Skip to main content

Mouse Models of Congenital Kidney Anomalies

  • Chapter
  • First Online:
Book cover Animal Models of Human Birth Defects

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1236))

Abstract

Congenital anomalies of the kidney and urinary tract (CAKUT) are common birth defects, which cause the majority of chronic kidney diseases in children. CAKUT covers a wide range of malformations that derive from deficiencies in embryonic kidney and lower urinary tract development, including renal aplasia, hypodysplasia, hypoplasia, ectopia, and different forms of ureter abnormalities. The majority of the genetic causes of CAKUT remain unknown. Research on mutant mice has identified multiple genes that critically regulate renal differentiation. The data generated from this research have served as an excellent resource to identify the genetic bases of human kidney defects and have led to significantly improved diagnostics. Furthermore, genetic data from human CAKUT studies have also revealed novel genes regulating kidney differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saxen L. Failure to demonstrate tubule induction in a heterologous mesenchyme. Devel Biol. 1970;23:511–23.

    Article  CAS  Google Scholar 

  2. Wartiovaara J, Nordling S, Lehtonen E, Saxen L. Transfilter induction of kidney tubules: correlation with cytoplasmic penetration into Nucleopore filters. J Embryol Exp Morphol. 1974;31:667–82.

    CAS  PubMed  Google Scholar 

  3. Saxen L. Organogenesis of the kidney. Cambridge: Cambridge University Press; 1987.

    Book  Google Scholar 

  4. Takasato M, Little MH. The origin of the mammalian kidney: implications for recreating the kidney in vitro. Development. 2015;142(11):1937–47.

    Article  CAS  PubMed  Google Scholar 

  5. Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H, et al. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell. 2014;14(1):53–67.

    Article  CAS  PubMed  Google Scholar 

  6. Davidson AJ. Mouse kidney development. Cambridge, MA: StemBook; 2008.

    Book  Google Scholar 

  7. Davidson AJ, Lewis P, Przepiorski A, Sander V. Turning mesoderm into kidney. Semin Cell Dev Biol. 2019;91:86–93.

    Article  PubMed  Google Scholar 

  8. de Bruijn MF, Speck NA, Peeters MC, Dzierzak E. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J. 2000;19(11):2465–74.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sainio K, Hellstedt P, Kreidberg JA, Saxen L, Sariola H. Differential regulation of two sets of mesonephric tubules by WT-1. Development. 1997;124(7):1293–9.

    CAS  PubMed  Google Scholar 

  10. Woolf AS, Winyard PJD, Hermanns MM, Welham SJM. Maldevelopment of the human kidney and lower urinary tract: an overview. In: Vize PD, Woolf AS, Bard JBL, editors. The kidney: from normal development to congenital disease. London: Academic Press; 2003. p. 377.

    Chapter  Google Scholar 

  11. Costantini F. Genetic controls and cellular behaviors in branching morphogenesis of the renal collecting system. Wiley Interdiscip Rev Dev Biol. 2012;1(5):693–713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Watanabe T, Costantini F. Real-time analysis of ureteric bud branching morphogenesis in vitro. Dev Biol. 2004;271(1):98–108.

    Article  CAS  PubMed  Google Scholar 

  13. Short KM, Combes AN, Lefevre J, Ju AL, Georgas KM, Lamberton T, et al. Global quantification of tissue dynamics in the developing mouse kidney. Dev Cell. 2014;29(2):188–202.

    Article  CAS  PubMed  Google Scholar 

  14. Shakya R, Watanabe T, Costantini F. The role of GDNF/Ret signaling in ureteric bud cell fate and branching morphogenesis. Dev Cell. 2005;8(1):65–74.

    Article  CAS  PubMed  Google Scholar 

  15. Chi X, Michos O, Shakya R, Riccio P, Enomoto H, Licht JD, et al. Ret-dependent cell rearrangements in the Wolffian duct epithelium initiate ureteric bud morphogenesis. Dev Cell. 2009;17(2):199–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kuure S, Chi X, Lu B, Costantini F. The transcription factors Etv4 and Etv5 mediate formation of the ureteric bud tip domain during kidney development. Development. 2010;137(12):1975–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Riccio P, Cebrian C, Zong H, Hippenmeyer S, Costantini F. Ret and Etv4 promote directed movements of progenitor cells during renal branching morphogenesis. PLoS Biol. 2016;14(2):e1002382.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Potter SS. Single-cell RNA sequencing for the study of development, physiology and disease. Nat Rev Nephrol. 2018;14(8):479–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lignell A, Kerosuo L, Streichan SJ, Cai L, Bronner ME. Identification of a neural crest stem cell niche by spatial genomic analysis. Nat Commun. 2017;8(1):1830.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Cebrian C, Borodo K, Charles N, Herzlinger DA. Morphometric index of the developing murine kidney. Dev Dyn. 2004;231(3):601–8.

    Article  PubMed  Google Scholar 

  21. Nagalakshmi VK, Yu J. The ureteric bud epithelium: morphogenesis and roles in metanephric kidney patterning. Mol Reprod Dev. 2015;82(3):151–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, Oliver G, et al. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell. 2008;3(2):169–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ihermann-Hella A, Hirashima T, Kupari J, Kurtzeborn K, Li H, Kwon HN, et al. Dynamic MAPK/ERK activity sustains nephron progenitors through niche regulation and primes precursors for differentiation. Stem Cell Reports. 2018;11(4):912–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sariola H. Nephron induction revisited: from caps to condensates. Curr Opin Nephrol Hypertens. 2002;11(1):17–21.

    Article  PubMed  Google Scholar 

  25. Kurtzeborn K, Cebrian C, Kuure S. Regulation of renal differentiation by trophic factors. Front Physiol. 2018. https://doi.org/10.3389/fphys.2018.01588.

  26. O’Brien LL. Nephron progenitor cell commitment: striking the right balance. Semin Cell Dev Biol. 2019;91:94–103.

    Article  PubMed  CAS  Google Scholar 

  27. Costantini F, Kopan R. Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development. Dev Cell. 2010;18(5):698–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hartman HA, Lai HL, Patterson LT. Cessation of renal morphogenesis in mice. Dev Biol. 2007;310(2):379–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cebrian C, Asai N, D’Agati V, Costantini F. The number of fetal nephron progenitor cells limits ureteric branching and adult nephron endowment. Cell Rep. 2014;7(1):127–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Beck JA, Lloyd S, Hafezparast M, Lennon-Pierce M, Eppig JT, Festing MF, et al. Genealogies of mouse inbred strains. Nat Genet. 2000;24(1):23–5.

    Article  CAS  PubMed  Google Scholar 

  31. Rabe M, Schaefer F. Non-transgenic mouse models of kidney disease. Nephron. 2016;133(1):53–61.

    Article  CAS  PubMed  Google Scholar 

  32. Wang Q, Hummler E, Nussberger J, Clement S, Gabbiani G, Brunner HR, et al. Blood pressure, cardiac, and renal responses to salt and deoxycorticosterone acetate in mice: role of renin genes. J Am Soc Nephrol. 2002;13(6):1509–16.

    Article  CAS  PubMed  Google Scholar 

  33. Kuure S, Vuolteenaho R, Vainio S. Kidney morphogenesis: cellular and molecular regulation. Mech Dev. 2000;92(1):31–45.

    Article  CAS  PubMed  Google Scholar 

  34. Anders H, Schlondorff D. Murine models of renal disease: possibilities and problems in studies using mutant mice. Exp Nephrol. 2000;8(4-5):181–93.

    Article  CAS  PubMed  Google Scholar 

  35. Lyon MF, Rastan S, Brown SDM, editors. Genetic variants and strains of the laboratory mouse. 3rd ed. Oxford: Oxford University Press; 1996.

    Google Scholar 

  36. Schieren G, Pey R, Bach J, Hafner M, Gretz N. Murine models of polycystic kidney disease. Nephrol Dial Transplant. 1996;11(Suppl 6):38–45.

    Article  PubMed  Google Scholar 

  37. Alpers CE, Hudkins KL. Mouse models of diabetic nephropathy. Curr Opin Nephrol Hypertens. 2011;20(3):278–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Capecchi MR. Altering the genome by homologous recombination. Science. 1989;244(4910):1288–92.

    Article  CAS  PubMed  Google Scholar 

  39. Stricklett PK, Nelson RD, Kohan DE. The Cre/loxP system and gene targeting in the kidney. Am J Physiol. 1999;276(5 Pt 2):F651–7.

    CAS  PubMed  Google Scholar 

  40. Silver LM. Mouse genetics: concepts and applications. New York: Oxford University Press; 1995.

    Google Scholar 

  41. WareJoncas Z, Campbell JM, Martinez-Galvez G, Gendron WAC, Barry MA, Harris PC, et al. Precision gene editing technology and applications in nephrology. Nat Rev Nephrol. 2018;14(11):663–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fernandez A, Josa S, Montoliu L. A history of genome editing in mammals. Mamm Genome. 2017;28(7-8):237–46.

