Skip to main content

Filtered Repetitive Control with Nonlinear Systems: An Actuator-Focused Design Method

  • Chapter
  • First Online:
Filtered Repetitive Control with Nonlinear Systems
  • 295 Accesses

Abstract

The internal model principle (IMP) was first proposed by Francis and Wonham [2, 3]. It states that if any exogenous signal can be regarded as the output of an autonomous system, then the inclusion of this signal model, namely, internal model, in a stable closed-loop system can assure asymptotic tracking or asymptotic rejection of the signal. Until now, to the best of the authors’ knowledge, there exist at least two viewpoints on IMP. In the early years, for linear time-invariant (LTI) systems, IMP implies that the internal model is to supply closed-loop transmission zeros which cancel the unstable poles of the disturbances and reference signals. This is called cancelation viewpoint here and only works for problems able to be formulated in terms of transfer functions. In the mid-1970s, Francis and Wonham proposed the geometric approach [4] to design an internal model controller [2, 3]. The purpose of internal models is to construct an invariant subspace for the closed-loop system and make the regulated output zero at each point of the invariant subspace. This is called geometrical viewpoint here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In control theory, a proper transfer function is a transfer function in which the order of the numerator is not greater than the order of the denominator. A strictly proper transfer function is a transfer function where the order of the numerator is less than the order of the denominator.

References

  1. Quan, Q., & Cai, K.-Y. (2019). Repetitive control for nonlinear systems: an actuator-focussed design method. International Journal of Control,. https://doi.org/10.1080/00207179.2019.1639077.

    Article  Google Scholar 

  2. Francis, B. A., & Wonham, W. M. (1976). The internal model principle of control theory. Automatica, 12(5), 457–465.

    Article  MathSciNet  Google Scholar 

  3. Wonham, W. M. (1976). Towards an abstract internal model principle. IEEE Transaction on Systems, Man, and Cybernetics, 6(11), 735–740.

    Article  MathSciNet  Google Scholar 

  4. Wonham, W. M. (1979). Linear multivariable control: A geometric approach. New York: Springer.

    Book  Google Scholar 

  5. Isidori, A., & Byrnes, C. I. (1990). Output regulation of nonlinear systems. IEEE Transactions on Automatic Control, 35(2), 131–140.

    Article  MathSciNet  Google Scholar 

  6. Isidori, A., Marconi, L., & Serrani, A. (2003). Robust autonomous guidance: An internal model-based approach. London: Springer.

    Book  Google Scholar 

  7. Huang, J. (2004). Nonlinear output regulation: Theory and applications. Philadelphia: SIAM.

    Book  Google Scholar 

  8. Memon, A. Y., & Khalil, H. K. (2010). Output regulation of nonlinear systems using conditional servocompensators. Automatica, 46(7), 1119–1128.

    Article  MathSciNet  Google Scholar 

  9. Wieland, P., Sepulchre, R., & Allgower, F. (2011). An internal model principle is necessary and sufficient for linear output synchronization. Automatica, 47(5), 1068–1074.

    Article  MathSciNet  Google Scholar 

  10. Knobloch, H. W., Isidori, A., & Flockerzi, D. (2014). Disturbance attenuation for uncertain control systems. London: Springer.

    Book  Google Scholar 

  11. Chen, Z., & Huang, J. (2014). Stabilization and regulation of nonlinear systems: A robust and adaptive approach. London: Springer.

    Google Scholar 

  12. Trip, S., Burger, M., & De Persis, C. (2016). An internal model approach to (optimal) frequency regulation in power grids with time-varying voltages. Automatica, 64, 240–253.

    Article  MathSciNet  Google Scholar 

  13. Hara, S., Yamamoto, Y., Omata, T., & Nakano, M. (1988). Repetitive control system: A new type servo system for periodic exogenous signals. IEEE Transactions on Automatic Control, 33(7), 659–668.

    Article  MathSciNet  Google Scholar 

  14. Weiss, G., & Häfele, M. (1999). Repetitive control of MIMO systems using H\(^{\infty }\) design. Automatica, 35(7), 1185–1199.

    Article  MathSciNet  Google Scholar 

  15. Byrnes, C., Laukó, I., Gilliam, D., & Shubov, V. (2000). Output regulation for linear distributed parameter systems. IEEE Transactions on Automatic Control, 45(12), 2236–2252.

    Article  MathSciNet  Google Scholar 

  16. Hämäläinen, T. (2005). Robust low-gain regulation of stable infinite-dimensional systems. Doctoral dissertation, Tampere University of Technology, Tampere, Finland.

    Google Scholar 

  17. Immonen, E. (2007). Practical output regulation for bounded linear infinite-dimensional state space systems. Automatica, 43(5), 786–794.

    Article  MathSciNet  Google Scholar 

  18. Immonen, E. (2007). On the internal model structure for infinite-dimensional systems: two common controller types and repetitive control. SIAM Journal on Control and Optimization, 45(6), 2065–2093.

    Article  MathSciNet  Google Scholar 

  19. Hämäläinen, T., & Pohjolainen, S. (2010). Robust regulation of distributed parameter systems with infinite-dimensional exosystems. SIAM Journal on Control and Optimization, 48(8), 4846–4873.

    Article  MathSciNet  Google Scholar 

  20. Paunonen, L., & Pohjolainen, S. (2010). Internal model theory for distributed parameter systems. SIAM Journal on Control and Optimization, 48(7), 4753–4775.

    Article  MathSciNet  Google Scholar 

  21. Natarajan, V., Gilliam, D. S., & Weiss, G. (2014). The state feedback regulator problem for regular linear systems. IEEE Transactions on Automatic Control, 59(10), 2708–2723.

    Article  MathSciNet  Google Scholar 

  22. Xu, X., & Dubljevic, S. (2017). Output and error feedback regulator designs for linear infinite-dimensional systems. Automatica, 83, 170–178.

    Article  MathSciNet  Google Scholar 

  23. Quan, Q., & Cai, K.-Y. (2010). A new viewpoint on the internal model principle and its application to periodic signal tracking. In The 8th World Congress on Intelligent Control and Automation, Jinan, Shandong (pp. 1162–1167).

    Google Scholar 

  24. Burton, T. A. (1985). Stability and periodic solutions of ordinary and functional differential equations. London: Academic Press.

    MATH  Google Scholar 

  25. Hale, J. K., & Lunel, S. M. V. (1993). Introduction to functional differential equations. New York: Springer.

    Book  Google Scholar 

  26. Quan, Q., & Cai, K.-Y. (2011). A filtered repetitive controller for a class of nonlinear systems. IEEE Transaction on Automatic Control, 56, 399–405.

    Article  MathSciNet  Google Scholar 

  27. Spong, M. W., & Vidyasagar, M. (1989). Robot dynamics and control. New York: Wiley.

    Google Scholar 

  28. Lewis, F. L., Abdallah, C. T., & Dawson, D. M. (1993). Control of robot manipulators. New York: Macmillan.

    Google Scholar 

  29. Khalil, H. K. (2002). Nonlinear systems. Englewood Cliffs: Prentice-Hall.

    MATH  Google Scholar 

  30. Shkolnikov, I. A., & Shtessel, Y. B. (2002). Tracking in a class of nonminimum-phase systems with nonlinear internal dynamics via sliding mode control using method of system center. Automatica, 38(5), 837–842.

    Article  MathSciNet  Google Scholar 

  31. Quan, Q., & Cai, K.-Y. (2017). A new generator of causal ideal internal dynamics for a class of unstable linear differential equations. International Journal of Robust and Nonlinear Control, 27(12), 2086–2101.

    Article  MathSciNet  Google Scholar 

  32. Quan, Q., & Cai, K.-Y. (2012). A new method to obtain ultimate bounds and convergence rates for perturbed time-delay systems. International Journal of Robust Nonlinear Control, 22, 1873–1880.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Quan .

