched-coupled-inductor quasi-Z-source inverter. IEEE Trans. Power Electron. 31(2), 1241–1254 (2016)

    Article  Google Scholar 

  48. A. Ho, T. Chun, H.T. Kim, Extended boost active-switched-capacitor/switched-inductor quasi-Z-source inverters. IEEE Trans. Power Electron. 30(10), 568–5690 (2015)

    Article  Google Scholar 

  49. M.-K. Nguyen, Y.-C. Lim, J.-H. Choi, Two switched-inductor quasi-Z-source inverters. IET Power Electron. 5(7), 1017–1025 (2012)

    Article  Google Scholar 

  50. K. Deng, F. Mei, J. Mei, J. Zheng, G. Fu, An extended switched-inductor quasi-Z-source inverter. J. Electr. Eng. Technol. 9(2), 541–549 (2014)

    Article  Google Scholar 

  51. M. Zhu, D. Li, P.C. Loh, F. Blaabjerg, Tapped-inductor Z-Source inverters with enhanced voltage boost inversion abilities, in Proceedings of the 2nd IEEE International Conference on Sustainable Energy Technologies, ICSET, pp. 1–6, 6–9 Dec 2010

    Google Scholar 

  52. Y. Zhou, W. Huang, J. Zhao, P. Zhao, Tapped inductor quasi-Z-source inverter, in Proceedings of the 27th Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1625–1630, 5–9 Feb 2012

    Google Scholar 

  53. C.J. Gajanayake, F.-L. Luo, H.B. Gooi, P.L. So, L.K. Siow, Extended-boost Z-source inverters. IEEE Trans. Power Electron. 25(10), 2642–2652 (2010)

    Article  Google Scholar 

  54. D. Vinnikov, I. Roasto, T. Jalakas, R. Strzelecki, M. Adamowicz, Analytical comparison between capacitor assisted and diode assisted cascaded quasi-Z-source inverters. Electr. Rev. 88(1a), 212–217 (2012)

    Google Scholar 

  55. D. Vinnikov, I. Roasto, T. Jalakas, S. Ott, Extended boost quasi-Z-source inverters: possibilities and challenges. Electron. Elect. Eng. 112(6), 51–56 (2011)

    Google Scholar 

  56. Y.P. Siwakoti, F.Z. Peng, F. Blaabjerg, P.C. Loh, G.E. Town, Impedance-source networks for electric power conversion Part I: a topological review. IEEE Trans. Power Electron. 30(2), 699–716 (2015)

    Article  Google Scholar 

  57. M. Adamowicz, N. Strzelecka, T-source inverter. Electr. Rev. 85(10), 233–238 (2009)

    Google Scholar 

  58. W. Qian, F.-Z. Peng, H. Cha, Trans-Zsource inverters. IEEE Trans. Power Electron. 26(12), 3453–3463 (2011)

    Article  Google Scholar 

  59. M.-K. Nguyen, Y.-C. Lim, S.-J. Park, Improved trans-Z-source inverter with continuous input current and boost inversion capability. IEEE Trans. Power Electron. 28(10), 4500–4510 (2013)

    Article  Google Scholar 

  60. M.-K. Nguyen, Y.-C. Lim, Y.-G. Kim, TZ-source inverters. IEEE Trans. Ind. Electron. 60(12), 5686–5695 (2013)

    Article  Google Scholar 

  61. M. Adamowicz, LCCT-z-source inverters, in Proceedings of the EEEIC (2011), pp. 1–16

    Google Scholar 

  62. P.C. Loh, D. Li, F. Blaabjerg, Г-Z-source inverters. IEEE Trans. Power Electron. 28(11), 4880–4884 (2013)

    Article  Google Scholar 

  63. Y.P. Siwakoti, P.C. Loh, F. Blaabjerg, G.E. Town, Y-source impedance network. IEEE Trans. Power Electron. 29(7), 3250–3254 (2014)

