Skip to main content

LRTHR: Link-Reliability Based Two-Hop Routing for WSNs

  • Chapter
  • First Online:
QoS Routing Algorithms for Wireless Sensor Networks

Abstract

This chapter proposes a Link Reliability based Two-Hop Routing protocol for Wireless Sensor Networks (WSNs). The protocol achieves to reduce packet deadline miss ratio (DMR) while considering link reliability, two-hop delay, and power efficiency and utilizes memory and computational effective methods for estimating the link metrics. Numerical results provide insights that the protocol has a lower packet deadline miss ratio and results in longer sensor network lifetime. The results show that the proposed protocol is a feasible solution to the QoS routing problem in WSNs that support real-time applications.

Reprinted, with permission, from National Institute of Information and Communications Technology (NICT), Proceedings of the 16th International Symposium on Wireless Personal Multimedia Communications (WPMC’13), Copyright 2013. Reprinted by permission from International Journal of Information Processing, vol. 7, no. 1, pp. 15–29, Copyright 2013.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Li, C.S. Chen, Y.-Q. Song, Enhancing real-time delivery in wireless sensor networks with two-hop information. IEEE Trans. Ind. Inform. 5(2), 113–122 (2009)

    Article  MathSciNet  Google Scholar 

  2. T. He, J.A. Stankovic, L. Chenyang, T.F. Abdelzaher, A spatiotemporal protocol for wireless sensor network. IEEE Trans. Parallel Distrib. Syst. 16(10), 995–1006 (2005)

    Article  Google Scholar 

  3. J. Stankovic, T. Abdelzaher, C. Lu, L. Sha, J. Hou, Real-time communication and coordination in embedded sensor networks. Proc. IEEE 91, 1002–1022 (2003)

    Article  Google Scholar 

  4. K. Sohrabi, J. Pottie, Protocols for self-organization of wireless sensor network. IEEE Pers. Commun. 7(5), 16–27 (2000)

    Article  Google Scholar 

  5. B. Karp, H.T. Kung, GPSR: greedy perimeter stateless routing for wireless networks, in Proceedings of the 6th Annual International Conference on Mobile Computing and Networking (MobiCom) (2000), pp. 243–254

    Google Scholar 

  6. P. Bose, P. Morin, I. Stojmenovi, J. Urrutia, Routing with Guaranteed Delivery in Ad hoc Wireless Networks, in Proceedings of the 3rd ACM International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications DIALM’99 (1999), pp. 48–55 (Aug 1999)

    Google Scholar 

  7. C. Lu, B.M. Blum, T.F. Abdelzaher, J.A. Stankovic, T. He, RAP: a real-time communication architecture for large-scale wireless sensor networks, in Proceedings ot the IEEE RTAS (2002)

    Google Scholar 

  8. E. Felemban, C.G. Lee, E. Ekici, MMSPEED: multipath multi-speed protocol for QoS guarantee of reliability and timeliness in wireless sensor network. IEEE Trans. Mob. Comput. 5(6), 738–754 (2006)

    Article  Google Scholar 

  9. O. Chipara, Z. He, G. Xing, Q. Chen, X. Wang, C. Lu, J. Stankovic, T. Abdelzaher, Real-time power-aware routing in sensor network, in Proceedings of the IWQoS (2006), pp. 83–92

    Google Scholar 

  10. A. Mahapatra, K. Anand, D.P. Agrawal, QoS and energy aware routing for real-time traffic in wireless sensor networks. Comput. Commun. 29(4), 437–445 (2008)

    Article  Google Scholar 

  11. D. Tran, H. Raghavendra, Routing with congestion awareness and adaptivity in mobile ad hoc networks, in Proceedings of the IEEE WCNC (2005)

    Google Scholar 

  12. Y. Sankarasubramaniam, B. Akan, and I. F. Akyildiz: ESRT:Event-to-Sink Reliable Transport in Wireless Sensor Networks, in Proceedings of the ACM Mobihoc (2003), pp. 177–188