    Article  CAS  PubMed  Google Scholar 

  43. Mianne J, Codner GF, Caulder A, Fell R, Hutchison M, King R, et al. Analysing the outcome of CRISPR-aided genome editing in embryos: Screening, genotyping and quality control. Methods. 2017;121–122:68–76.

    Article  PubMed  CAS  Google Scholar 

  44. Wilson JG, Roth CB, Warkany J. An analysis of the syndrome of malformations induced by maternal vitamin A deficiency. Effects of restoration of vitamin A at various times during gestation. Am J Anat. 1953;92(2):189–217.

    Article  CAS  PubMed  Google Scholar 

  45. El Kares R, Manolescu DC, Lakhal-Chaieb L, Montpetit A, Zhang Z, Bhat PV, et al. A human ALDH1A2 gene variant is associated with increased newborn kidney size and serum retinoic acid. Kidney Int. 2010;78(1):96–102.

    Article  PubMed  CAS  Google Scholar 

  46. Batourina E, Gim S, Bello N, Shy M, Clagett-Dame M, Srinivas S, et al. Vitamin A controls epithelial/mesenchymal interactions through Ret expression. Nat Genet. 2001;27(1):74–8.

    Article  CAS  PubMed  Google Scholar 

  47. Vlangos CN, Siuniak AN, Robinson D, Chinnaiyan AM, Lyons RH Jr, Cavalcoli JD, et al. Next-generation sequencing identifies the Danforth’s short tail mouse mutation as a retrotransposon insertion affecting Ptf1a expression. PLoS Genet. 2013;9(2):e1003205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Maas R, Elfering S, Glaser T, Jepeal L. Deficient outgrowth of the ureteric bud underlies the renal agenesis phenotype in mice manifesting the limb deformity (ld) mutation. Devel Dyn. 1994;199:214–28.

    Article  CAS  Google Scholar 

  49. Torres M, Gomez-Pardo E, Dressler GR, Gruss P. Pax-2 controls multiple steps of urogenital development. Development. 1995;121(12):4057–65.

    CAS  PubMed  Google Scholar 

  50. James RG, Kamei CN, Wang Q, Jiang R, Schultheiss TM. Odd-skipped related 1 is required for development of the metanephric kidney and regulates formation and differentiation of kidney precursor cells. Development. 2006;133(15):2995–3004.

    Article  CAS  PubMed  Google Scholar 

  51. Wang Q, Lan Y, Cho ES, Maltby KM, Jiang R. Odd-skipped related 1 (Odd 1) is an essential regulator of heart and urogenital development. Dev Biol. 2005;288(2):582–94.

    Article  CAS  PubMed  Google Scholar 

  52. Lim KC, Lakshmanan G, Crawford SE, Gu Y, Grosveld F, Engel JD. Gata3 loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system. Nat Genet. 2000;25(2):209–12.

    Article  CAS  PubMed  Google Scholar 

  53. Shawlot W, Behringer RR. Requirement for Lim1 in head-organizer function. Nature. 1995;374(6521):425–30.

    Article  CAS  PubMed  Google Scholar 

  54. Tsang TE, Shawlot W, Kinder SJ, Kobayashi A, Kwan KM, Schughart K, et al. Lim1 activity is required for intermediate mesoderm differentiation in the mouse embryo. Dev Biol. 2000;223(1):77–90.

    Article  CAS  PubMed  Google Scholar 

  55. Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, et al. WT-1 is required for early kidney development. Cell. 1993;74:679–91.

    Article  CAS  PubMed  Google Scholar 

  56. Patterson LT, Pembaur M, Potter SS. Hoxa11 and Hoxd11 regulate branching morphogenesis of the ureteric bud in the developing kidney. Development. 2001;128(11):2153–61.

    CAS  PubMed  Google Scholar 

  57. Patterson LT, Potter SS. Hox genes and kidney patterning. Curr Opin Nephrol Hypertens. 2003;12(1):19–23.

    Article  CAS  PubMed  Google Scholar 

  58. Xu PX, Adams J, Peters H, Brown MC, Heaney S, Maas R. Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat Genet. 1999;23(1):113–7.

    Article  CAS  PubMed  Google Scholar 

  59. Xu PX, Zheng W, Huang L, Maire P, Laclef C, Silvius D. Six1 is required for the early organogenesis of mammalian kidney. Development. 2003;130(14):3085–94.

    Article  CAS  PubMed  Google Scholar 

  60. Nishinakamura R, Matsumoto Y, Nakao K, Nakamura K, Sato A, Copeland NG, et al. Murine homolog of SALL1 is essential for ureteric bud invasion in kidney development. Development. 2001;128(16):3105–15.

    CAS  PubMed  Google Scholar 

  61. Moore MW, Klein RD, Farinas I, Sauer H, Armanini M, Phillips H, et al. Renal and neuronal abnormalities in mice lacking GDNF. Nature. 1996;382(6586):76–9.

    Article  CAS  PubMed  Google Scholar 

  62. Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature. 1996;382(6586):73–6.

    Article  CAS  PubMed  Google Scholar 

  63. Sanchez MP, Silos-Santiago I, Frisen J, He B, Lira SA, Barbacid M. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature. 1996;382(6586):70–3.

    Article  CAS  PubMed  Google Scholar 

  64. Schuchardt A, D’Agati V, Larsson-Blomberg L, Costantini F, Pachnis V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature. 1994;367(6461):380–3.

    Article  CAS  PubMed  Google Scholar 

  65. Schuchardt A, D’Agati V, Pachnis V, Costantini F. Renal agenesis and hypodysplasia in ret-k- mutant mice result from defects in ureteric bud development. Development. 1996;122(6):1919–29.

    CAS  PubMed  Google Scholar 

  66. Cacalano G, Farinas I, Wang LC, Hagler K, Forgie A, Moore M, et al. GFRalpha1 is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron. 1998;21(1):53–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Enomoto H, Araki T, Jackman A, Heuckeroth RO, Snider WD, Johnson EMJ, et al. GFRα1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron. 1998;21(2):317–24.

    Article  CAS  PubMed  Google Scholar 

  68. Costantini F. GDNF/Ret signaling and renal branching morphogenesis: from mesenchymal signals to epithelial cell behaviors. Organogenesis. 2010;6(4):252–62.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lu BC, Cebrian C, Chi X, Kuure S, Kuo R, Bates CM, et al. Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis. Nat Genet. 2009;41(12):1295–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Esquela AF, Lee SJ. Regulation of metanephric kidney development by growth/differentiation factor 11. Dev Biol. 2003;257(2):356–70.

    Article  CAS  PubMed  Google Scholar 

  71. Sanford LP, Ormsby I, Gittenberger-de Groot AC, Sariola H, Friedman R, Boivin GP, et al. TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development. 1997;124(13):2659–70.

    CAS  PubMed  Google Scholar 

  72. Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature. 1992;359(6397):693–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kaartinen V, Voncken JW, Shuler C, Warburton D, Bu D, Heisterkamp N, et al. Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nat Genet. 1995;11(4):415–21.

    Article  CAS  PubMed  Google Scholar 

  74. Hsu DR, Economides AN, Wang X, Eimon PM, Harland RM. The Xenopus dorsalizing factor Gremlin identifies a novel family of secreted proteins that antagonize BMP activities. Mol Cell. 1998;1(5):673–83.

    Article  CAS  PubMed  Google Scholar 

  75. Michos O, Panman L, Vintersten K, Beier K, Zeller R, Zuniga A. Gremlin-mediated BMP antagonism induces the epithelial-mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis. Development. 2004;131(14):3401–10.

    Article  CAS  PubMed  Google Scholar 

  76. Michos O, Goncalves A, Lopez-Rios J, Tiecke E, Naillat F, Beier K, et al. Reduction of BMP4 activity by gremlin 1 enables ureteric bud outgrowth and GDNF/WNT11 feedback signalling during kidney branching morphogenesis. Development. 2007;134(13):2397–405.

    Article  CAS  PubMed  Google Scholar 

  77. Poladia DP, Kish K, Kutay B, Hains D, Kegg H, Zhao H, et al. Role of fibroblast growth factor receptors 1 and 2 in the metanephric mesenchyme. Dev Biol. 2006;291(2):325–39.

    Article  CAS  PubMed  Google Scholar 

  78. Walker KA, Sims-Lucas S, Bates CM. Fibroblast growth factor receptor signaling in kidney and lower urinary tract development. Pediatr Nephrol. 2016;31(6):885–95.

    Article  PubMed  Google Scholar 

  79. Barak H, Huh SH, Chen S, Jeanpierre C, Martinovic J, Parisot M, et al. FGF9 and FGF20 maintain the stemness of nephron progenitors in mice and man. Dev Cell. 2012;22(6):1191–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Carroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP. Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the Mammalian urogenital system. Dev Cell. 2005;9(2):283–92.

    Article  CAS  PubMed  Google Scholar 

  81. Karner CM, Das A, Ma Z, Self M, Chen C, Lum L, et al. Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development. Development. 2011;138(7):1247–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kiefer SM, Robbins L, Rauchman M. Conditional expression of Wnt9b in Six2-positive cells disrupts stomach and kidney function. PLoS One. 2012;7(8):e43098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Boivin FJ, Sarin S, Evans JC, Bridgewater D. The good and bad of beta-catenin in kidney development and renal dysplasia. Front Cell Dev Biol. 2015;3:81.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Bridgewater D, Cox B, Cain J, Lau A, Athaide V, Gill PS, et al. Canonical WNT/beta-catenin signaling is required for ureteric branching. Dev Biol. 2008;317(1):83–94.

    Article  CAS  PubMed  Google Scholar 

  85. Lange A, Wickstrom SA, Jakobson M, Zent R, Sainio K, Fassler R. Integrin-linked kinase is an adaptor with essential functions during mouse development. Nature. 2009;461(7266):1002–6.

    Article  CAS  PubMed  Google Scholar 

  86. Mathew S, Chen X, Pozzi A, Zent R. Integrins in renal development. Pediatr Nephrol. 2012;27(6):891–900.

    Article  PubMed  Google Scholar 

  87. Vrontou S, Petrou P, Meyer BI, Galanopoulos VK, Imai K, Yanagi M, et al. Fras1 deficiency results in cryptophthalmos, renal agenesis and blebbed phenotype in mice. Nat Genet. 2003;34(2):209–14.

    Article  CAS  PubMed  Google Scholar 

  88. McGregor L, Makela V, Darling SM, Vrontou S, Chalepakis G, Roberts C, et al. Fraser syndrome and mouse blebbed phenotype caused by mutations in FRAS1/Fras1 encoding a putative extracellular matrix protein. Nat Genet. 2003;34(2):203–8.

    Article  CAS  PubMed  Google Scholar 

  89. Muller U, Wang D, Denda S, Meneses JJ, Pedersen RA, Reichardt LF. Integrin alpha8beta1 is critically important for epithelial-mesenchymal interactions during kidney morphogenesis. Cell. 1997;88(5):603–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bader BL, Smyth N, Nedbal S, Miosge N, Baranowsky A, Mokkapati S, et al. Compound genetic ablation of nidogen 1 and 2 causes basement membrane defects and perinatal lethality in mice. Mol Cell Biol. 2005;25(15):6846–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nigam A, Knoers N, Renkema KY. Impact of next generation sequencing on our understanding of CAKUT. Semin Cell Dev Biol. 2019;91:104–10.

    Article  CAS  PubMed  Google Scholar 

  92. Saisawat P, Tasic V, Vega-Warner V, Kehinde EO, Gunther B, Airik R, et al. Identification of two novel CAKUT-causing genes by massively parallel exon resequencing of candidate genes in patients with unilateral renal agenesis. Kidney Int. 2012;81(2):196–200.

    Article  CAS  PubMed  Google Scholar 

  93. Meeus L, Gilbert B, Rydlewski C, Parma J, Roussie AL, Abramowicz M, et al. Characterization of a novel loss of function mutation of PAX8 in a familial case of congenital hypothyroidism with in-place, normal-sized thyroid. J Clin Endocrinol Metab. 2004;89(9):4285–91.

    Article  CAS  PubMed  Google Scholar 

  94. Hwang DY, Dworschak GC, Kohl S, Saisawat P, Vivante A, Hilger AC, et al. Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract. Kidney Int. 2014;85(6):1429–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Little SE, Hanks SP, King-Underwood L, Jones C, Rapley EA, Rahman N, et al. Frequency and heritability of WT1 mutations in nonsyndromic Wilms’ tumor patients: a UK Children’s Cancer Study Group Study. J Clin Oncol. 2004;22(20):4140–6.

    Article  CAS  PubMed  Google Scholar 

  96. Dode C, Levilliers J, Dupont JM, De Paepe A, Le Du N, Soussi-Yanicostas N, et al. Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat Genet. 2003;33(4):463–5.

    Article  CAS  PubMed  Google Scholar 

  97. Kohl S, Hwang DY, Dworschak GC, Hilger AC, Saisawat P, Vivante A, et al. Mild recessive mutations in six Fraser syndrome-related genes cause isolated congenital anomalies of the kidney and urinary tract. J Am Soc Nephrol. 2014;25(9):1917–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Skinner MA, Safford SD, Reeves JG, Jackson ME, Freemerman AJ. Renal aplasia in humans is associated with RET mutations. Am J Hum Genet. 2008;82(2):344–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Jadeja S, Smyth I, Pitera JE, Taylor MS, van Haelst M, Bentley E, et al. Identification of a new gene mutated in Fraser syndrome and mouse myelencephalic blebs. Nat Genet. 2005;37(5):520–5.

    Article  CAS  PubMed  Google Scholar 

  100. Humbert C, Silbermann F, Morar B, Parisot M, Zarhrate M, Masson C, et al. Integrin alpha 8 recessive mutations are responsible for bilateral renal agenesis in humans. Am J Hum Genet. 2014;94(2):288–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Albuisson J, Pecheux C, Carel JC, Lacombe D, Leheup B, Lapuzina P, et al. Kallmann syndrome: 14 novel mutations in KAL1 and FGFR1 (KAL2). Hum Mutat. 2005;25(1):98–9.

    Article  PubMed  CAS  Google Scholar 

  102. Heidet L, Moriniere V, Henry C, De Tomasi L, Reilly ML, Humbert C, et al. Targeted exome sequencing identifies PBX1 as involved in monogenic congenital anomalies of the kidney and urinary tract. J Am Soc Nephrol. 2017;28(10):2901–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Uy N, Reidy K. Developmental genetics and congenital anomalies of the kidney and urinary tract. J Pediatr Genet. 2016;5(1):51–60.

    Article  CAS  PubMed  Google Scholar 

  104. Sanna-Cherchi S, Sampogna RV, Papeta N, Burgess KE, Nees SN, Perry BJ, et al. Mutations in DSTYK and dominant urinary tract malformations. N Engl J Med. 2013;369(7):621–9.

    Article  CAS  PubMed  Google Scholar 

  105. Weber S, Moriniere V, Knuppel T, Charbit M, Dusek J, Ghiggeri GM, et al. Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. J Am Soc Nephrol. 2006;17(10):2864–70.

    Article  CAS  PubMed  Google Scholar 

  106. Zhang Z, Iglesias D, Eliopoulos N, El Kares R, Chu L, Romagnani P, et al. A variant OSR1 allele which disturbs OSR1 mRNA expression in renal progenitor cells is associated with reduction of newborn kidney size and function. Hum Mol Genet. 2011;20(21):4167–74.

    Article  CAS  PubMed  Google Scholar 

  107. Favor J, Sandulache R, Neuhauser-Klaus A, Pretsch W, Chatterjee B, Senft E, et al. The mouse Pax2(1Neu) mutation is identical to a human PAX2 mutation in a family with renal-coloboma syndrome and results in developmental defects of the brain, ear, eye, and kidney. Proc Natl Acad Sci U S A. 1996;93(24):13870–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang Z, Quinlan J, Hoy W, Hughson MD, Lemire M, Hudson T, et al. A common RET variant is associated with reduced newborn kidney size and function. J Am Soc Nephrol. 2008;19(10):2027-34.

    Google Scholar 

  109. Chatterjee R, Ramos E, Hoffman M, VanWinkle J, Martin DR, Davis TK, et al. Traditional and targeted exome sequencing reveals common, rare and novel functional deleterious variants in RET-signaling complex in a cohort of living US patients with urinary tract malformations. Hum Genet. 2012;131(11):1725–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Barbacci E, Chalkiadaki A, Masdeu C, Haumaitre C, Lokmane L, Loirat C, et al. HNF1beta/TCF2 mutations impair transactivation potential through altered co-regulator recruitment. Hum Mol Genet. 2004;13(24):3139–49.

    Article  CAS  PubMed  Google Scholar 

  111. Weber S, Taylor JC, Winyard P, Baker KF, Sullivan-Brown J, Schild R, et al. SIX2 and BMP4 mutations associate with anomalous kidney development. J Am Soc Nephrol. 2008;19(5):891–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jenkins D, Bitner-Glindzicz M, Malcolm S, Hu CC, Allison J, Winyard PJ, et al. De novo Uroplakin IIIa heterozygous mutations cause human renal adysplasia leading to severe kidney failure. J Am Soc Nephrol. 2005;16(7):2141–9.

    Article  CAS  PubMed  Google Scholar 

  113. Nixon TRW, Richards A, Towns LK, Fuller G, Abbs S, Alexander P, et al. Bone morphogenetic protein 4 (BMP4) loss-of-function variant associated with autosomal dominant Stickler syndrome and renal dysplasia. Eur J Hum Genet. 2019;27(3):369–77.

    Article  CAS  PubMed  Google Scholar 

  114. Brzoska HL, d’Esposito AM, Kolatsi-Joannou M, Patel V, Igarashi P, Lei Y, et al. Planar cell polarity genes Celsr1 and Vangl2 are necessary for kidney growth, differentiation, and rostrocaudal patterning. Kidney Int. 2016;90(6):1274–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Schedl A. Renal abnormalities and their developmental origin. Nat Rev Genet. 2007;8(10):791–802.

    Article  CAS  PubMed  Google Scholar 

  116. Thomas R, Sanna-Cherchi S, Warady BA, Furth SL, Kaskel FJ, Gharavi AG. HNF1B and PAX2 mutations are a common cause of renal hypodysplasia in the CKiD cohort. Pediatr Nephrol. 2011;26(6):897–903.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Paces-Fessy M, Fabre M, Lesaulnier C, Cereghini S. Hnf1b and Pax2 cooperate to control different pathways in kidney and ureter morphogenesis. Hum Mol Genet. 2012;21(14):3143–55.

    Article  CAS  PubMed  Google Scholar 

  118. Barbacci E, Reber M, Ott MO, Breillat C, Huetz F, Cereghini S. Variant hepatocyte nuclear factor 1 is required for visceral endoderm specification. Development. 1999;126(21):4795–805.

    CAS  PubMed  Google Scholar 

  119. Lokmane L, Heliot C, Garcia-Villalba P, Fabre M, Cereghini S. vHNF1 functions in distinct regulatory circuits to control ureteric bud branching and early nephrogenesis. Development. 2010;137(2):347–57.

    Article  CAS  PubMed  Google Scholar 

  120. Heliot C, Desgrange A, Buisson I, Prunskaite-Hyyrylainen R, Shan J, Vainio S, et al. HNF1B controls proximal-intermediate nephron segment identity in vertebrates by regulating Notch signalling components and Irx1/2. Development. 2013;140(4):873–85.

    Article  CAS  PubMed  Google Scholar 

  121. Desgrange A, Heliot C, Skovorodkin I, Akram SU, Heikkila J, Ronkainen VP, et al. HNF1B controls epithelial organization and cell polarity during ureteric bud branching and collecting duct morphogenesis. Development. 2017;144(24):4704–19.

    Article  CAS  PubMed  Google Scholar 

  122. Reginensi A, Clarkson M, Neirijnck Y, Lu B, Ohyama T, Groves AK, et al. SOX9 controls epithelial branching by activating RET effector genes during kidney development. Hum Mol Genet. 2011;20(6):1143–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu J, Krautzberger AM, Sui SH, Hofmann OM, Chen Y, Baetscher M, et al. Cell-specific translational profiling in acute kidney injury. J Clin Invest. 2014;124(3):1242–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kumar S, Liu J, Pang P, Krautzberger AM, Reginensi A, Akiyama H, et al. Sox9 activation highlights a cellular pathway of renal repair in the acutely injured mammalian kidney. Cell Rep. 2015;12(8):1325–38.

    Article  CAS  PubMed  Google Scholar 

  125. Nagata M, Nakauchi H, Nakayama K, Nakayama K, Loh D, Watanabe T. Apoptosis during an early stage of nephrogenesis induces renal hypoplasia in bcl-2-deficient mice. Am J Pathol. 1996;148(5):1601–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Self M, Lagutin OV, Bowling B, Hendrix J, Cai Y, Dressler GR, et al. Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J. 2006;25(21):5214–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Rosselot C, Spraggon L, Chia I, Batourina E, Riccio P, Lu B, et al. Non-cell-autonomous retinoid signaling is crucial for renal development. Development. 2010;137(2):283–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Nishinakamura R, Sakaguchi M. BMP signaling and its modifiers in kidney development. Pediatr Nephrol. 2014;29(4):681–6.

    Article  PubMed  Google Scholar 

  129. Oxburgh L, Brown AC, Muthukrishnan SD, Fetting JL. Bone morphogenetic protein signaling in nephron progenitor cells. Pediatr Nephrol. 2014;29(4):531–6.

    Article  PubMed  Google Scholar 

  130. Wang Y, Zhou CJ, Liu Y. Wnt signaling in kidney development and disease. Prog Mol Biol Transl Sci. 2018;153:181–207.

    Article  PubMed  Google Scholar 

  131. Halt K, Vainio S. Coordination of kidney organogenesis by Wnt signaling. Pediatr Nephrol. 2014;29(4):737–44.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Brown AC, Muthukrishnan SD, Guay JA, Adams DC, Schafer DA, Fetting JL, et al. Role for compartmentalization in nephron progenitor differentiation. Proc Natl Acad Sci U S A. 2013;110(12):4640–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dudley AT, Lyons KM, Robertson EJ. A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev. 1995;9:2795–807.

    Article  CAS  PubMed  Google Scholar 

  134. Luo G, Hofmann C, Bronckers AL, Sohocki M, Bradley A, Karsenty G. BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev. 1995;9(22):2808–20.

    Article  CAS  PubMed  Google Scholar 

  135. Tomita M, Asada M, Asada N, Nakamura J, Oguchi A, Higashi AY, et al. Bmp7 maintains undifferentiated kidney progenitor population and determines nephron numbers at birth. PLoS One. 2013;8(8):e73554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Oxburgh L, Dudley AT, Godin RE, Koonce CH, Islam A, Anderson DC, et al. BMP4 substitutes for loss of BMP7 during kidney development. Dev Biol. 2005;286(2):637–46.

    Article  CAS  PubMed  Google Scholar 

  137. Goncalves A, Zeller R. Genetic analysis reveals an unexpected role of BMP7 in initiation of ureteric bud outgrowth in mouse embryos. PLoS One. 2011;6(4):e19370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hartwig S, Bridgewater D, Di Giovanni V, Cain J, Mishina Y, Rosenblum ND. BMP receptor ALK3 controls collecting system development. J Am Soc Nephrol. 2008;19(1):117–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sakaguchi M, Sharmin S, Taguchi A, Ohmori T, Fujimura S, Abe T, et al. The phosphatase Dullard negatively regulates BMP signalling and is essential for nephron maintenance after birth. Nat Commun. 2013;4:1398.

    Article  PubMed  CAS  Google Scholar 

  140. Ikeya M, Kawada M, Kiyonari H, Sasai N, Nakao K, Furuta Y, et al. Essential pro-Bmp roles of crossveinless 2 in mouse organogenesis. Development. 2006;133(22):4463–73.

    Article  CAS  PubMed  Google Scholar 

  141. Ikeya M, Fukushima K, Kawada M, Onishi S, Furuta Y, Yonemura S, et al. Cv2, functioning as a pro-BMP factor via twisted gastrulation, is required for early development of nephron precursors. Dev Biol. 2010;337(2):405–14.

    Article  CAS  PubMed  Google Scholar 

  142. Muthukrishnan SD, Yang X, Friesel R, Oxburgh L. Concurrent BMP7 and FGF9 signalling governs AP-1 function to promote self-renewal of nephron progenitor cells. Nat Commun. 2015;6:10027.

    Article  CAS  PubMed  Google Scholar 

  143. Saxen L, Lehtonen E. Transfilter induction of kidney tubules as a function of the extent and duration of intercellular contacts. J Embryol Exp Morphol. 1978;47:97–109.

    CAS  PubMed  Google Scholar 

  144. Itaranta P, Lin Y, Perasaari J, Roel G, Destree O, Vainio S. Wnt-6 is expressed in the ureter bud and induces kidney tubule development in vitro. Genesis. 2002;32(4):259–68.

    Article  CAS  PubMed  Google Scholar 

  145. Stark K, Vainio S, Vassileva G, McMahon AP. Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature. 1994;372(6507):679–83.

    Article  CAS  PubMed  Google Scholar 

  146. Park JS, Valerius MT, McMahon AP. Wnt/beta-catenin signaling regulates nephron induction during mouse kidney development. Development. 2007;134(13):2533–9.

    Article  CAS  PubMed  Google Scholar 

  147. Kuure S, Popsueva A, Jakobson M, Sainio K, Sariola H. Glycogen synthase kinase-3 inactivation and stabilization of beta-catenin induce nephron differentiation in isolated mouse and rat kidney mesenchymes. J Am Soc Nephrol. 2007;18(4):1130–9.

    Article  CAS  PubMed  Google Scholar 

  148. Marose TD, Merkel CE, McMahon AP, Carroll TJ. Beta-catenin is necessary to keep cells of ureteric bud/Wolffian duct epithelium in a precursor state. Dev Biol. 2008;314(1):112–26.

    Article  CAS  PubMed  Google Scholar 

  149. Bridgewater D, Di Giovanni V, Cain JE, Cox B, Jakobson M, Sainio K, et al. beta-catenin causes renal dysplasia via upregulation of Tgfbeta2 and Dkk1. J Am Soc Nephrol. 2011;22(4):718–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Song R, El-Dahr SS, Yosypiv IV. Receptor tyrosine kinases in kidney development. J Signal Transduct. 2011;2011:869281.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Jain S, Encinas M, Johnson EM Jr, Milbrandt J. Critical and distinct roles for key RET tyrosine docking sites in renal development. Genes Dev. 2006;20(3):321–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Jain S, Knoten A, Hoshi M, Wang H, Vohra B, Heuckeroth RO, et al. Organotypic specificity of key RET adaptor-docking sites in the pathogenesis of neurocristopathies and renal malformations in mice. J Clin Invest. 2010;120(3):778–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. de Graaff E, Srinivas S, Kilkenny C, D’Agati V, Mankoo BS, Costantini F, et al. Differential activities of the RET tyrosine kinase receptor isoforms during mammalian embryogenesis. Genes Dev. 2001;15(18):2433–44.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Jijiwa M, Fukuda T, Kawai K, Nakamura A, Kurokawa K, Murakumo Y, et al. A targeting mutation of tyrosine 1062 in Ret causes a marked decrease of enteric neurons and renal hypoplasia. Mol Cell Biol. 2004;24(18):8026–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Fisher CE, Michael L, Barnett MW, Davies JA. Erk MAP kinase regulates branching morphogenesis in the developing mouse kidney. Development. 2001;128(21):4329–38.

    CAS  PubMed  Google Scholar 

  156. Tang MJ, Cai Y, Tsai SJ, Wang YK, Dressler GR. Ureteric bud outgrowth in response to RET activation is mediated by phosphatidylinositol 3-kinase. Dev Biol. 2002;243(1):128–36.

    Article  CAS  PubMed  Google Scholar 

  157. Willecke R, Heuberger J, Grossmann K, Michos O, Schmidt-Ott K, Walentin K, et al. The tyrosine phosphatase Shp2 acts downstream of GDNF/Ret in branching morphogenesis of the developing mouse kidney. Dev Biol. 2011;360(2):310–7.

    Article  CAS  PubMed  Google Scholar 

  158. Ihermann-Hella A, Lume M, Miinalainen IJ, Pirttiniemi A, Gui Y, Peranen J, et al. Mitogen-activated protein kinase (MAPK) pathway regulates branching by remodeling epithelial cell adhesion. PLoS Genet. 2014;10(3):e1004193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Kim D, Dressler GR. PTEN modulates GDNF/RET mediated chemotaxis and branching morphogenesis in the developing kidney. Dev Biol. 2007;307(2):290–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Enderle L, McNeill H. Hippo gains weight: added insights and complexity to pathway control. Sci Signal. 2013;6(296):re7.

    Article  PubMed  CAS  Google Scholar 

  161. Reginensi A, Enderle L, Gregorieff A, Johnson RL, Wrana JL, McNeill H. A critical role for NF2 and the Hippo pathway in branching morphogenesis. Nat Commun. 2016;7:12309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. McNeill H, Reginensi A. Lats1/2 regulate Yap/Taz to control nephron progenitor epithelialization and inhibit myofibroblast formation. J Am Soc Nephrol. 2017;28(3):852–61.

    Article  CAS  PubMed  Google Scholar 

  163. Reginensi A, Scott RP, Gregorieff A, Bagherie-Lachidan M, Chung C, Lim DS, et al. Yap- and Cdc42-dependent nephrogenesis and morphogenesis during mouse kidney development. PLoS Genet. 2013;9(3):e1003380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Hossain Z, Ali SM, Ko HL, Xu J, Ng CP, Guo K, et al. Glomerulocystic kidney disease in mice with a targeted inactivation of Wwtr1. Proc Natl Acad Sci U S A. 2007;104(5):1631–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Makita R, Uchijima Y, Nishiyama K, Amano T, Chen Q, Takeuchi T, et al. Multiple renal cysts, urinary concentration defects, and pulmonary emphysematous changes in mice lacking TAZ. Am J Physiol Renal Physiol. 2008;294(3):F542–53.

    Article  CAS  PubMed  Google Scholar 

  166. Yates LL, Papakrivopoulou J, Long DA, Goggolidou P, Connolly JO, Woolf AS, et al. The planar cell polarity gene Vangl2 is required for mammalian kidney-branching morphogenesis and glomerular maturation. Hum Mol Genet. 2010;19(23):4663–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Kuure S, Cebrian C, Machingo Q, Lu BC, Chi X, Hyink D, et al. Actin depolymerizing factors cofilin1 and destrin are required for ureteric bud branching morphogenesis. PLoS Genet. 2010;6(10):e1001176.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Marciano DK, Brakeman PR, Lee CZ, Spivak N, Eastburn DJ, Bryant DM, et al. p120 catenin is required for normal renal tubulogenesis and glomerulogenesis. Development. 2011;138(10):2099–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Mackie GG, Stephens FD. Duplex kidneys: a correlation of renal dysplasia with position of the ureteral orifice. J Urol. 1975;114(2):274–80.

    Article  CAS  PubMed  Google Scholar 

  170. Miyazaki Y, Oshima K, Fogo A, Hogan BL, Ichikawa I. Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest. 2000;105(7):863–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Batourina E, Choi C, Paragas N, Bello N, Hensle T, Costantini FD, et al. Distal ureter morphogenesis depends on epithelial cell remodeling mediated by vitamin A and Ret. Nat Genet. 2002;32(1):109–15.

    Article  CAS  PubMed  Google Scholar 

  172. Batourina E, Tsai S, Lambert S, Sprenkle P, Viana R, Dutta S, et al. Apoptosis induced by vitamin A signaling is crucial for connecting the ureters to the bladder. Nat Genet. 2005;37(10):1082–9.

    Article  CAS  PubMed  Google Scholar 

  173. Chia I, Grote D, Marcotte M, Batourina E, Mendelsohn C, Bouchard M. Nephric duct insertion is a crucial step in urinary tract maturation that is regulated by a Gata3-Raldh2-Ret molecular network in mice. Development. 2011;138(10):2089–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Kumar A, Kopra J, Varendi K, Porokuokka LL, Panhelainen A, Kuure S, et al. GDNF overexpression from the native locus reveals its role in the nigrostriatal dopaminergic system function. PLoS Genet. 2015;11(12):e1005710.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Li H, Jakobson M, Ola R, Gui Y, Kumar A, Sipilä P, Sariola H, Kuure S, Andressoo JO. Development of the urogenital system is regulated via the 3′UTR of GDNF. Sci Rep. 2019;9(1):5302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Mendelsohn C, Lohnes D, Decimo D, Lufkin T, LeMeur M, Chambon P, et al. Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development. 1994;120(10):2749–71.

    CAS  PubMed  Google Scholar 

  177. Airik R, Trowe MO, Foik A, Farin HF, Petry M, Schuster-Gossler K, et al. Hydroureternephrosis due to loss of Sox9-regulated smooth muscle cell differentiation of the ureteric mesenchyme. Hum Mol Genet. 2010;19(24):4918–29.

    Article  CAS  PubMed  Google Scholar 

  178. Neirijnck Y, Reginensi A, Renkema KY, Massa F, Kozlov VM, Dhib H, et al. Sox11 gene disruption causes congenital anomalies of the kidney and urinary tract (CAKUT). Kidney Int. 2018;93(5):1142–53.

    Article  CAS  PubMed  Google Scholar 

  179. Airik R, Bussen M, Singh MK, Petry M, Kispert A. Tbx18 regulates the development of the ureteral mesenchyme. J Clin Invest. 2006;116(3):663–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Vivante A, Kleppa MJ, Schulz J, Kohl S, Sharma A, Chen J, et al. Mutations in TBX18 cause dominant urinary tract malformations via transcriptional dysregulation of ureter development. Am J Hum Genet. 2015;97(2):291–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Jeanpierre C, Mace G, Parisot M, Moriniere V, Pawtowsky A, Benabou M, et al. RET and GDNF mutations are rare in fetuses with renal agenesis or other severe kidney development defects. J Med Genet. 2011;48(7):497–504.

    Article  CAS  PubMed  Google Scholar 

  182. Fernbach SK, Feinstein KA, Spencer K, Lindstrom CA. Ureteral duplication and its complications. Radiographics. 1997;17(1):109–27.

    Article  CAS  PubMed  Google Scholar 

  183. Shakya R, Jho EH, Kotka P, Wu Z, Kholodilov N, Burke R, et al. The role of GDNF in patterning the excretory system. Dev Biol. 2005;283:70–84.

    Article  CAS  PubMed  Google Scholar 

  184. Sainio K, Suvanto P, Davies J, Wartiovaara J, Wartiovaara K, Saarma M, et al. Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development. 1997;124(20):4077–87.

    CAS  PubMed  Google Scholar 

  185. Grieshammer U, Le M, Plump AS, Wang F, Tessier-Lavigne M, Martin GR. SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev Cell. 2004;6(5):709–17.

    Article  CAS  PubMed  Google Scholar 

  186. Wainwright EN, Wilhelm D, Combes AN, Little MH, Koopman P. ROBO2 restricts the nephrogenic field and regulates Wolffian duct-nephrogenic cord separation. Dev Biol. 2015;404(2):88–102.

    Article  CAS  PubMed  Google Scholar 

  187. Kume T, Deng K, Hogan BL. Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development. 2000;127(7):1387–95.

    CAS  PubMed  Google Scholar 

  188. Chi L, Zhang S, Lin Y, Prunskaite-Hyyrylainen R, Vuolteenaho R, Itaranta P, et al. Sprouty proteins regulate ureteric branching by coordinating reciprocal epithelial Wnt11, mesenchymal Gdnf and stromal Fgf7 signalling during kidney development. Development. 2004;131(14):3345–56.

    Article  CAS  PubMed  Google Scholar 

  189. Basson MA, Akbulut S, Watson-Johnson J, Simon R, Carroll TJ, Shakya R, et al. Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell. 2005;8(2):229–39.

    Article  CAS  PubMed  Google Scholar 

  190. Rozen EJ, Schmidt H, Dolcet X, Basson MA, Jain S, Encinas M. Loss of Sprouty1 rescues renal agenesis caused by Ret mutation. J Am Soc Nephrol. 2009;20(2):255–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Michos O, Cebrian C, Hyink D, Grieshammer U, Williams L, D’Agati V, et al. Kidney development in the absence of Gdnf and Spry1 requires Fgf10. PLoS Genet. 2010;6(1):e1000809.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Maeshima A, Sakurai H, Choi Y, Kitamura S, Vaughn DA, Tee JB, et al. Glial cell-derived neurotrophic factor independent ureteric bud outgrowth from the Wolffian duct. J Am Soc Nephrol. 2007;18(12):3147–55.

    Article  CAS  PubMed  Google Scholar 

  193. Peng Y, Clark C, Luong R, Tu WH, Lee J, Johnson DT, et al. The leucine zipper putative tumor suppressor 2 protein LZTS2 regulates kidney development. J Biol Chem. 2011;286(46):40331–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Kaku Y, Ohmori T, Kudo K, Fujimura S, Suzuki K, Evans SM, et al. Islet1 deletion causes kidney agenesis and hydroureter resembling CAKUT. J Am Soc Nephrol. 2013;24(8):1242–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Tabatabaeifar M, Schlingmann KP, Litwin M, Emre S, Bakkaloglu A, Mehls O, et al. Functional analysis of BMP4 mutations identified in pediatric CAKUT patients. Pediatr Nephrol. 2009;24(12):2361–8.

    Article  PubMed  Google Scholar 

  196. Gimelli S, Caridi G, Beri S, McCracken K, Bocciardi R, Zordan P, et al. Mutations in SOX17 are associated with congenital anomalies of the kidney and the urinary tract. Hum Mutat. 2010;31(12):1352–9.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Weber S, Landwehr C, Renkert M, Hoischen A, Wuhl E, Denecke J, et al. Mapping candidate regions and genes for congenital anomalies of the kidneys and urinary tract (CAKUT) by array-based comparative genomic hybridization. Nephrol Dial Transplant. 2011;26(1):136–43.

    Article  CAS  PubMed  Google Scholar 

  198. Bertoli-Avella AM, Conte ML, Punzo F, de Graaf BM, Lama G, La Manna A, et al. ROBO2 gene variants are associated with familial vesicoureteral reflux. J Am Soc Nephrol. 2008;19(4):825–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Lu W, van Eerde AM, Fan X, Quintero-Rivera F, Kulkarni S, Ferguson H, et al. Disruption of ROBO2 is associated with urinary tract anomalies and confers risk of vesicoureteral reflux. Am J Hum Genet. 2007;80(4):616–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. van Eerde AM, Duran K, van Riel E, de Kovel CG, Koeleman BP, Knoers NV, et al. Genes in the ureteric budding pathway: association study on vesico-ureteral reflux patients. PLoS One. 2012;7(4):e31327.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Siebert JR. Perinatal, fetal and embryonic autopsy. In: Gilbert-Barness E, editor. Potter’s pathology of the fetus, infant and child. 2nd ed. Philadelphia: Elsevier; 2007. p. 695–736.

    Google Scholar 

  202. Tripathi P, Guo Q, Wang Y, Coussens M, Liapis H, Jain S, et al. Midline signaling regulates kidney positioning but not nephrogenesis through Shh. Dev Biol. 2010;340(2):518–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Abu-Abed S, Dolle P, Metzger D, Beckett B, Chambon P, Petkovich M. The retinoic acid-metabolizing enzyme, CYP26A1, is essential for normal hindbrain patterning, vertebral identity, and development of posterior structures. Genes Dev. 2001;15(2):226–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Sakai Y, Meno C, Fujii H, Nishino J, Shiratori H, Saijoh Y, et al. The retinoic acid-inactivating enzyme CYP26 is essential for establishing an uneven distribution of retinoic acid along the anterio-posterior axis within the mouse embryo. Genes Dev. 2001;15(2):213–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Hatini V, Huh SO, Herzlinger D, Soares VC, Lai E. Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2. Genes Dev. 1996;10(12):1467–78.

    Article  CAS  PubMed  Google Scholar 

  206. Levinson RS, Batourina E, Choi C, Vorontchikhina M, Kitajewski J, Mendelsohn CL. Foxd1-dependent signals control cellularity in the renal capsule, a structure required for normal renal development. Development. 2005;132(3):529–39.

    Article  CAS  PubMed  Google Scholar 

  207. Nicolaou N, Pulit SL, Nijman IJ, Monroe GR, Feitz WF, Schreuder MF, et al. Prioritization and burden analysis of rare variants in 208 candidate genes suggest they do not play a major role in CAKUT. Kidney Int. 2016;89(2):476–86.

    Article  CAS  PubMed  Google Scholar 

  208. Jing J, Pattaro C, Hoppmann A, Okada Y, Consortium CK, Fox CS, et al. Combination of mouse models and genomewide association studies highlights novel genes associated with human kidney function. Kidney Int. 2016;90(4):764–73.

    Article  CAS  PubMed  Google Scholar 

  209. Fetterman GH, Ravitch MM, Sherman FE. Cystic changes in fetal kidneys following ureteral ligation: studies by microdissection. Kidney Int. 1974;5(2):111–21.

    Article  CAS  PubMed  Google Scholar 

  210. Bergmann C, Guay-Woodford LM, Harris PC, Horie S, Peters DJM, Torres VE. Polycystic kidney disease. Nat Rev Dis Primers. 2018;4(1):50.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Kraus MR, Clauin S, Pfister Y, Di Maio M, Ulinski T, Constam D, et al. Two mutations in human BICC1 resulting in Wnt pathway hyperactivity associated with cystic renal dysplasia. Hum Mutat. 2012;33(1):86–90.

    Article  CAS  PubMed  Google Scholar 

  212. Groenen PM, Vanderlinden G, Devriendt K, Fryns JP, Van de Ven WJ. Rearrangement of the human CDC5L gene by a t(6;19)(p21;q13.1) in a patient with multicystic renal dysplasia. Genomics. 1998;49(2):218–29.

    Article  CAS  PubMed  Google Scholar 

  213. Schild R, Knuppel T, Konrad M, Bergmann C, Trautmann A, Kemper MJ, et al. Double homozygous missense mutations in DACH1 and BMP4 in a patient with bilateral cystic renal dysplasia. Nephrol Dial Transplant. 2013;28(1):227–32.

    Article  CAS  PubMed  Google Scholar 

  214. Verdeguer F, Le Corre S, Fischer E, Callens C, Garbay S, Doyen A, et al. A mitotic transcriptional switch in polycystic kidney disease. Nat Med. 2010;16(1):106–10.

    Article  CAS  PubMed  Google Scholar 

  215. Heidet L, Decramer S, Pawtowski A, Moriniere V, Bandin F, Knebelmann B, et al. Spectrum of HNF1B mutations in a large cohort of patients who harbor renal diseases. Clin J Am Soc Nephrol. 2010;5(6):1079–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Groenen PM, Garcia E, Debeer P, Devriendt K, Fryns JP, Van de Ven WJ. Structure, sequence, and chromosome 19 localization of human USF2 and its rearrangement in a patient with multicystic renal dysplasia. Genomics. 1996;38(2):141–8.

    Article  CAS  PubMed  Google Scholar 

  217. Cordido A, Besada-Cerecedo L, Garcia-Gonzalez MA. The genetic and cellular basis of autosomal dominant polycystic kidney disease—a primer for clinicians. Front Pediatr. 2017;5:279.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Nagao S, Kugita M, Yoshihara D, Yamaguchi T. Animal models for human polycystic kidney disease. Exp Anim. 2012;61(5):477–88.

    Article  CAS  PubMed  Google Scholar 

  219. Porath B, Gainullin VG, Cornec-Le Gall E, Dillinger EK, Heyer CM, Hopp K, et al. Mutations in GANAB, encoding the glucosidase IIalpha subunit, cause autosomal-dominant polycystic kidney and liver disease. Am J Hum Genet. 2016;98(6):1193–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Bergmann C. Genetics of autosomal recessive polycystic kidney disease and its differential diagnoses. Front Pediatr. 2017;5:221.

    Article  PubMed  Google Scholar 

  221. Lu H, Galeano MCR, Ott E, Kaeslin G, Kausalya PJ, Kramer C, et al. Mutations in DZIP1L, which encodes a ciliary-transition-zone protein, cause autosomal recessive polycystic kidney disease. Nat Genet. 2017;49(7):1025–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Horikawa Y, Iwasaki N, Hara M, Furuta H, Hinokio Y, Cockburn BN, et al. Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat Genet. 1997;17(4):384–5.

    Article  CAS  PubMed  Google Scholar 

  223. Lantinga-van Leeuwen IS, Leonhard WN, van der Wal A, Breuning MH, de Heer E, Peters DJ. Kidney-specific inactivation of the Pkd1 gene induces rapid cyst formation in developing kidneys and a slow onset of disease in adult mice. Hum Mol Genet. 2007;16(24):3188–96.

    Article  CAS  PubMed  Google Scholar 

  224. Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science. 1996;272(5266):1339–42.

    Article  CAS  PubMed  Google Scholar 

  225. Wu G, D’Agati V, Cai Y, Markowitz G, Park JH, Reynolds DM, et al. Somatic inactivation of Pkd2 results in polycystic kidney disease. Cell. 1998;93(2):177–88.

    Article  CAS  PubMed  Google Scholar 

  226. Ward CJ, Hogan MC, Rossetti S, Walker D, Sneddon T, Wang X, et al. The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat Genet. 2002;30(3):259–69.

    Article  PubMed  Google Scholar 

  227. Lin F, Hiesberger T, Cordes K, Sinclair AM, Goldstein LS, Somlo S, et al. Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc Natl Acad Sci U S A. 2003;100(9):5286–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Fedeles SV, Tian X, Gallagher AR, Mitobe M, Nishio S, Lee SH, et al. A genetic interaction network of five genes for human polycystic kidney and liver diseases defines polycystin-1 as the central determinant of cyst formation. Nat Genet. 2011;43(7):639–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Saburi S, Hester I, Fischer E, Pontoglio M, Eremina V, Gessler M, et al. Loss of Fat4 disrupts PCP signaling and oriented cell division and leads to cystic kidney disease. Nat Genet. 2008;40(8):1010–5.

    Article  CAS  PubMed  Google Scholar 

  230. Mao Y, Mulvaney J, Zakaria S, Yu T, Morgan KM, Allen S, et al. Characterization of a Dchs1 mutant mouse reveals requirements for Dchs1-Fat4 signaling during mammalian development. Development. 2011;138(5):947–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Nechiporuk T, Fernandez TE, Vasioukhin V. Failure of epithelial tube maintenance causes hydrocephalus and renal cysts in Dlg5-/- mice. Dev Cell. 2007;13(3):338–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Cano-Gauci DF, Song HH, Yang H, McKerlie C, Choo B, Shi W, et al. Glypican-3-deficient mice exhibit developmental overgrowth and some of the abnormalities typical of Simpson-Golabi-Behmel syndrome. J Cell Biol. 1999;146(1):255–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Holmberg C, Jalanko H. Congenital nephrotic syndrome and recurrence of proteinuria after renal transplantation. Pediatr Nephrol. 2014;29(12):2309–17.

    Article  PubMed  PubMed Central  Google Scholar 

  234. Spahiu L, Merovci B, Jashari H, Kepuska AB, Rugova BE. Congenital nephrotic syndrome—Finish type. Med Arch. 2016;70(3):232–4.

    Article  PubMed  PubMed Central  Google Scholar 

  235. Kestila M, Lenkkeri U, Mannikko M, Lamerdin J, McCready P, Putaala H, et al. Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome. Mol Cell. 1998;1(4):575–82.

    Article  CAS  PubMed  Google Scholar 

  236. Lenkkeri U, Mannikko M, McCready P, Lamerdin J, Gribouval O, Niaudet PM, et al. Structure of the gene for congenital nephrotic syndrome of the finnish type (NPHS1) and characterization of mutations. Am J Hum Genet. 1999;64(1):51–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Hinkes BG, Mucha B, Vlangos CN, Gbadegesin R, Liu J, Hasselbacher K, et al. Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2). Pediatrics. 2007;119(4):e907–19.

    Article  PubMed  Google Scholar 

  238. Cil O, Besbas N, Duzova A, Topaloglu R, Peco-Antic A, Korkmaz E, et al. Genetic abnormalities and prognosis in patients with congenital and infantile nephrotic syndrome. Pediatr Nephrol. 2015;30(8):1279–87.

    Article  PubMed  Google Scholar 

  239. Boute N, Gribouval O, Roselli S, Benessy F, Lee H, Fuchshuber A, et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet. 2000;24(4):349–54.

    Article  CAS  PubMed  Google Scholar 

  240. Gbadegesin R, Hinkes BG, Hoskins BE, Vlangos CN, Heeringa SF, Liu J, et al. Mutations in PLCE1 are a major cause of isolated diffuse mesangial sclerosis (IDMS). Nephrol Dial Transplant. 2008;23(4):1291–7.

    Article  CAS  PubMed  Google Scholar 

  241. Jeanpierre C, Denamur E, Henry I, Cabanis MO, Luce S, Cecille A, et al. Identification of constitutional WT1 mutations, in patients with isolated diffuse mesangial sclerosis, and analysis of genotype/phenotype correlations by use of a computerized mutation database. Am J Hum Genet. 1998;62(4):824–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Gee HY, Sadowski CE, Aggarwal PK, Porath JD, Yakulov TA, Schueler M, et al. FAT1 mutations cause a glomerulotubular nephropathy. Nat Commun. 2016;7:10822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Zenker M, Aigner T, Wendler O, Tralau T, Muntefering H, Fenski R, et al. Human laminin beta2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum Mol Genet. 2004;13(21):2625–32.

    Article  CAS  PubMed  Google Scholar 

  244. Kashtan CE, Ding J, Garosi G, Heidet L, Massella L, Nakanishi K, et al. Alport syndrome: a unified classification of genetic disorders of collagen IV alpha345: a position paper of the Alport Syndrome Classification Working Group. Kidney Int. 2018;93(5):1045–51.

    Article  PubMed  Google Scholar 

  245. Putaala H, Soininen R, Kilpelainen P, Wartiovaara J, Tryggvason K. The murine nephrin gene is specifically expressed in kidney, brain and pancreas: inactivation of the gene leads to massive proteinuria and neonatal death. Hum Mol Genet. 2001;10(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  246. Ratelade J, Lavin TA, Muda AO, Morisset L, Mollet G, Boyer O, et al. Maternal environment interacts with modifier genes to influence progression of nephrotic syndrome. J Am Soc Nephrol. 2008;19(8):1491–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Noakes PG, Miner JH, Gautam M, Cunningham JM, Sanes JR, Merlie JP. The renal glomerulus of mice lacking s-laminin/laminin beta 2: nephrosis despite molecular compensation by laminin beta 1. Nat Genet. 1995;10(4):400–6.

    Article  CAS  PubMed  Google Scholar 

  248. Jarad G, Cunningham J, Shaw AS, Miner JH. Proteinuria precedes podocyte abnormalities inLamb2-/- mice, implicating the glomerular basement membrane as an albumin barrier. J Clin Invest. 2006;116(8):2272–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Kang JS, Wang XP, Miner JH, Morello R, Sado Y, Abrahamson DR, et al. Loss of alpha3/alpha4(IV) collagen from the glomerular basement membrane induces a strain-dependent isoform switch to alpha5alpha6(IV) collagen associated with longer renal survival in Col4a3-/- Alport mice. J Am Soc Nephrol. 2006;17(7):1962–9.

    Article  CAS  PubMed  Google Scholar 

  250. Kim JM, Wu H, Green G, Winkler CA, Kopp JB, Miner JH, et al. CD2-associated protein haploinsufficiency is linked to glomerular disease susceptibility. Science. 2003;300(5623):1298–300.

    Article  CAS  PubMed  Google Scholar 

  251. Machuca E, Benoit G, Antignac C. Genetics of nephrotic syndrome: connecting molecular genetics to podocyte physiology. Hum Mol Genet. 2009;18(R2):R185–94.

    Article  CAS  PubMed  Google Scholar 

  252. Caban C, Khan N, Hasbani DM, Crino PB. Genetics of tuberous sclerosis complex: implications for clinical practice. Appl Clin Genet. 2017;10:1–8.

    Article  CAS  PubMed  Google Scholar 

  253. Ogawa O, Eccles MR, Szeto J, McNoe LA, Yun K, Maw MA, et al. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms’ tumour. Nature. 1993;362(6422):749–51.

    Article  CAS  PubMed  Google Scholar 

  254. Hohenstein P, Pritchard-Jones K, Charlton J. The yin and yang of kidney development and Wilms’ tumors. Genes Dev. 2015;29(5):467–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Park S, Bernard A, Bove KE, Sens DA, Hazen-Martin DJ, Garvin AJ, et al. Inactivation of WT1 in nephrogenic rests, genetic precursors to Wilms’ tumour. Nat Genet. 1993;5(4):363–7.

    Article  CAS  PubMed  Google Scholar 

  256. Koesters R, Ridder R, Kopp-Schneider A, Betts D, Adams V, Niggli F, et al. Mutational activation of the beta-catenin proto-oncogene is a common event in the development of Wilms’ tumors. Cancer Res. 1999;59(16):3880–2.

    CAS  PubMed  Google Scholar 

  257. Maiti S, Alam R, Amos CI, Huff V. Frequent association of beta-catenin and WT1 mutations in Wilms tumors. Cancer Res. 2000;60(22):6288–92.

    CAS  PubMed  Google Scholar 

  258. Rivera MN, Kim WJ, Wells J, Driscoll DR, Brannigan BW, Han M, et al. An X chromosome gene, WTX, is commonly inactivated in Wilms tumor. Science. 2007;315(5812):642–5.

    Article  CAS  PubMed  Google Scholar 

  259. Major MB, Camp ND, Berndt JD, Yi X, Goldenberg SJ, Hubbert C, et al. Wilms tumor suppressor WTX negatively regulates WNT/beta-catenin signaling. Science. 2007;316(5827):1043–6.

    Article  CAS  PubMed  Google Scholar 

  260. Rivera MN, Kim WJ, Wells J, Stone A, Burger A, Coffman EJ, et al. The tumor suppressor WTX shuttles to the nucleus and modulates WT1 activity. Proc Natl Acad Sci U S A. 2009;106(20):8338–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Chen KS, Stroup EK, Budhipramono A, Rakheja D, Nichols-Vinueza D, Xu L, et al. Mutations in microRNA processing genes in Wilms tumors derepress the IGF2 regulator PLAG1. Genes Dev. 2018;32(15–16):996–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Pode-Shakked N, Shukrun R, Mark-Danieli M, Tsvetkov P, Bahar S, Pri-Chen S, et al. The isolation and characterization of renal cancer initiating cells from human Wilms’ tumour xenografts unveils new therapeutic targets. EMBO Mol Med. 2013;5(1):18–37.

    Article  CAS  PubMed  Google Scholar 

  263. Berry RL, Ozdemir DD, Aronow B, Lindstrom NO, Dudnakova T, Thornburn A, et al. Deducing the stage of origin of Wilms’ tumours from a developmental series of Wt1-mutant mice. Dis Model Mech. 2015;8(8):903–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Hu Q, Gao F, Tian W, Ruteshouser EC, Wang Y, Lazar A, et al. Wt1 ablation and Igf2 upregulation in mice result in Wilms tumors with elevated ERK1/2 phosphorylation. J Clin Invest. 2011;121(1):174–83.

    Article  CAS  PubMed  Google Scholar 

  265. Huang L, Mokkapati S, Hu Q, Ruteshouser EC, Hicks MJ, Huff V. Nephron progenitor but not stromal progenitor cells give rise to Wilms tumors in mouse models with beta-catenin activation or Wt1 ablation and Igf2 upregulation. Neoplasia. 2016;18(2):71–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. McDaniell R, Warthen DM, Sanchez-Lara PA, Pai A, Krantz ID, Piccoli DA, et al. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet. 2006;79(1):169–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Kuure S, Sainio K, Vuolteenaho R, Ilves M, Wartiovaara K, Immonen T, et al. Crosstalk between Jagged1 and GDNF/Ret/GFRalpha1 signalling regulates ureteric budding and branching. Mech Dev. 2005;122(6):765–80.

    Article  CAS  PubMed  Google Scholar 

  268. Cheng HT, Kim M, Valerius MT, Surendran K, Schuster-Gossler K, Gossler A, et al. Notch2, but not Notch1, is required for proximal fate acquisition in the mammalian nephron. Development. 2007;134(4):801–11.

    Article  CAS  PubMed  Google Scholar 

  269. McCright B, Gao X, Shen L, Lozier J, Lan Y, Maguire M, et al. Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development. 2001;128(4):491–502.

    CAS  PubMed  Google Scholar 

  270. Takamiya K, Kostourou V, Adams S, Jadeja S, Chalepakis G, Scambler PJ, et al. A direct functional link between the multi-PDZ domain protein GRIP1 and the Fraser syndrome protein Fras1. Nat Genet. 2004;36(2):172–7.

    Article  CAS  PubMed  Google Scholar 

  271. Vogel MJ, van Zon P, Brueton L, Gijzen M, van Tuil MC, Cox P, et al. Mutations in GRIP1 cause Fraser syndrome. J Med Genet. 2012;49(5):303–6.

    Article  PubMed  Google Scholar 

  272. Bick D, Franco B, Sherins RJ, Heye B, Pike L, Crawford J, et al. Brief report: intragenic deletion of the KALIG-1 gene in Kallmann’s syndrome. N Engl J Med. 1992;326(26):1752–5.

    Article  CAS  PubMed  Google Scholar 

  273. Pingault V, Bodereau V, Baral V, Marcos S, Watanabe Y, Chaoui A, et al. Loss-of-function mutations in SOX10 cause Kallmann syndrome with deafness. Am J Hum Genet. 2013;92(5):707–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Young J, Metay C, Bouligand J, Tou B, Francou B, Maione L, et al. SEMA3A deletion in a family with Kallmann syndrome validates the role of semaphorin 3A in human puberty and olfactory system development. Hum Reprod. 2012;27(5):1460–5.

    Article  CAS  PubMed  Google Scholar 

  275. Kyttala M, Tallila J, Salonen R, Kopra O, Kohlschmidt N, Paavola-Sakki P, et al. MKS1, encoding a component of the flagellar apparatus basal body proteome, is mutated in Meckel syndrome. Nat Genet. 2006;38(2):155–7.

    Article  PubMed  CAS  Google Scholar 

  276. Bergmann C, Frank V, Salonen R. Clinical utility gene card for: Meckel syndrome—update 2016. Eur J Hum Genet. 2016;24(8).

    Google Scholar 

  277. Kang S, Graham JM Jr, Olney AH, Biesecker LG. GLI3 frameshift mutations cause autosomal dominant Pallister-Hall syndrome. Nat Genet. 1997;15(3):266–8.

    Article  CAS  PubMed  Google Scholar 

  278. Cain JE, Islam E, Haxho F, Chen L, Bridgewater D, Nieuwenhuis E, et al. GLI3 repressor controls nephron number via regulation of Wnt11 and Ret in ureteric tip cells. PLoS One. 2009;4(10):e7313.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  279. Sanyanusin P, Schimmenti LA, McNoe LA, Ward TA, Pierpont ME, Sullivan MJ, et al. Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nat Genet. 1995;9(4):358–64.

    Article  CAS  PubMed  Google Scholar 

  280. Bulum B, Ozcakar ZB, Ustuner E, Dusunceli E, Kavaz A, Duman D, et al. High frequency of kidney and urinary tract anomalies in asymptomatic first-degree relatives of patients with CAKUT. Pediatr Nephrol. 2013;28(11):2143–7.

    Article  PubMed  Google Scholar 

  281. Nicolaou N, Renkema KY, Bongers EM, Giles RH, Knoers NV. Genetic, environmental, and epigenetic factors involved in CAKUT. Nat Rev Nephrol. 2015;11(12):720–31.

    Article  CAS  PubMed  Google Scholar 

  282. van der Ven AT, Vivante A, Hildebrandt F. Novel insights into the pathogenesis of monogenic congenital anomalies of the kidney and urinary tract. J Am Soc Nephrol. 2018;29(1):36–50.

    Article  PubMed  Google Scholar 

  283. dos Santos Junior AC, de Miranda DM, Simoes e Silva AC. Congenital anomalies of the kidney and urinary tract: an embryogenetic review. Birth Defects Res C Embryo Today. 2014;102(4):374–81.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Carlton Bates, Dr. Cristina Cebrian, and Dr. Peter Hohenstein for insightful discussions and MSc Kristen Kurtzeborn for reviewing the manuscript for English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satu Kuure .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuure, S., Sariola, H. (2020). Mouse Models of Congenital Kidney Anomalies. In: Liu, A. (eds) Animal Models of Human Birth Defects. Advances in Experimental Medicine and Biology, vol 1236. Springer, Singapore. https://doi.org/10.1007/978-981-15-2389-2_5

Download citation

Publish with us

Policies and ethics