Skip to main content

Utilization of Data Analytics-Based Approaches for Hassle-Free Prediction Parkinson Disease

  • Conference paper
  • First Online:
Cognitive Informatics and Soft Computing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1040))

  • 611 Accesses

Abstract

Individuals with Parkinson’s disease don’t have a sufficient substance called dopamine since a few nerves in the brain lose their functionality. Individuals with Parkinson’s disease are in deceptive and damaging condition . Diagnosing this disease on the basis of the motor and cognitive shortage is extremely critical. Machine learning approaches are utilized to settle on prescient choices via preparing the machines to learn with the trained information. It assumes a fundamental role in foreseeing Parkinson’s disease in its beginning periods. In this paper, our primary goal is to build up an advanced algorithm to accomplish good classification accuracy utilizing data mining techniques. In this procedure, we distinguish some current algorithms (e.g., Naïve Bayes, decision tree, discriminant, and random forest) and its execution is broken down. Result acquired through these grouping algorithms is moderately prescient. During the time spent in the computation of these algorithms, Naïve Bayes can construct the framework with the high precision rate of 94.11%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parkinson’s Australia: Parkinson’s—description, incidence and theories of causation. http://www.parkinsons.org.au/information_sheets

  2. Blonder, L.X., Gur, R.E., Gura, R.C.: The effects of right and left hemiparkinsonism on prosody. Brain Lang. 36, 193–207 (1989)

    Article  Google Scholar 

  3. Ariatti, A., Benuzzi, F., Nichelli, P.: Recognition of emotions from visual and prosodic cues in Parkinson’s disease. Neurol. Sci. 29, 219–227 (2008)

    Article  Google Scholar 

  4. Dara, C., Monetta, L., Pell, M.D.: Vocal emotion processing in Parkinson’s disease: reduced sensitivity to negative emotions. Brain Res. 1188, 100–111 (2008)

    Article  Google Scholar 

  5. Fearnley, J.M., Lees, A.J.: Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain. 114(5), 2283–2301 (1991)

    Article  Google Scholar 

  6. Kalman, Y.M.: HCI markers: a conceptual framework for using human-computer interaction data to detect disease processes. In: The 6th mediterranean conference on information systems (MCIS), Limassol, Cyprus (2011)

    Google Scholar 

  7. Smith, M.E., Ramig, L.O., Dromey, C., Perez, K.S., Samandari, R.: Intensive voice treatment in Parkinson disease: laryngostroboscopic findings. J. Voice 9(4), 453–459 (1995)

    Article  Google Scholar 

  8. Marinelli, L., Quartarone, A., Hallet, M., Ghilardi, M.F.: The many facts of motor learning and their relevance for Parkinson’s diseases. J. Clin. Nerophysiology 128(7), 1127–1141 (2017)

    Article  Google Scholar 

  9. Kotsavasiloglou, C., Kostikis, N., Hristu-Varsakelis, D., Arnaoutoglou, M.: Machine learning-based classification of simple drawing movements in Parkinson’s disease. J. Biomed. Signal Process. Control 31, 174–180 (2017)

    Article  Google Scholar 

  10. Nilashi, M., bin Ibrahim, O., et al.: An analytical method for diseases prediction using machine learning techniques. J. Comput. Chem. Eng. 106(2), 212–223 (2017)

    Article  Google Scholar 

  11. Nilashi, M., et al.: A hybrid intelligent system for the prediction of Parkinson’s disease progression using machine learning techniques. J. Biocybern. Biomed. Eng. 38(1), 1–15 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jeba Priya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Priya, S.J., Sundar, G.N., Narmadha, D. (2020). Utilization of Data Analytics-Based Approaches for Hassle-Free Prediction Parkinson Disease. In: Mallick, P., Balas, V., Bhoi, A., Chae, GS. (eds) Cognitive Informatics and Soft Computing. Advances in Intelligent Systems and Computing, vol 1040. Springer, Singapore. https://doi.org/10.1007/978-981-15-1451-7_6

Download citation

Publish with us

Policies and ethics