    Article  Google Scholar 

  64. R.R. Ahrabi, M.R. Banaei, Improved Y-source DC–AC converter with continuous input current. IET Power Electron. 9(4), 801–808 (2016)

    Article  Google Scholar 

  65. P.C. Loh, F. Blaabjerg, C.P. Wong, Comparative evaluation of pulse width modulation strategies for Z-source neutral-point-clamped inverter. IEEE Trans. Power Electron. 22(3), 1005–1013 (2007)

    Article  Google Scholar 

  66. P.C. Loh, S.W. Lim, F. Gao, F. Blaabjerg, Three-level Z-source inverters using a single LC impedance network. IEEE Trans. Power Electron. 22(2), 706–711 (2007)

    Article  Google Scholar 

  67. O. Husev, C. Roncero-Clemente, E. Romero-Cadaval, D. Vinnikov, S. Stepenko, Single phase three-level neutral-point-clamped quasi-Z-source inverter. IET Power Electron. 8(1), 1–10 (2015)

    Article  Google Scholar 

  68. W. Mo, P.C. Loh, F. Blaabjerg, P. Wang, Trans-Z-source and C-Z-source neutral-pointclamped inverters. IET Power Electron. 8(3), 371–377 (2015)

    Article  Google Scholar 

  69. F. Gao, P.C. Loh, F. Blaabjerg, R. Teodorescu, D.M. Vilathgamuwa, Five-level Z-source diode-clamped inverter. IET Power Electron. 3(4), 500–510 (2010)

    Article  Google Scholar 

  70. B.K. Chaithanya, A. Kirubakaran, A novel four level cascaded Z-source inverter, in Proceedings of the IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), pp. 1–5, 16–19 Dec 2014

    Google Scholar 

  71. Y. Liu, B. Ge, H. Abu-Rub, F.Z. Peng, An effective control method for quasi-Z-source cascade multilevel inverter-based grid-tie single phase photovoltaic power system. IEEE Trans. Ind. Inform. 10(1), 399–407 (2014)

    Article  Google Scholar 

  72. S.M. Dehghan, M. Mohamadian, A. Yazdian, Hybrid electric vehicle based on bidirectional Z-source nine-switch inverter. IEEE Trans. Veh. Technol. 59(6), 2641–2653 (2010)

    Article  Google Scholar 

  73. S.M. Dehghan, M. Mohamadian, A. Yazdian, F. Ashrafzadeh, A dual-input-dual-output Z-source inverter. IEEE Trans. Power Electron. 25(2), 360–368 (2010)

    Article  Google Scholar 

  74. S. Jiang, D. Cao, F.Z. Peng, High frequency transformer isolated Z-source inverters, in Proceedings of the 26th Annual IEEE Applied Power Electronics Conference and Exposition (APEC) 2011, pp. 442–449

    Google Scholar 

  75. L. Pan, L-Z-source inverter. IEEE Trans. Power Electron. 29(12), 6534–6543 (2014)

    Article  Google Scholar 

  76. H. Liu et al., Extended quasi-Y-source inverter with suppressed inrush and leakage effects. IET Power Electron. 12(4), 719–728 (2019)

    Article  Google Scholar 

  77. H. Liu et al., High Step-Up Y-Source inverter with reduced DC-Link voltage spikes. IEEE Trans. Power Electron. 34(6), 5487–5499 (2019)

    Article  Google Scholar 

  78. H. Liu, Y. Li, Z. Zhou, W. Wang, D. Xu, A Family of Low-Spike High-Efficiency Y-Source Inverters. IEEE Trans. Industr. Electron. 66(12), 9288–9300 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongpeng Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, H., Zhou, Z., Li, Y., Wu, W., Jiang, J., Shi, E. (2020). Developments of Impedance Source Inverters. In: Impedance Source Inverters. Springer, Singapore. https://doi.org/10.1007/978-981-15-2763-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2763-0_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2762-3

  • Online ISBN: 978-981-15-2763-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics