Skip to main content

Modern Concepts and Techniques for Better Cotton Production

  • Chapter
  • First Online:

Abstract

Sustainable cotton production in current environmental conditions is under threat due to climatic variability and shortage of ever-decreasing resources for agricultural crops. There is dire need to improve the cotton production to fulfill increasing demands of the ever increasing world population which will rise up to nine billion till 2050. Poor soil health, poor water quality and water shortage, insect pest complex, and unpredictable climatic patterns are predominant problems to cotton production. Hence, there is a great challenge to manage cotton crop in a sustainable fashion without the degradation of soil, water, and environment due to climate variability. There are several factors associated with low production of cotton including improper sowing and picking, poor pesticide spraying approaches, inappropriate amount and time of irrigation, processing and ginning through inappropriate and primitive procedures, heat stress, lack of disease- and pest-tolerant varieties, improper nutrient management, improper disease management, and improper weed management. It is the need of the hour to adopt the modern technologies and applications for sustainable cotton production. There are several modern technologies which can increase the production of cotton and make the idea of sustainability feasible because of their site-specific management of all agricultural inputs. GPS, GIS, and remote sensing technologies make the precise seeding of cotton seed, fertilizers, and pesticides. IPM, IWM, and INM are the well-developed modern concepts which not only reduce the cost of production but also mitigate the emission of greenhouse gases. For sustainable cotton production, implementation of these modern concepts is crucial so that the human beings will get benefits in the future. Therefore, this chapter will be focused on the recently developed technologies which can be sustainably utilized for the better management of cotton crop across the world. This chapter will explore the importance of Decision Support system (DSS) for sustainable cotton production; role of GPS, GIS, and remote sensing for identifying site-specific factors such as soil quality indicators; importance of transgenic cotton; impact of mechanical sowing and picking on sustainable cotton production; use of UAVs for nutrient and pesticide management; and impacts of modern concepts on increasing agronomic production and advancing global fiber and oil security.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ARIMA:

Autoregressive integrated moving average

ARMA:

Autoregressive moving average

CSM:

Cropping system model

DSS:

Decision support system

EC:

Electrical conductivity

ET:

Evapotranspiration

FDR:

Frequency domain reflectometry

GIS:

Geographic information system

GPS:

Global positioning system

GSM:

Global system for mobile communication

IPM:

Integrated pest management

IRS:

Information retrieval system

IWM:

Integrated weed management

LAI:

Leaf area index

MARS:

Marker-assisted recurrent selection

MAS:

Marker-assisted selection

NDVI:

Normalized difference vegetation index

NMR:

Nuclear magnetic resonance

PA:

Precision agriculture

RS:

Remote sensing

SCY:

Seed cotton yield

SEBAL:

Surface energy balance algorithm for land

UAV:

Unmanned aerial vehicle

VRA:

Variable rate application

VWC:

Volumetric water content

WHO:

World Health Organization

WUE:

Water use efficiency

References

  • Abbas Q, Ahmad S (2018) Effect of different sowing times and cultivars on cotton fiber quality under stable cotton-wheat cropping system in southern Punjab, Pakistan. Pak J Life Soc Sci 16:77–84

    Google Scholar 

  • Abdalla K, Chivenge P, Ciais P, Chaplot V (2016) No-tillage lessens soil CO2 emissions the most under arid and sandy soil conditions: results from a meta-analysis. Biogeosciences 13(12):3619–3633

    Article  Google Scholar 

  • Ahmad S, Raza I (2014) Optimization of management practices to improve cotton fiber quality under irrigated arid environment. J Food Agric Environ 2(2):609–613

    Google Scholar 

  • Ahmad S, Raza I, Ali H, Shahzad AN, Atiq-ur-Rehman, Sarwar N (2014) Response of cotton crop to exogenous application of glycinebetaine under sufficient and scarce water conditions. Braz J Bot 37(4):407–415

    Google Scholar 

  • Ahmad S, Abbas Q, Abbas G, Fatima Z, Atique-ur-Rehman, Naz S, Younis H, Khan RJ, Nasim W, Habib ur Rehman M, Ahmad A, Rasul G, Khan MA, Hasanuzzaman M (2017) Quantification of climate warming and crop management impacts on cotton phenology. Plants 6(7):1–16

    Google Scholar 

  • Ahmad S, Iqbal M, Muhammad T, Mehmood A, Ahmad S, Hasanuzzaman M (2018) Cotton productivity enhanced through transplanting and early sowing. Acta Sci Biol Sci 40:e34610

    Google Scholar 

  • Al Zayed IS, Elagib NA, Ribbe L, Heinrich J (2015) Spatio-temporal performance of large-scale Gezira irrigation scheme, Sudan. Agr Syst 133:131–142

    Article  Google Scholar 

  • Ali MH (2011) GIS in irrigation and water management. In: Practices of irrigation & on-farm water management, vol 2. Springer, New York, NY

    Chapter  Google Scholar 

  • Ali H, Afzal MN, Ahmad F, Ahmad S, Akhtar M, Atif R (2011) Effect of sowing dates, plant spacing and nitrogen application on growth and productivity on cotton crop. Int J Sci Eng Res 2(9):1–6

    Google Scholar 

  • Ali H, Abid SA, Ahmad S, Sarwar N, Arooj M, Mahmood A, Shahzad AN (2013a) Integrated weed management in cotton cultivated in the alternate-furrow planting system. J Food Agric Environ 11(3–4):1664–1669

    Google Scholar 

  • Ali H, Abid SA, Ahmad S, Sarwar N, Arooj M, Mahmood A, Shahzad AN (2013b) Impact of integrated weed management on flat-sown cotton (Gossypium hirsutum L.). J Anim Plant Sci 23(4):1185–1192

    CAS  Google Scholar 

  • Ali H, Hameed RA, Ahmad S, Shahzad AN, Sarwar N (2014a) Efficacy of different techniques of nitrogen application on American cotton under semi-arid conditions. J Food Agric Environ 12(1):157–160

    Google Scholar 

  • Ali H, Hussain GS, Hussain S, Shahzad AN, Ahmad S, Javeed HMR, Sarwar N (2014b) Early sowing reduces cotton leaf curl virus occurrence and improves cotton productivity. Cercetări Agronomice în Moldova XLVII(4):71–81

    Google Scholar 

  • Ali S, Badar N, Fatima H (2015) Forecasting production and yield of sugar cane and cotton crops of Pakistan for 2013-2030. Sarhad J Agric 31(1):1–9

    Google Scholar 

  • Ali L, Anum W, Hussain G, Shahid MI (2017) Enhancement in cotton (Gossypium hirsutum L.) crop yield by water use efficiency under various planting techniques. Environ Earth Ecol 1(2):6–16

    Article  Google Scholar 

  • Altieri M, Nicholls C (2004) Biodiversity and pest management in agroecosystems, 2nd edn. CRC Press, Boca Raton, FL, pp 1–252

    Book  Google Scholar 

  • Amin A, Nasim W, Mubeen M, Nadeem M, Ali L, Hammad HM, Sultana SR, Jabran K, Habib ur Rehman M, Ahmad S, Awais M, Rasool A, Fahad S, Saud S, Shah AN, Ihsan Z, Ali S, Bajwa AA, Hakeem KR, Ameen A, Amanullah, Rehman HU, Alghabar F, Jatoi GH, Akram M, Khan A, Islam F, Ata-Ul-Karim ST, Rehmani MIA, Hussain S, Razaq M, Fathi A (2017) Optimizing the phosphorus use in cotton by using CSM-CROPGRO-cotton model for semi-arid climate of Vehari-Punjab, Pakistan. Environ Sci Pollut Res 24(6):5811–5823

    Article  CAS  Google Scholar 

  • Amin A, Nasim W, Mubeen M, Ahmad A, Nadeem M, Urich P, Fahad S, Ahmad S, Wajid A, Tabassum F, Hammad HM, Sultana SR, Anwar S, Baloch SK, Wahid A, Wilkerson CJ, Hoogenboom G (2018) Simulated CSM-CROPGRO-cotton yield under projected future climate by SimCLIM for southern Punjab, Pakistan. Agr Syst 167:213–222

    Article  Google Scholar 

  • Arshad MN, Ahmad A, Wajid SA, Cheema MJM, Schwartz MW (2017) Adapting DSSAT model for simulation of cotton yield for nitrogen levels and planting dates. Agron J 109(6):2639–2648

    Article  Google Scholar 

  • Asghar M, Farooq M, Hussain M (2016) Productivity and profitability of cotton – wheat system as influenced by relay intercropping of insect resistant transgenic cotton in bed planted wheat. Eur J Agron 75:33–41

    Article  Google Scholar 

  • Ashigh J, Mohseni-Moghadam M, Idowu J, Hamilton C (2015) Weed management in cotton. NMSU, Las Cruces, NM

    Google Scholar 

  • Attia S, Grissa KL, Lognay G, Bitume E, Hance T, Mailleux AC (2013) A review of the major biological approaches to control the worldwide pest Tetranychus urticae (Acari: Tetranychidae) with special reference to natural pesticides. J Pest Sci 86(3):361–386

    Article  Google Scholar 

  • Ba HGL, Ai HMT, Wu PE (2008) Preliminary study on biological control of cotton bollworm, Helicoverpa armigera (Hubner) with Trichogramma in Tulufan in Xinjiang autonomous region. China Cotton 35:17–18

    Google Scholar 

  • Ballester C, Hornbuckle J, Brinkhoff J, Smith J, Quayle W (2017) Assessment of in-season cotton nitrogen status and lint yield prediction from unmanned aerial system imagery. Remote Sens (Basel) 9(11):1149

    Article  Google Scholar 

  • Bastiaanssen WGM, Ali S (2003) A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan. Agric Ecosyst Environ 94(3):321–340

    Article  Google Scholar 

  • Bechar A, Nof SY, Wachs JP (2015) A review and framework of laser-based collaboration support. Ann Rev Control 39:30–45

    Article  Google Scholar 

  • Benedict JH, Sachs ES, Altman DW, Ring DR, Stone TB, Sims SR (1993) Impact of δ-endotoxin-producing transgenic cotton on insect–plant interactions with Heliothis virescens and Helicoverpa zea (Lepidoptera: Noctuidae). Environ Entomol 22(1):1–9

    Article  CAS  Google Scholar 

  • Buttar GS, Sidhu HS, Singh V, Jat ML, Gupta R, Singh Y, Singh B (2013) Relay planting of wheat in cotton: an innovative technology for enhancing productivity and profitability of wheat in cotton–wheat production system of South Asia. Exp Agric 49(1):19–30

    Article  Google Scholar 

  • Cade-Menun BJ (2017) Characterizing phosphorus forms in cropland soils with solution 31 P-NMR: past studies and future research needs. Chem Biol Technol Agric 4(1):19

    Article  CAS  Google Scholar 

  • Cade-Menun B, Liu CW (2014) Solution phosphorus-31 nuclear magnetic resonance spectroscopy of soils from 2005 to 2013: a review of sample preparation and experimental parameters. Soil Sci Soc Am J 78(1):19–37

    Article  CAS  Google Scholar 

  • Campbell B, Chen L, Dygert C, Dick W (2014) Tillage and crop rotation impacts on greenhouse gas fluxes from soil at two long-term agronomic experimental sites in Ohio. J Soil Water Conserv 69(6):543–552

    Article  Google Scholar 

  • Cariou C, Lenain R, Thuilot B, Berducat M (2009) Automatic guidance of a four-wheel-steering mobile robot of accurate field operations. J Field Robot 26(6-7):504–518

    Article  Google Scholar 

  • Caverzan A, Giacomin R, Müller M, Biazus C, Lângaro NC, Chavarria G (2018) How does seed vigor affect soybean yield components? Agron J 110(4):1318–1327

    Article  CAS  Google Scholar 

  • Chandel NS, Agrawal KN, Tripathi H, Garg SK (2014) Development of yield maps in wheat using yield monitor. Bhartiya Krishi Anusandhan Patrika 29(3):111–115

    Google Scholar 

  • Clay SA, Chang J, Clay DE, Reede CL, Dalsted K (2004) Using remote sensing to develop weed management zones in soybeans. Site Spec Manag Guide 42:1–4

    Google Scholar 

  • Cook SE, Bramley RG (1998) Precision agriculture – opportunities, benefits and pitfalls. Aust J Exp Agric 38:753–763

    Article  Google Scholar 

  • Copeland JD, Dodds DM, Catchot AL, Gore J, Wilson DG Jr (2016) Evaluation of PRE herbicides and seed treatment on thrips infestation and cotton growth, development, and yield. Agron J 108(6):2355–2364

    Article  CAS  Google Scholar 

  • Croft BA, Cook RJ, MacKenzie DR (1985) Biological constraints. In: Gibbs M, Carlson C (eds) Crop productivity--research imperatives revisited: an international conference held at Boyne Highlands Inn, Harbor Springs, Michigan, pp 177–195

    Google Scholar 

  • Dalezios NR, Domenikiotis C, Loukas A, Tzortzios ST, Kalaitzidis C (2001) Cotton yield estimation based on NOAA/AVHRR produced NDVI. Phys Chem Earth B Hydrol Ocean Atmos 26(3):247–251

    Article  Google Scholar 

  • Daughtry DW, Porter WM, Harris GH, Noland RL, Snider JL, Virk S (2018) Correlating plant nitrogen status in cotton with UAV based multispectral imagery. In: A paper in 14th International Conference on Precision Agriculture 24-27 June, 2018, Montreal, Quebec, Canada. ISPA, Monticello, IL, pp 1–9

    Google Scholar 

  • Dawson A, Knowles O (2018) To grid or not to grid – a review of soil sampling strategies. In: Currie LD, Christensen CL (eds) Farm environmental planning – science, policy and practice. Fertilizer and Lime Research Centre, Massey University, Palmerston North. Available at: http://flrc.massey.ac.nz/publications.html

    Google Scholar 

  • Debnath MK, Bera K, Mishra P (2013) Forecasting area, production and yield of cotton in India using ARIMA model. J Space Sci Technol 2(1):16–20

    Google Scholar 

  • Deguine JP, Ferron P, Russell D (2008) Sustainable pest management for cotton production. A review. Agron Sustain Dev 28:113–137

    Article  Google Scholar 

  • Deshmukh AS, Mohanty A (2016) Cotton mechanisation in India and across globe: a review. Int J Adv Res Eng Sci Technol 3(1):66

    Google Scholar 

  • Difallah W, Benahmed K, Draoui B, Bounaama F (2017) Linear optimization model for efficient use of irrigation water. Int J Agron 2017:5353648

    Article  Google Scholar 

  • Doolette AL, Smernik RJ (2015) Quantitative analysis of 31P NMR spectra of soil extracts–dealing with overlap of broad and sharp signals. Magn Reson Chem 53(9):679–685

    Article  CAS  PubMed  Google Scholar 

  • Draz KA (2009) Cotton pests. Faculty of Agriculture, Alexandria University, Damanhour

    Google Scholar 

  • Ecobichon DJ (2001) Pesticide use in developing countries. Toxicology 160(1-3):27–33

    Article  CAS  PubMed  Google Scholar 

  • El-Wakeil NE, Gaafar NM, Vidal S (2006) Side effect of some neem products on natural enemies of Helicoverpa (Trichogramma spp.) and Chrysoperla carnea. Arch Phytopathol Plant Protect 39(6):445–455

    Article  Google Scholar 

  • Eunice MA (2013) Real time paddy crop field monitoring using Zigbee Network. Int J Eng Sci Res 4(1):1208–1213

    Google Scholar 

  • Farid HU, Bakhsh A, Ahmad N, Ahmad A (2013) Evaluation of management zones for site-specific application of crop inputs. Pak J Life Soc Sci 11(1):29–35

    Google Scholar 

  • Farokhzadeh S, Alifakheri B (2014) Marker-assisted selection for disease resistance: applications in breeding (Review). Int J Agric Crop Sci 7:1392–1405

    Google Scholar 

  • Fernández-Quintanilla C, Peña JM, Andújar D, Dorado J, Ribeiro A, López-Granados F (2018) Is the current state of the art of weed monitoring suitable for site-specific weed management in arable crops? Weed Res 58(4):259–272

    Article  Google Scholar 

  • Finch-Savage WE, Bassel GW (2016) Seed vigour and crop establishment: extending performance beyond adaptation. J Exp Bot 67(3):567–591

    Article  CAS  PubMed  Google Scholar 

  • Foglia MM, Reina G (2006) Agricultural robot for radicchio harvesting. J Field Robot 23(6-7):363–377

    Article  Google Scholar 

  • Garcia-Vila M, Fereres E, Mateos L, Orgaz F, Steduto P (2009) Deficit irrigation optimization of cotton with AquaCrop. Agron J 101(3):477–487

    Article  Google Scholar 

  • Gencsoylu I, Yalcin I (2004) The effect of different tillage systems on cotton pests and predators in cotton fields. Asian J Plant Sci 3(1):39–44

    Article  Google Scholar 

  • Gitonga GW (1995) Forecasting maize crop yield in Kenya using meteorological satellite data. In: Proceedings of the EUMETSAT Meteorological Satellite Data Users’ Conference: Polar Orbiting Systems, Winchester, UK, 1995, pp 93–100

    Google Scholar 

  • Glowienka E, Michalowska K, Pekala A, Hejmanowska B (2016) Application of GIS and remote sensing techniques in multitemporal analyses of soil properties in the foreland of the carpathians. IOP Conf Ser Earth Environ Sci 44(5):052044

    Article  Google Scholar 

  • Goglio P, Brankatschk G, Knudsen MT, Williams AG, Nemecek T (2018) Addressing crop interactions within cropping systems in LCA. Int J Life Cycle Assess 23(9):1735–1743

    Article  Google Scholar 

  • Gonzalez-de-Soto M, Emmi L, Benavides C, Garcia I, Gonzalez-de-Santos P (2016) Reducing air pollution with hybrid-powered robotic tractors for precision agriculture. Biosyst Eng 143:79–94

    Article  Google Scholar 

  • Grunwald S, Vasques GM, Rivero RG (2015) Fusion of soil and remote sensing data to model soil properties. Adv Agron 131:1–109

    Article  Google Scholar 

  • Guan S, Fukami K, Matsunaka H, Okami M, Tanaka R, Nakano H, Sakai T, Nakano K, Ohdan H, Takahashi K (2019) Assessing correlation of high-resolution NDVI with fertilizer application level and yield of rice and wheat crops using small UAVs. Remote Sens (Basel) 11(2):112

    Article  Google Scholar 

  • Haibo L, Qing L, Yufeng X, Chuijje Y (2010) Research and development on the key technology of wheat single seed robot. In: IEEE World Automation Congress. IEEE, Washington, DC, pp 339–343

    Google Scholar 

  • Hassan-Esfahani L, Torres-Rua A, Jensen A, McKee M (2015) Assessment of surface soil moisture using high-resolution multi-spectral imagery and artificial neural networks. Remote Sens (Basel) 7(3):2627–2646

    Article  Google Scholar 

  • Hebbar KB, Venugopalan MV, Seshasai MVR, Rao KV, Patil BC, Prakash AH, Kumar V, Hebbar KR, Jeyakumar P, Bandhopadhyay KK, Rao MRK, Khadi BM, Aggarwal PK (2008) Predicting cotton production using Info crop-cotton simulation model, remote sensing and spatial agro-climatic data. Curr Sci 95:1570–1579

    Google Scholar 

  • Hedley C (2015) The role of precision agriculture for improved nutrient management on farms. J Sci Food Agric 95(1):12–19

    Article  CAS  PubMed  Google Scholar 

  • Held A, Hudson J, Martin L, Reeves W (2016) Benefits and safety of glyphosate. MONSANTO, St. Louis, MO

    Google Scholar 

  • Henneberry TJ (2007) Integrated systems for control of the pink bollworm Pectinophora gossypiella in cotton. In: Vreysen MJB, Robinson AS, Hendrichs J (eds) Area-wide control of insect pests. Springer, Dordrecht, pp 567–579

    Chapter  Google Scholar 

  • Holtzapffel R, Mewett O, Wesley V, Hattersley P (2008) Genetically modified crops: tools for insect pest and weed control in cotton and canola. Australian Government Bureau of Rural Sciences, Canberra, ACT

    Google Scholar 

  • Hoogenboom G, Jones JW, Wilkens PW, Porter CH, Batchelor WD, Hunt LA, Boote KJ, Singh U, Uryasev O, Bowen WT, Gijsman AJ, Du Toit AS, White JW, Tsuji GY (2004) Decision support simulating cotton yield using CROPGRO model system for agrotechnology transfer. ver. 4.0. University of Hawaii, Honolulu, Hawaii

    Google Scholar 

  • Hoogenboom G, Porter CH, Shelia V, Boote KJ, Singh U, White JW, Hunt LA, Ogoshi R, Lizaso JI, Koo J, Asseng S, Singels A, Moreno LP, Jones JW (2017) Decision Support System for Agrotechnology Transfer (DSSAT), Version 4.7. DSSAT Foundation, Gainesville, FL. Available at: http://dssat.net

    Google Scholar 

  • Hunt ER, Horneck DA, Spinelli CB, Turner RW, Bruce AE, Gadler DJ, Brungardt JJ, Hamm PB (2018) Monitoring nitrogen status of potatoes using small unmanned aerial vehicles. Precis Agric 19(2):314–333

    Article  Google Scholar 

  • Incrocci L, Marzialetti P, Incrocci G, Di A, Balendonck J, Bibbiani C, Bibbiani C, Spagnol S, Pardossi A (2019) Sensor-based management of container nursery crops irrigated with fresh or saline water. Agric Water Manag 213:49–61

    Article  Google Scholar 

  • James C (2016) Global status of commercialized biotech/GM crops: 2016: ISAAA brief No. 52. ISAAA, Ithaca, NY

    Google Scholar 

  • Jensen JR (2009) Remote sensing of the environment: an earth resource perspective, 2nd edn. Pearson Education India, Noida

    Google Scholar 

  • Jia B, He H, Ma F, Diao M, Jiang G, Zheng Z, Cui J, Fan H (2014) Use of a digital camera to monitor the growth and nitrogen status of cotton. Scientific World Journal 2014:602647

    PubMed  PubMed Central  Google Scholar 

  • Jiang GL (2013) Molecular markers and marker-assisted breeding in plants. Chapter 3. In: Plant breeding from laboratories to fields. InTech, Rijeka, pp 45–83

    Google Scholar 

  • Johnson WC, Brenneman TB, Baker SH, Johnson AW, Sumner DR, Mullinix BG (2001) Tillage and pest management considerations in a peanut–cotton rotation in the southeastern Coastal Plain. Agron J 93(3):570–576

    Article  Google Scholar 

  • Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt LA, Wilkens PW, Singh U, Gijsman AJ, Ritchie JT (2003) The DSSAT cropping system model. Eur J Agron 18(3–4):235–265

    Article  Google Scholar 

  • Kale S, Khandagale S, Gaikwad S, Narve S, Gangal P (2015) Agriculture drone for spraying fertilizer and pesticides. Int J Adv Res Comp Sci Softw Eng 5(12):804–807

    Google Scholar 

  • Kamal RM, Amin MSM (2010) GIS-based irrigation water management for precision farming of rice. Int J Agric Biol Eng 3(3):27–35

    Google Scholar 

  • Kamau-Rewe M, Rasche F, Cobo JG, Dercon G, Shepherd KD, Cadisch G (2011) Generic prediction of soil organic carbon in alfisols using diffuse reflectance Fourier-transform mid-infrared spectroscopy. Soil Sci Soc Am J 75:2358–2360

    Article  CAS  Google Scholar 

  • Kashyap N, Das KN, Deka B, Dutta M (2018) Soil test based fertilizer prescriptions under integrated plant nutrient supply for hybrid rice (cv. US–382) in alluvial soils of Jorhat District of Assam, India. Int J Curr Microbiol App Sci 7(5):3570–3576

    Article  CAS  Google Scholar 

  • Kerselaers E, Rogge L, Lauwers G, Van Huylenbroeck G (2015) Decision support for prioritizing of land to be presented for agriculture: can participatory tool development help? Comp Electron Agric 110:208–220

    Article  Google Scholar 

  • Khalifa EM, Kholief RM, Eitawil MA, Neamatallah MA (2009) Influence of harvesting methods on ginning operation and fiber qualities for Egyptian cotton. Mansoura Uni J Agric Sci 34:1431

    Google Scholar 

  • Khan MB, Khaliq A, Ahmad S (2004) Performance of mashbean intercropped in cotton planted in different planting patterns. J Res (Sci) 15(2):191–197

    Google Scholar 

  • Khanal S, Fulton J, Shearer S (2017) An overview of current and potential applications of thermal remote sensing in precision agriculture. Comp Electron Agric 139:22–32

    Article  Google Scholar 

  • Krištof K, Šima T, Nozdrovický L, Findura P (2014) The effect of soil tillage intensity on carbon dioxide emissions released from soil into the atmosphere. Agron Res 12(1):115–120

    Google Scholar 

  • Kumar J, Choudhary AK, Solanki RK, Pratap A (2011) Towards marker-assisted selection in pulses: a review. Plant Breed 130(3):297–313

    Article  CAS  Google Scholar 

  • Kumar A, Brar NS, Pal S, Singh P (2017a) Available soil macro and micro-nutrients under rice-wheat cropping system in District Tarn Taran of Punjab, India. Ecol Environ Conserv 23(1):201–206

    Google Scholar 

  • Kumar S, Niwas R, Khichar ML, Singh A, Badal P, Kumar Y, Chauthan AS (2017b) Genetic coefficient and validation of DSSAT model for cotton under different growing environments. Int J Curr Microbiol App Sci 6(4):1031–1041

    Article  Google Scholar 

  • Kumar U, Shahid M, Tripathi R, Mohanty S, Kumar A, Bhattacharyya P, Lal B, Gautam P, Raja R, Panda BB, Jambhulkar NN, Shukla AK, Nayak AK (2017c) Variation of functional diversity of soil microbial community in sub-humid tropical rice-rice cropping system under long-term organic and inorganic fertilization. Ecol Indic 73:536–543

    Article  CAS  Google Scholar 

  • Lal S (2016) Impact of plant diversity on the insect pest complex of maize. Doctoral Dissertation, MPUAT, Udaipur

    Google Scholar 

  • Latif A, Rao AQ, Khan MAU, Shahid N, Bajwa KS, Ashraf MA, Abbas MA, Azam M, Shahid AA, Nasir IA, Husnain T (2015) Herbicide-resistant cotton (Gossypium hirsutum) plants: an alternative way of manual weed removal. BMC Res Notes 8(1):453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lema M (2018) Marker assisted selection in comparison to conventional plant breeding: review article. Agric Res Tech Open Access J 14(2):555914. https://doi.org/10.19080/ARTOAJ.2018.14.555914

    Article  Google Scholar 

  • Lepage M, Simonneaux V, Thomas S, Metral J, Duchemin B, Kharrou H, Cherkaoui M, Chehbouni A (2009) SAMIR a tool for irrigation monitoring using remote sensing for evapotranspiration estimate. MELIA, Marrakech

    Google Scholar 

  • Li W, Zhou Z, Meng Y, Xu N, Fok M (2009) Modeling boll maturation period, seed growth, protein, and oil content of cotton (Gossypium hirsutum L.) in China. Field Crop Res 112:131–140

    Article  Google Scholar 

  • Lim SL, Wu TY, Lim PN, Shak KP (2015) The use of vermicompost in organic farming: overview, effects on soil and economics. J Sci Food Agric 95(6):1143–1156

    Article  CAS  PubMed  Google Scholar 

  • Lindblom J, Lundstrom C, Ljung M, Jonsson A (2017) Promoting sustainable intensification in precision agriculture: review of decision support system development and strategies. Precis Agric 18:309–331

    Article  Google Scholar 

  • Liu J, Zehnder AJB, Yang H (2009) Global consumptive water use for crop production: the importance of green water and virtual water. Water Resour Res 45(5):1–15

    Article  Google Scholar 

  • López-Granados F (2011) Weed detection for site-specific weed management: mapping and real-time approaches. Weed Res 51(1):1–11

    Article  Google Scholar 

  • Ludibeth SM, Marina IE, Vicenta EM (2012) Vermicomposting of sewage sludge: earthworm population and agronomic advantages. Compost Sci Util 20(1):11–17

    Article  Google Scholar 

  • Ma Y, Liu S, Song L, Xu Z, Liu Y, Xu T, Zhu Z (2018) Estimation of daily evapotranspiration and irrigation water efficiency at a Landsat-like scale for an arid irrigation area using multi-source remote sensing data. Remote Sens Environ 216:715–734

    Article  Google Scholar 

  • Malik M, Sehgal M, Kanojia AK, Singh RV (2018) A review paper on decision support system/expert system developed on mango. Int J Plant Protec 11(1):119–123

    Article  Google Scholar 

  • Mangalassery S, Sjögersten S, Sparkes DL, Sturrock CJ, Craigon J, Mooney SJ (2014) To what extent can zero tillage lead to a reduction in greenhouse gas emissions from temperate soils? Sci Rep 4:4586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maraseni TN, Cockfield G (2011) Does the adoption of zero tillage reduce greenhouse gas emissions? An assessment for the grains industry in Australia. Agr Syst 104(6):451–458

    Article  Google Scholar 

  • Marino S, Alvino A (2018) Detection of homogeneous wheat areas using multi-temporal UAS images and ground truth data analyzed by cluster analysis. Eur J Remote Sens 51(1):266–275

    Article  Google Scholar 

  • Masseroni D, Moller P, Tyrell R, Romani M, Lasagna A, Sali G, Facchi A, Gandolfi C (2018) Evaluating performances of the first automatic system for paddy irrigation in Europe. Agric Water Manag 201:58–69

    Article  Google Scholar 

  • McBratney A, Whelan B, Ancev T, Bouma J (2005) Future directions of precision agriculture. Precis Agric 6:7–23

    Article  Google Scholar 

  • de Medeiros FHV, de Souza RM, Ferro HM, Zanotto E, Machado JDC, de Medeiros FCL (2015) Screening of endospore-forming bacteria for cotton seed treatment against bacterial blight and damping-off. Adv Plants Agric Res 2(4):167–172

    Google Scholar 

  • Minasny B, Tranter G, McBratney AB, Brough DM, Murphy BW (2009) Regional transferability of mid-infrared diffuse reflectance spectroscopic prediction for soil chemical properties. Geoderma 153(1–2):155–162

    Article  CAS  Google Scholar 

  • Mir SA, Qasim M, Arfat Y, Mubarak T, Bhat ZA, Bhat JA, Bangroo SA, Sofi TA (2015) Decision support systems in a global agricultural perspective - a comprehensive review. Int J Agric Sci 7(1):403–415

    Google Scholar 

  • MIT (2016) Six ways drones are revolutionizing agriculture. MIT Technol Rev

    Google Scholar 

  • Mogili UMR, Deepak BBVL (2018) Review on application of drone systems in precision agriculture. Proc Comp Sci 133:502–509

    Article  Google Scholar 

  • Montesano FF, Serio F, Mininni C, Signore A, Parente A, Santamaria P (2015) Tensiometer-based irrigation management of subirrigated soilless tomato: effects of substrate matric potential control on crop performance. Front Plant Sci 6:1150

    Article  PubMed  PubMed Central  Google Scholar 

  • Murthy VRK (2004) Crop growth modeling and its applications in agricultural meteorology. In: Sivakumar MVK, Roy PS, Harsen K, Saha SK (eds) Satellite Remote Sensing and GIS Applications in Agricultural Meteorology Workshop, Dehra Dun, India. World Meteorological Organisation, Geneva, pp 235–261

    Google Scholar 

  • Muthamilselvan M, Rangasamyt K, Ananthakrishnan D, Manian R (2007) Mechanical picking of cotton - a review. Agric Rev 28(2):118–126

    Google Scholar 

  • Najar IA, Khan AB (2013) Management of fresh water weeds (macrophytes) by vermicomposting using Eisenia fetida. Environ Sci Pollut Res 20(9):6406–6417

    Article  CAS  Google Scholar 

  • Naranjo SE (2009) Impacts of Bt crops on non-target invertebrates and insecticide use patterns. CAB Rev Perspect Agric Veterin Sci Nutr Nat Resour 4(011):1

    Google Scholar 

  • Nasrullah HM, Aslam M, Akhtar M, Ali B, Majid A, Akram M, Farooq U (2017) Relay cropping of cotton in standing wheat: an innovative approach for enhancing the productivity and income of small farm. Roman Agric Res 34:187–195

    Google Scholar 

  • North JH, Gore J, Catchot AL, Stewart SD, Lorenz GM, Musser FR, Cook DR, Kerns DL, Dodds DM (2017) Value of neonicotinoid insecticide seed treatments in mid-south cotton (Gossypium hirsutum [Malvales: Malvaceae]) production systems. J Econ Entomol 111(1):10–15

    Article  CAS  Google Scholar 

  • Ogunti EO, Akingbade FK, Segun A, Oladimeji O (2018) Decision support system using mobile applications in the provision of day to day information about farm status to improve crop yield. Periodic Eng Nat Sci 6:89–99

    Google Scholar 

  • Ortiz BV, Hoogenboom G, Vellidis G, Boote KJ, Davis RF, Perry C (2009) Adapting the CROPGRO cotton model to simulate cotton biomass and yield under southern root-knot nematode parasitism. Trans ASABE 52:2129–2140

    Article  Google Scholar 

  • Ota T, Bontsema J, Hayashi S, Kubota K, van Henten E, van Os EA, Ajiki K (2007) Development of a cucumber leaf picking device for greenhouse production. Biosyst Eng 98:381–390

    Article  Google Scholar 

  • Padilla FM, Gallardo M, Peña-Fleitas MT, de Souza R, Thompson RB (2018) Proximal optical sensors for nitrogen management of vegetable crops: a review. Sensors (Basel) 18(7):E2083

    Article  CAS  Google Scholar 

  • Panwar R (2015) GIS and remote sensing applications in natural resources management. Int J Innov Res Adv Stud 2(4)

    Google Scholar 

  • Papadopoulos AV, Kati V, Chachalis D, Kotoulas V, Stamatiadis S (2018) Weed mapping in cotton using ground-based sensors and GIS. Environ Monit Assess 190(10):622

    Article  PubMed  Google Scholar 

  • Papageorgiou EI, Markinos AT, Gemtos TA (2011) Fuzzy cognitive map based approach for predicting yield in cotton crop production as a basis for decision support system in precision agriculture application. Appl Soft Comput 11(4):3643–3657

    Article  Google Scholar 

  • Pathak TB, Jones JW, Fraisse C, Wright D, Hoogenboom G, Judge J (2009) Uncertainty analysis of CROPGRO-cotton model. In: American Geophysical Union, Fall Meeting. AGU, Washington, DC

    Google Scholar 

  • Pathan SA, Hate SG (2016) Automated Irrigation system using Wireless Sensor Network. Int J Eng Tech Res 5(6):6–9

    Article  Google Scholar 

  • Patil SS, Patil VC, Al-Gaadi KA (2011) Spatial variability in fertility status of surface soils. World Appl Sci J 14:1020–1024

    Google Scholar 

  • Pawar J, Khanna R (2018) More crop per drop: ways to increase water use efficiency for crop production: a review. Int J Chem Stud 6(3):3573–3578

    Google Scholar 

  • Pedigo LP (1989) Entomology and pest management. McMillan Publishing Company, New York, NY, p 646

    Google Scholar 

  • Pilli SK, Nallathambi B, George SJ, Diwanji V (2015) Eagrobot-a robot for early crop disease detection using image processing. In: 2nd International Conference on Electronics and Communication Systems. IEEE, Washington, DC, pp 1684–1689

    Google Scholar 

  • Pobkrut T, Kerdcharoen T (2014) Soil sensing survey robots based on electronic nose. In: 2014 14th International Conference on Control, Automation and Systems (ICCAS 2014). IEEE, Washington, DC, pp 1604–1609

    Chapter  Google Scholar 

  • Pramanik P, Chung YR (2010) Efficacy of vermicomposting for recycling organic portion of hospital wastes using Eisenia fetida: standardization of cow manure proportion to increase enzymatic activities and fungal biomass. Environmentalist 30(3):267–272

    Article  Google Scholar 

  • Privette CV, Khalilian A, Torres O, Katzberg S (2011) Remote sensing of environment utilizing space-based GPS technology to determine hydrological properties of soils. Remote Sens Environ 115(12):3582–3586

    Article  Google Scholar 

  • Quebrajo L, Perez-Ruiz M, Pérez-Urrestarazu L, Martínez G, Egea G (2018) Linking thermal imaging and soil remote sensing to enhance irrigation management of sugar beet. Biosyst Eng 165:77–87

    Article  Google Scholar 

  • Radhakrishnan S (2017) Sustainable cotton production. In: Sustainable fibres and textiles. Woodhead Publishing, Cambridge, pp 21–67

    Chapter  Google Scholar 

  • Rahman MH, Ahmad A, Wajid A, Hussain M, Akhtar J, Hoogenboom G (2016) Estimation of temporal variation resilience in cotton varieties using statistical models. Pak J Agric Sci 53:787

    Google Scholar 

  • Rahman MHU, Ahmad A, Wajid A, Hussain M, Rasul F, Ishaque W, Islam MA, Shelia V, Awais M, Ullah A, Wahid A, Sultana SR, Saud S, Khan S, Fahad S, Hussain M, Hussain S, Nasim W (2017) Application of CSM-CROPGRO-cotton model for cultivars and optimum planting dates: evaluation in changing semi-arid climate. Field Crop Res 238: 139–152. https://doi.org/10.1016/j.fcr.2017.07.007

    Article  Google Scholar 

  • Rahman MH, Ahmad A, Wang X, Wajid A, Nasim W, Hussain M, Ahmad B, Ahmad I, Ali Z, Ishaque W, Awais M, Muddasir M, Shelia V, Ahmad S, Fahad S, Alam M, Ullah H, Hoogenboom G (2018) Multi-model projections of future climate and climate change impacts uncertainty assessment for cotton production in Pakistan. Agric For Meteorol 253-254:94–113

    Article  Google Scholar 

  • Rao RN, Sridhar B (2018) IoT based smart crop-field monitoring and automation irrigation system. In: 2018 2nd International Conference on Inventive Systems and Control (ICISC). IEEE, Washington, DC, pp 478–483

    Chapter  Google Scholar 

  • Rea JH, Wratten SD, Sedcole R, Cameron PJ, Davis SI, Chapman RB (2002) Trap cropping to manage green vegetable bug Nezara viridula (L.) (Heteroptera: Pentatomidae) in sweet corn in New Zealand. Agric For Entomol 4:101–107

    Article  Google Scholar 

  • Reddy DD, Blaise D, Kumrawat B, Singh AK (2017) Evaluation of integrated nutrient management interventions for cotton (Gossypium hirsutum) on a Vertisol in central India. Commun Soil Sci Plan 48(4):469–475

    CAS  Google Scholar 

  • Rekha GS, Kaleena PK, Elumalai D, Srikumaran MP, Maheswari VN (2018) Effects of vermicompost and plant growth enhancers on the exo-morphological features of Capsicum annum (Linn.) Hepper. Int J Recycl Organ Waste Agric 7(1):83–88

    Article  Google Scholar 

  • Ribaut JM, de Vicente MC, Delannay X (2010) Molecular breeding in developing countries: challenges and perspectives. Curr Opin Plant Biol 13(2):213–218

    Article  PubMed  Google Scholar 

  • Rocha-Munive MG, Soberón M, Castañeda S, Niaves E, Scheinvar E, Eguiarte LE, Mota-Sánchez D, Rosales-Robles E, Nava-Camberos U, Martínez-Carrillo JL, Blanco CA, Bravo A, Souza V (2018) Evaluation of the impact of genetically modified cotton after 20 years of cultivation in Mexico. Front Bioeng Biotechnol 6:82

    Article  PubMed  PubMed Central  Google Scholar 

  • Rose DC, Morris C, Lobley M, Winter M, Sutherland WJ, Dicks LV (2018) Exploring the spatialities of technological and user re-scripting: the case of decision support tools in UK agriculture. Geoforum 89:11–18

    Article  Google Scholar 

  • Roth G, Harris G, Gillies M, Montgomery J, Wigginton D (2014) Water-use efficiency and productivity trends in Australian irrigated cotton: a review. Crop Pasture Sci 64(12):1033–1048

    Article  Google Scholar 

  • Sajjad A, Anjum SA, Ahmad R, Waraich EA (2018) Relay cropping of wheat (Triticum aestivum L.) in cotton (Gossypium hirsutum L.) improves the profitability of cotton-wheat cropping system in Punjab, Pakistan. Environ Sci Pollut Res 25(1):782–789

    Article  CAS  Google Scholar 

  • Sangeetha KD, Ashtaputre SA, Ramya TS, Kavyashree MC, Anil GH (2018) Exploration of fungicides against Alternaria leaf blight of cotton in Northern parts of Karnataka, India. Int J Chem Stud 6(3):2127–2129

    Google Scholar 

  • Sarmah K, Deka CR, Sharma U, Sarma R (2018) Role of GIS based technologies in sustainable agriculture resource planning & management using spatial decision support approach. Int J Innov Res Eng Manag 5(1):30–34

    Article  Google Scholar 

  • Schader C, Zaller JG, Kopke U (2005) Cotton-basil intercropping, effects on pests, yields and economical parameters in an organic field in Fayoum, Egypt. Biol Agric Hortic 23:59–72

    Article  Google Scholar 

  • Schut AGT, Traore PCS, Blaes X, de By RA (2018) Assessing yield and fertilizer response in heterogeneous smallholder fields with UAVs and satellites. Field Crop Res 221:98–107

    Article  Google Scholar 

  • Senthurpandian VK, Jayaganesh S, Srinivas S, Palani N, Muraleedharan N (2010) Application of geographic information system to fertility management of tea soils of Anamallais. Asian J Earth Sci 3(3):136–141

    Article  CAS  Google Scholar 

  • Shah MA, Memon N, Baloch AA (2011) Use of sex pheromones and light traps for monitoring the population of adult moths of cotton bollworms in Hyderabad, Sindh, Pakistan. Sarhad J Agric 27(3):435–442

    Google Scholar 

  • Shah MA, Farooq M, Hussain M (2016) Productivity and profitability of cotton–wheat system as influenced by relay intercropping of insect resistant transgenic cotton in bed planted wheat. Eur J Agron 75:33–41

    Article  Google Scholar 

  • Shelton AM, Badenes-Perez FR (2006) Concepts and applications of trap cropping in pest management. Annu Rev Entomol 51:285–308

    Article  CAS  PubMed  Google Scholar 

  • Shen M, Yang X, Cox-Foster D, Cui L (2005) The role of varroa mites in infections of Kashmir bee virus (KBV) and deformed wing virus (DWV) in honey bees. Virology 342(1):141–149

    Article  CAS  PubMed  Google Scholar 

  • Shivanna AM, Nagendrappa G (2014) Chemical analysis of soil samples to evaluate the soil fertility status of selected command areas of three tanks in Tiptur Taluk of Karnataka, India. IOSR J App Chem 7(11):1–5

    Article  Google Scholar 

  • Sindhi SJ, Thanki JD, Desai LJ (2018) A review on integrated nutrient management (INM) approach for maize. J Pharmacogn Phytochem 7(4):3266–3269

    CAS  Google Scholar 

  • Singh S (2018) Transgenic cotton-its adoption, threats and challenges ahead: a review. J Entomol Zool Stud 6(5):1989–1997

    Google Scholar 

  • Singh A, Vasisht AK, Kumar R, Das DK (2008) Adoption of integrated pest management practices in paddy and cotton: a case study in Haryana and Punjab. Agric Econ Res Rev 21(2):1–6

    Google Scholar 

  • Slaughter DC, Giles DK, Downey D (2008) Autonomous robotic weed control systems: a review. Comp Electron Agric 61:63–78

    Article  Google Scholar 

  • Sogaard HT, Lund I (2007) Application accuracy of a machine vision-controlled robotic micro-dosing system. Biosyst Eng 96:315–322

    Article  Google Scholar 

  • Soil Science Society of America (2013) 2013 Annual Meeting. Available at: https://www.soils.org/meetings/2013-annual-meeting

  • Srinivasan A (2006) Handbook of precision agriculture: principles and applications. Food Products Press, Binghamton, NY, pp 3–18

    Book  Google Scholar 

  • Starr JL, Carneiro RG, Ruano O (2005) Nematode parasites of cotton and other tropical fibre crops. In: Luc M, Sikora RA, Bridge J (eds) Plant parasitic nematodes in sub-tropical and tropical agriculture, 2nd edn. CAB International, Wallingford, pp 539–556

    Google Scholar 

  • Sui R, Thomasson JA (2006) Ground-based sensing system for cotton nitrogen status determination. Trans ASABE 49(6):1983–1991

    Article  Google Scholar 

  • Taghvaeian S, Neale CMU, Osterberg JC, Sritharan S, Watts DR (2018) Remote sensing and GIS techniques for assessing irrigation performance: case study in Southern California. J Irrig Drain Eng 144(6):05018002

    Article  Google Scholar 

  • Tahir M, Ali A, Nadeem MA, Hussain A, Khalid F (2009) Effect of different sowing dates on growth and yield of wheat (Triticum aestivum L.) varieties in district Jhang, Pakistan. Pak J Life Soc Sci 7:66–69

    Google Scholar 

  • Tariq M, Yasmeen A, Ahmad S, Hussain N, Afzal MN, Hasanuzzaman M (2017) Shedding of fruiting structures in cotton: factors, compensation and prevention. Trop Subtrop Agroecosyst 20(2):251–262

    Google Scholar 

  • Tariq M, Afzal MN, Muhammad D, Ahmad S, Shahzad AN, Kiran A, Wakeel A (2018) Relationship of tissue potassium content with yield and fiber quality components of Bt cotton as influenced by potassium application methods. Field Crop Res 229:37–43

    Article  Google Scholar 

  • Terán-Vargas AP, Rodríguez JC, Blanco CA, Martínez-Carrillo JL, Cibrián-Tovar J, Sánchez-Arroyo H, Rodríguez-del-Bosque LA, Stanley D (2005) Bollgard cotton and resistance of tobacco budworm (Lepidoptera: Noctuidae) to conventional insecticides in southern Tamaulipas, Mexico. J Econ Entomol 98:2203–2209

    Article  PubMed  Google Scholar 

  • Tewari S, Leskey TC, Nielsen AL, Pinero JC, Rodriguez-Saona CR (2014) Use of pheromones in insect pest management, with special attention to weevil pheromones. In: Integrated pest management. Academic Press, London, pp 141–168

    Chapter  Google Scholar 

  • Tian J, Zhang X, Yang Y, Yang C, Xu S, Zuo W, Zhang W, Dong H, Jiu X, Yu Y, Zhao Z (2017) How to reduce cotton fiber damage in the Xinjiang China. Ind Crop Prod 109:803–811

    Article  Google Scholar 

  • Tillman PG (2006) Sorghum as a trap crop for Nezara viridula L. (Heteroptera: Pentatomidae) in cotton in the southern United States. Environ Entomol 35(3):771–783

    Article  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  PubMed  Google Scholar 

  • Todd SW, Hoffer RM, Milchunas DG (1998) Biomass estimation on grazed and ungrazed rangelands using spectral indices. Int J Remote Sens 19(3):427–438

    Article  Google Scholar 

  • Tomson M, Sahayaraj K, Kumar V, Avery PB, McKenzie CL, Osborne LS (2017) Mass rearing and augmentative biological control evaluation of Rhynocoris fuscipes (Hemiptera: Reduviidae) against multiple pests of cotton. Pest Manag Sci 73(8):743–1752

    Article  CAS  Google Scholar 

  • Tong YJ, Wu KM, Lu YH, Gao XW (2010) Pathogenicity of Beauveria spp. Strains to three species of mirids, Apolygus lucorum, Adelphocoris suturalis and Adelphocoris lineolatus. Acta Phytophylacica Sinca 37:172–176

    Google Scholar 

  • Towett EK, Shepherd KD, Cadisch G (2013) Quantification of total element concentrations in soils using total X-ray fluorescence spectroscopy (TXRF). Sci Total Environ 463-464:374–388

    Article  CAS  PubMed  Google Scholar 

  • Tsedaley B (2015) Review on seed health tests and detection methods of seedborne diseases. J Biol Agric Healthcare 5(5):176–185

    Google Scholar 

  • Turan J, Višacki V, Mehandžić S, Findura P, Burg P, Sedlar A (2015) Sowing quality indicators for a seed drill with overpressure. Acta Univ Agric Silvic Mendel Brun 62(6):1487–1492

    Article  Google Scholar 

  • Usman M, Ahmad A, Ahmad S, Irshad M, Khaliq T, Wajid A, Hussain K, Nasim W, Chattha TM, Trethowan R, Hoogenboom G (2009) Development and application of crop water stress index for scheduling irrigation in cotton (Gossypium hirsutum L.) under semiarid environment. J Food Agric Environ 7(3–4):386–391

    Google Scholar 

  • Vani V, Mandla VR (2017) Comparative study of NDVI and SAVI vegetation Indices in Anantapur district semi-arid areas. Int J Civil Eng Technol 8(4):559–566

    Google Scholar 

  • Vijaya MBN, Rai PK, Srivastava DK, Bara BM, Kumar R (2017) Effects of polymer seed coating, fungicide seed treatment and storage duration on seedling characteristics of cotton (Gossypium hirsutum) seeds. J Pharma Phytochem 6(4):534–536

    CAS  Google Scholar 

  • Vleeshouwer J, Car NJ, Hornbuckle J (2015) A cotton irrigator’s decision support system and benchmarking tool using national, regional and local data. In: Int. Symposium on Environ. Software Systems. Springer, Cham, pp 187–195

    Google Scholar 

  • Vora VD, Rakholiya KD, Rupapara KV, Sutaria GS, Akbari KN (2015) Effect of integrated nutrient management on Bt cotton and post-harvest soil fertility under dry farming agriculture. Asian J Agric Res 9(6):350–356

    CAS  Google Scholar 

  • Wadodkar MR, Ravishankar T, Joshi AK (2014) Application of remote sensing techniques for soil fertility assessment. Available at: https://www.academia.edu/11077591/APPLICATION_OF_REMOTE_SENSING_TECHNIQUES_FOR_SOIL_FERTILITY_ASSESSMENT

  • Wajid A, Ahmad A, Hussain M, Rahman MH, Khaliq T, Mubeen M, Rasul F, Bashir U, Awais M, Iqbal J, Sultana SR (2014) Modeling growth, development and seed-cotton yield for varying nitrogen increments and planting dates using DSSAT. Pak J Agric Sci 51:641–650

    Google Scholar 

  • Wang M, Wei J, Yuan J, Xu K (2008) A research for intelligent cotton picking robot based on machine vision. In: International Conference on Information and Automation. Zhangjiajie, China. IEEE, Washington, DC

    Google Scholar 

  • Wang S, Li X, Lu J, Hong J, Chen G, Xue X, Li J, Wei Y, Zou J, Liu G (2013) Effects of controlled-release urea application on the growth, yield and nitrogen recovery efficiency of cotton. Agric Sci 4(12):33–38

    Google Scholar 

  • Wang L, Hu G, Yue Y, Ye X, Li M, Zhao J, Wan J (2016) GIS-based risk assessment of hail disasters affecting cotton and its spatiotemporal evolution in China. Sustainability 8(3):1–20

    Article  Google Scholar 

  • Wu W, De Pauw E (2011) A simple algorithm to identify irrigated croplands by remote sensing. In: Proceedings of the 34th International Symposium on Remote Sensing of Environment (ISRSE), Sydney, Australia. Arinex, Sydney, NSW, pp 10–15

    Google Scholar 

  • Wu K, Lu Y, Wang Z (2009) Advance in integrated pest management of crops in China. Chin Bull Entomol 46(6):831–836

    Google Scholar 

  • Xia J, Cui J, Ma L, Dong S, Cui X (1998) The role of transgenic BT cotton in integrated insect pest management. Acta Gossypii Sin 11:57–64

    Google Scholar 

  • Xia C, Wang L, Chung BK, Lee JM (2015) In situ 3D segmentation of individual plant leaves using a RGB-D camera for agricultural automation. Sensors (Basel) 15(8):20463–20479

    Article  Google Scholar 

  • Yuan Z, Shen Y (2013) Estimation of agricultural water consumption from meteorological and yield data: a case study of Hebei, North China. PLoS One 8(3):e58685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zang X (1998) On the estimation of biomass of submerged vegetation using Landsat thematic mapper (TM) imagery: a case study of the Honghu Lake, PR China. Int J Remote Sens 19(l):11–20

    Article  Google Scholar 

  • Zhang N, Wang M, Wang N (2002) Precision agriculture – a worldwide overview. Comp Electron Agric 36(2-3):113–132

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Habib ur Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghaffar, A. et al. (2020). Modern Concepts and Techniques for Better Cotton Production. In: Ahmad, S., Hasanuzzaman, M. (eds) Cotton Production and Uses. Springer, Singapore. https://doi.org/10.1007/978-981-15-1472-2_29

Download citation

Publish with us

Policies and ethics