    Google Scholar 

  13. X. Wu, B.J. d"Auriol, J. Cho, S. Lee, Optimal routing in sensor networks for in-home health monitoring with multi factor considerations, In Proceedings of the Sixth Annual IEEE International Conference on Pervasive Computing and Communication (PERCOM 2008) (2008), pp. 720–725

    Google Scholar 

  14. T.L. Lim, M. Gurusamy, Energy aware geographical routing and topology control to improve network lifetime in wireless sensor networks, in Proceedings of the IEEE International Conference on Broadband Networks (BROADNETS 05) (2005) pp. 829–831

    Google Scholar 

  15. S. Wu, K.S. Candan, Power Aware Single and Multipath Geographic Routing in Sensor Networks, in Proceedings of the IEEE International Conference on Broadband Networks (BROADNETS 05) 5(7) (2007), pp. 974–997

    Article  Google Scholar 

  16. C.-p. Li, W.-j. Hsu, B. Krishnamachari, A. Helmy, A local metric for geographic routing with power control in wireless networks, in Proceedings of the Second Ann IEEE Conference Sensor and Ad Hoc Communications and Networks (SECON) (2005), pp. 229–239

    Google Scholar 

  17. K. Seada, M. Zuniga, A. Helmy, B. Krishnamachari, Energy efficient forwarding strategies for geographic routing in lossy wireless sensor networks, in Proceedings of the ACM Sensor Systems (2004), pp. 108–121

    Google Scholar 

  18. M.A. Razzaque, M.M. Alam, C.S. Hong, Multi-constrained QoS geographic routing for heterogeneous traffic in sensor networks. IEICE Trans. Commun. 91B(8), 2589–2601 (2008)

    Article  Google Scholar 

  19. K. Zeng, K. Ren, W. Lou, P.J. Moran, Energy aware efficient geographic routing in lossy wireless sensor networks with environmental energy supply. Wirel. Netw. 15(1), 39–51 (2009)

    Article  Google Scholar 

  20. M. Chen, V. Leung, S. Mao, Y. Xiao, I. Chlamtac, Hybrid geographical routing for flexible energy-delay trade-offs. IEEE Trans. Veh. Technol. 58(9), 4976–4988 (2009)

    Article  Google Scholar 

  21. A. Sharif, V. Potdar, A.J.D Rathnayaka, Prioritizing information for achieving QoS control in WSN, in Proceedings of the IEEE International Conference on Advanced Information Networking and Applications (2010), pp. 835–842

    Google Scholar 

  22. M.E Rusli, R. Harris, A. Punchihewa, Markov chain-based analytical model of opportunistic routing protocol for wireless sensor networks, in Proceedings TENCON IEEE Region 10 Conference (2010), pp. 257–262

    Google Scholar 

  23. M. Koulali, A. Kobbane, M. El Koutbi, M. Azizi, QDGRP: a hybrid qos distributed genetic routing protocol for wireless sensor networks, in Proceedings of the International Conference on Multimedia Computing and Systems (2012), pp. 47–52

    Google Scholar 

  24. Y. Wang, M.C Vuran, S. Goddard: Cross-layer analysis of the end-to-end delay distribution in wireless sensor networks. IEEE Trans. Netw. 20(1), 305–318 (2012)

    Article  Google Scholar 

  25. S. Ehsan, B. Hamdaoui, M. Guizani, Radio and medium access contention aware routing for lifetime maximization in multichannel sensor networks. IEEE Trans. Wirel. Commun. 11(9), 3058–3067 (2012)

    Article  Google Scholar 

  26. H. Park, Z.H. Mir, N.-S. Kim, C.-S. Pyo, Data traffic based route selection for real-time data delivery in wireless sensor networks, in Proceedings of the IEEE International Conference on Networked Embedded Systems for Enterprise Applications (NESEA) (2010), pp. 1–5

    Google Scholar 

  27. M. Aissani, A. Mellouk, N. Badache, B. Saidani, Oriented void avoidance scheme for real-time routing protocols in wireless sensor networks, in Proceedings of the IEEE GLOBECOM (2008), pp. 1–5