9.6 Appendix

9.6 Appendix

9.1.1 9.6.1 Proof of Theorem 9.3

Choose a Lyapunov functional as

$$ V\left( \mathbf {z}_{t}\right) =\frac{1}{2}\mathbf {z}^{\text {T}}\left( t\right) \left( \mathbf {PE}+\mathbf {E}^{\text {T}}\mathbf {P}\right) \mathbf {z}\left( t\right) + {\displaystyle \int \nolimits _{-T}^{0}} \mathbf {z}_{t}^{\text {T}}\left( \theta \right) \mathbf {Q\mathbf {z}} _{t}\left( \theta \right) \text {d}\theta . $$

Taking its derivative along (9.13) yields

$$\begin{aligned} \dot{V}\left( \mathbf {z}_{t}\right)&=\mathbf {z}^{\text {T}}\left( t\right) \left( \mathbf {PE}+\mathbf {E}^{\text {T}}\mathbf {P}\right) \dot{\mathbf {z}}\left( t\right) +\mathbf {z}^{\text {T}}\left( t\right) \mathbf {Qz}\left( t\right) -\mathbf {z}^{\text {T}}\left( t-T\right) \mathbf {Qz}\left( t-T\right) \nonumber \\&\le -\lambda _{1}\left\| \mathbf {z}\left( t\right) \right\| ^{2}-\lambda _{1}\left\| \mathbf {z}\left( t-T\right) \right\| ^{2}\le 0, \end{aligned}$$
(9.41)

where (9.18) is utilized. Based on (9.41), two conclusions are proven in the following:

(i) \(\mathbf {z}\left( t\right) =\mathbf {0}\) in (9.13) is globally exponentially stable when \(\mathbf {A}_{\varepsilon }>0\). For system (9.13), there exist \(\gamma _{1},\gamma _{2},\rho >0\) such that

$$\begin{aligned} \gamma _{1}\left\| \mathbf {z}\left( t\right) \right\| ^{2}&\le V\left( \mathbf {z}_{t}\right) \le \gamma _{2}\left\| \mathbf {z}\left( t\right) \right\| ^{2}+\rho {\displaystyle \int \nolimits _{-T}^{0}} \left\| \mathbf {\mathbf {z}}_{t}\left( \theta \right) \right\| ^{2}\text {d}\theta \\ \dot{V}\left( \mathbf {z}_{t}\right)&\le -\lambda _{1}\left\| \mathbf {z}\left( t\right) \right\| ^{2}. \end{aligned}$$

According to [32, Theorem 1], (9.13) is globally exponential convergence. Furthermore, \(\mathbf {z}\left( t\right) =\mathbf {0}\) is globally exponentially stable according to the stability definition.

(ii) If \(\sup _{t\in \left[ 0,T\right] }\left\| \left( \mathbf {I}_{m}+\mathbf {L}_{1}\left( t\right) \mathbf {D}\left( t\right) \right) ^{-1}\right\| <1,\) then \(\mathbf {z}\left( t\right) =\mathbf {0}\) in (9.13) is globally exponentially stable when \(\mathbf {A}_{\varepsilon }=\mathbf {0}.\) For system (9.13), there exist \(\gamma _{2},\rho >0\) such that

$$\begin{aligned} \lambda _{2}\left\| \mathbf {x}\left( t\right) \right\| ^{2}&\le V\left( \mathbf {z}_{t}\right) \le \gamma _{2}\left\| \mathbf {z}\left( t\right) \right\| ^{2}+\rho {\displaystyle \int \nolimits _{-T}^{0}} \left\| \mathbf {\mathbf {z}}_{t}\left( \theta \right) \right\| ^{2}\text {d}\theta \\ \dot{V}\left( \mathbf {z}_{t}\right)&\le -\lambda _{1}\left\| \mathbf {z}\left( t\right) \right\| ^{2}. \end{aligned}$$

Similar to the proof in [32, Theorem 1], \(\mathbf {x}\left( t\right) \) is globally exponential convergence. Arranging (9.10) results in

$$\begin{aligned} \mathbf {v}\left( t\right)&=\left( \mathbf {I}_{m}+\mathbf {L}_{1}\left( t\right) \mathbf {D}\left( t\right) \right) ^{-1}\mathbf {v}\left( t-T\right) \nonumber \\&-\left( \mathbf {I}_{m}+\mathbf {L}_{1}\left( t\right) \mathbf {D}\left( t\right) \right) ^{-1}\mathbf {L}_{1}\left( t\right) \left( \mathbf {C} ^{\text {T}}\left( t\right) +\mathbf {D}\left( t\right) \mathbf {L} _{2}\left( t\right) \right) \mathbf {x}\left( t\right) . \end{aligned}$$
(9.42)

Since \(\sup _{t\in \left[ 0,T\right] }\left\| \left( \mathbf {I} _{m}+\mathbf {L}\left( t\right) \mathbf {D}\left( t\right) \right) ^{-1}\right\| <1\) and \(\mathbf {x}\left( t\right) \) is globally exponential convergence, then \(\mathbf {v}\left( t\right) =\mathbf {0}\) is globally exponential convergence as well. Consequently, according to the stability definition, \(\mathbf {z}=[\mathbf {v}^{\text {T}}\) \(\mathbf {x} ^{\text {T}}]^{\text {T}}=\mathbf {0}\) is globally exponentially stable.

9.1.2 9.6.2 Uniformly Ultimate Boundedness Proof for Minimum-Phase Nonlinear System

Design a Lyapunov functional to be

$$ V\left( \mathbf {z}_{t}\right) =\frac{k}{2}\mathbf {x}^{\text {T}}\left( t\right) \mathbf {D}\left( \mathbf {q}\left( t\right) \right) \mathbf {x}\left( t\right) +\frac{\varepsilon }{2}\mathbf {v}^{\text {T}}\left( t\right) \mathbf {v}\left( t\right) +\frac{1}{2}\int _{-T}^{0}\mathbf {v} _{t}^{\text {T}}\left( \theta \right) \mathbf {v}_{t}\left( \theta \right) \text {d}\theta , $$

where (A1) is utilized. Taking the derivative of V along the solutions of (9.33) results in

$$\begin{aligned} \dot{V}\left( \mathbf {z}_{t}\right)&=-k\mathbf {x}^{\text {T}}\left( t\right) \mathbf {Mx}\left( t\right) +k\mathbf {x}^{\text {T}}\left( t\right) \mathbf {v}\left( t\right) +\frac{1}{2}\left( \mathbf {v} ^{\text {T}}\left( t\right) \mathbf {v}\left( t\right) -\mathbf {v} ^{\text {T}}\left( t-T\right) \mathbf {v}\left( t-T\right) \right) \\&\quad +\mathbf {v}^{\text {T}}\left( t\right) \left( -\mathbf {v} \left( t\right) +\left( 1-\alpha \varepsilon \right) \mathbf {v}\left( t-T\right) \right) +k\mathbf {v}^{\text {T}}\left( t\right) \left( \mathbf {x}_{\text {d}}\left( t\right) -\mathbf {x}\left( t\right) \right) \\&\le -k\mathbf {x}^{\text {T}}\left( t\right) \mathbf {Mx}\left( t\right) -\frac{{\alpha \varepsilon \left( {2-\alpha \varepsilon }\right) }}{2}\mathbf {v} ^{\text {T}}\left( t\right) \mathbf {v}\left( t\right) +k\mathbf {v} ^{\text {T}}\left( t\right) \mathbf {x}_{\text {d}}\left( t\right) , \end{aligned}$$

where (A2) is utilized. Since

$$ {\varepsilon }\mathbf {v}^{\text {T}}\mathbf {v}+2k\mathbf {v}^{\text {T}} \mathbf {x}_{\text {d}}+\frac{1}{{\varepsilon }}k^{2}\mathbf {x}_{\text {d} }^{\text {T}}\mathbf {x}_{\text {d}}\ge 0 $$

for any \({\varepsilon }>0,\) one has

$$\begin{aligned} \dot{V}\le -k\mathbf {x}^{\text {T}}\mathbf {Mx}-\left( \frac{{\alpha \varepsilon \left( {2-\alpha \varepsilon }\right) }}{2}-{\varepsilon }\right) \mathbf {v}^{\text {T}}\mathbf {v}+\frac{1}{{\varepsilon }}k^{2}\mathbf {x} _{\text {d}}^{\text {T}}\mathbf {x}_{\text {d}}. \end{aligned}$$
(9.43)

Here, \({\varepsilon }\) is chosen sufficiently small so that \(\frac{{\alpha \varepsilon \left( {2-\alpha \varepsilon }\right) }}{2}-{\varepsilon >0.}\) Therefore, the given Lyapunov functional satisfies

$$\begin{aligned} \gamma _{0}\left\| \mathbf {z}{\left( t\right) }\right\| ^{2}&\le V\left( \mathbf {z}_{t}\right) \le \gamma _{1}\left\| \mathbf {z}{\left( t\right) }\right\| ^{2}+\frac{1}{2}\int _{-T}^{0}{\left\| \mathbf {z} {_{t}}\left( \theta \right) \right\| ^{2}}\text {d}\theta \\ \dot{V}\left( \mathbf {z}_{t}\right)&\le -\gamma _{2}\left\| \mathbf {z}{\left( t\right) }\right\| ^{2}+\chi \left( \sup _{t\in \left[ 0,T\right] }{\left\| \mathbf {x}_{\text {d}}\left( t\right) \right\| ^{2}}\right) , \end{aligned}$$

where \(\gamma _{0}=\min \left( \frac{k\underline{\lambda }_{D}}{2} {,\frac{{\varepsilon }}{2}}\right) ,\) \(\gamma _{1}=\max \left( \frac{k\bar{\lambda }_{D}}{2}{,\frac{\varepsilon }{2}}\right) ,\)\(\gamma _{2}=\min \left( k\lambda _{\min }\left( \mathbf {M}\right) {,}\frac{{\alpha \varepsilon \left( {2-\alpha \varepsilon }\right) }}{2}-{\varepsilon }\right) \ \) and function \(\chi \ \)belongs to class \(\mathscr {K}\) [29, Definition 4.2, p. 144]. According to [32, Theorem 1], the solutions of (9.33) are uniformly bounded and uniformly ultimately bounded.

9.1.3 9.6.3 Uniformly Ultimate Boundedness Proof for Nonminimum-Phase Nonlinear System

Design a Lyapunov functional to be

$$\begin{aligned} V\left( \mathbf {z}_{t}\right) =\frac{1}{2}p_{1}\eta ^{2}\left( t\right) +\frac{1}{2}p_{2}z^{2}\left( t\right) +\frac{\varepsilon }{2}v^{2}\left( t\right) +\frac{1}{2}\int _{-T}^{0}v_{t}^{2}\left( \theta \right) \text {d}\theta ,\nonumber \end{aligned}$$

where \(\mathbf {z\triangleq [}\eta \) z \(v\mathbf {]}^{\text {T}}\) and \(p_{1},p_{2},\varepsilon >0.\) Taking the derivative of V along the solutions of (9.37) results in

$$\begin{aligned} \dot{V}\left( \mathbf {z}_{t}\right)&=p_{1}\eta \left( t\right) \dot{\eta }\left( t\right) +p_{2}z\left( t\right) \dot{z}\left( t\right) +\varepsilon v\left( t\right) \dot{v}\left( t\right) +\frac{1}{2}\left( {v^{2}\left( t\right) -v^{2}}\left( t-T\right) \right) \\&=-p_{1}q_{1}\eta ^{2}\left( t\right) -p_{2}kz^{2}\left( t\right) -\frac{{\alpha \varepsilon \left( {2-\alpha \varepsilon }\right) }}{2}v^{2}\left( t\right) \\&\quad +\left( {p_{1}-p_{2}q_{2}}\right) \eta \left( t\right) z\left( t\right) +\left( {p_{2}-\rho }\right) z\left( t\right) v\left( t\right) +v\left( {q_{1}\eta \left( t\right) +\sin \eta \left( t\right) }\right) \\&\quad +p_{1}\eta {\left( t\right) }d_{\eta }{\left( t\right) }+p_{2}\left( {d_{\xi }\left( t\right) -d_{\eta }\left( t\right) \left( {q_{1}\left( t\right) +\cos \eta \left( t\right) }\right) }\right) z{\left( t\right) }+\rho v{\left( t\right) }y_{\text {d}}{\left( t\right) }. \end{aligned}$$

By fixing \(p_{1},q_{1}\) and choosing \(p_{2}=\rho \) and \(0<{\alpha \varepsilon <1}\), if k is chosen sufficiently large, then

$$\begin{aligned} -p_{1}q_{1}\eta ^{2}-p_{2}kz^{2}-\frac{{\alpha \varepsilon \left( {2-\alpha \varepsilon }\right) }}{2}v^{2}+\left( {p_{1}-p_{2}q_{2}}\right) \eta z\nonumber \\ +\left( {p_{2}-\rho }\right) zv+v\left( {q_{1}\eta +\sin \eta }\right) \le -\theta _{1}\eta ^{2}-\theta _{2}z^{2}-\theta _{3}v^{2}, \end{aligned}$$
(9.44)

where \(\theta _{1},\theta _{2},\theta _{3}>0\). Furthermore, there exists a class \(\mathscr {K}\) function \(\chi :\left[ 0,\infty \right) \rightarrow \left[ 0,\infty \right) \) [29, Definition 4.2, p. 144] such that

$$ \dot{V}\le -\theta _{1}^{\prime }\eta ^{2}-\theta _{2}^{\prime }z^{2}-\theta _{3}^{\prime }v^{2}+\chi \left( \sup _{t\in \left[ 0,T\right] }\left( {\left\| {y_{\text {d}}}\left( t\right) \right\| ^{2}+\left\| {d_{\eta }}\left( t\right) \right\| ^{2}+\left\| {d_{\xi }}\left( t\right) \right\| ^{2}}\right) \right) , $$

where \(\theta _{1}^{\prime },\theta _{2}^{\prime },\theta _{3}^{\prime }>0\). Therefore, the given Lyapunov functional satisfies

$$\begin{aligned} \gamma _{0}\left\| \mathbf {z}{\left( t\right) }\right\| ^{2}&\le V\left( \mathbf {z}_{t}\right) \le \gamma _{1}\left\| \mathbf {z}{\left( t\right) }\right\| ^{2}+\frac{1}{2}\int _{-T}^{0}{\left\| \mathbf {z} {_{t}}\left( \theta \right) \right\| ^{2}}\text {d}\theta \\ \dot{V}\left( \mathbf {z}_{t}\right)&\le -\gamma _{2}\left\| \mathbf {z}{\left( t\right) }\right\| ^{2}+\chi \left( \sup _{t\in \left[ 0,T\right] }\left( {\left\| {y_{\text {d}}}\left( t\right) \right\| ^{2}+\left\| {d_{\eta }}\left( t\right) \right\| ^{2}+\left\| {d_{\xi }}\left( t\right) \right\| ^{2}}\right) \right) , \end{aligned}$$

where \(\gamma _{0}=\min \left( {\frac{1}{2}p_{1},\frac{1}{2}p_{2} ,\frac{{\varepsilon }}{2}}\right) ,\) \(\gamma _{1}=\max \left( {\frac{1}{2} p_{1},\frac{1}{2}p_{2},\frac{\varepsilon }{2}}\right) \ \)and \(\gamma _{2} =\min \left( {\theta _{1}^{\prime },\theta _{2}^{\prime },\theta _{3}^{\prime } }\right) .\) According to [32, Theorem 1], the solutions of (9.37) are uniformly bounded and uniformly ultimately bounded. Furthermore, \(\xi \) is also uniformly ultimately bounded by using the relationship \(\xi =z-q_{1}\eta -\sin \eta \).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quan, Q., Cai, KY. (2020). Filtered Repetitive Control with Nonlinear Systems: An Actuator-Focused Design Method. In: Filtered Repetitive Control with Nonlinear Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-1454-8_9

Download citation

Publish with us

Policies and ethics