    Google Scholar 

  28. H. Park, Y.-H. Ham, S.-J. Park, J.-M. Woo, J.-B. Lee, Large data transport for real-time services in sensor networks, in Proceedings of the Computation World: Future Computing, Service Computation, Cognitive, Adaptive, Content, Patterns (2009), pp. 404–408

    Google Scholar 

  29. S. Oh, Y. Yim, J. Lee, H. Park, S.-H. Kim, A reliable communication strategy for real-time data dissemination in wireless sensor networks, in Proceedings of the IEEE 26th International Conference on Advanced Information Networking and Applications (2012), pp. 817–823

    Google Scholar 

  30. O. Tavallaie, H.R. Naji, M. Sabaei, N. Arastouie, Providing QoS Guarantee of Timeliness in Wireless Sensor Networks with a New Routing Methodology, in Proceedings Sixth International Symposium on Telecommunications (IST) (2012), pp. 674–679

    Google Scholar 

  31. Y. Yim, H. Park, J. Lee, S. Oh, S.-H. Kim, Distributed forwarder selection for beaconless real-time routing in wireless sensor networks, in Proceedings of the IEEE 77th Vehicular Technology Conference (VTC Spring) (2013), pp. 1–5

    Google Scholar 

  32. M. A. Spohn, J. J. Garcia-Luna-Aceves, Enhancing broadcast operations in ad hoc networks with two-hop connected dominating sets, in Proceedings of the IEEE MASS (2004), pp. 543–545

    Google Scholar 

  33. G. Calinescu, Computing 2-hop neighborhoods in ad hoc wireless networks, in Proceedings of the Ad Hoc Now (2003), pp. 175–186

    Google Scholar 

  34. C.S. Chen, Y. Li, Y.-Q. Song, An exploration of geographic routing with k-hop based searching in wireless sensor networks, in Proceedings of the CHINACOM (2008), pp. 376–381 (2008)

    Google Scholar 

  35. P.T.A. Quang, D.-S. Kim, Enhancing real-time delivery of gradient routing for industrial wireless sensor networks. IEEE Trans. Onindustrial Inform. 8(1), 61–68 (2012)

    Article  Google Scholar 

  36. J. Jung, S. Park, E. Lee, S. Oh, S.-H. Kim, Real-time data dissemination based on reactive and restricted zone search in sensor networks, in Proceedings IEEE 24th International Conference on Advanced Information Networking and Applications (2010), pp. 925–932

    Google Scholar 

  37. M. Diop, C. Pham, O. Thiare, 2-hop neighborhood information for cover set selection in mission-critical surveillance with wireless image sensor networks, in Proceedings of the Wireless Days (WD) (2013), pp. 1–7

    Google Scholar 

  38. P.T. Shiva, K.B. Raja, K.R. Venugopal, S.S. Iyengar, L.M. Patnaik, Link-reliability based two-hop routing for QoS guarantee in wireless sensor networks, in IEEE Proceedings of the 16th International Symposium on Wireless Personal Multimedia Communications (WPMC13) (2013), pp. 1–6

    Google Scholar 

  39. T. He, C. Huang, B.M. Blum, J.A. Stankovic, T.F. Abdelzaher, Range-free localization and its impact on large scale sensor networks. ACM Trans. Embed. Comput. Syst. 4(4), 877–906 (2000)

    Article  Google Scholar 

  40. T. Roosta, M. Menzo, S. Sastry, Probabilistic geographical routing protocol for ad-hoc and sensor networks, in Proceedings of the International Workshop Wireless Ad-Hoc Networks (IWWAN) (2005)

    Google Scholar 

  41. A. Woo, D.E. Culler, Evaluation of efficient link reliability estimators for low-power wireless networks. Technical report, University of California (2003)

    Google Scholar 

  42. NS-2, http://www.isi.edu/nsnam/ns/

  43. Crossbow Motes, http://www.xbow.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Venugopal .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Venugopal, K.R., T., S., Kumaraswamy, M. (2020). LRTHR: Link-Reliability Based Two-Hop Routing for WSNs. In: QoS Routing Algorithms for Wireless Sensor Networks. Springer, Singapore. https://doi.org/10.1007/978-981-15-2720-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2720-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2719-7

  • Online ISBN: 978-981-15-2720-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics