Skip to main content

Micromechanical Modelling and Evaluation of Pineapple Leaves Fibre (PALF) Composites Through Representative Volume Element Method

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Owing to the present scenario of industries, a massive demand for sustainable green materials made of natural fibre is provoking. Besides, the cost involved in experimental trails could be reduced. Perhaps, experimental never reflects the ideal conditions of any materials system due to their natural heterogeneity. In the present study, an attempt is made to develop a representative volume element (RVE)-based micromechanical model to evaluate mechanical properties of pineapple leaf fibre (PALF) composites numerically before being fabricated really. A 3D model of RVE is prepared using finite element analysis software ANSYS®15 in the unit cell. To model the perfect fibre–matrix bonding, RVE modelled with both the square and hexagonal array of packaging. Results on longitudinal modulus, transverse modulus, in-plane Poisson’s ratio and shear modulus of PALF composites as a function of varying fibre loading (10–50 wt% in steps of 10) have been done. Present numerical prediction (RVE) for PALF composites is compared with different analytical models like parallel and series model, Hirsah’s model and Halpin–Tsai model and concluded with proper agreements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pandey JK, Nagarajan V, Mohanty AK, Misra M (2015) Commercial potential and competitiveness of natural fibre composites. Fourteenth, Elsevier Ltd

    Google Scholar 

  2. Balakrishnan P, John MJ, Pothen L, (2016) Natural fibre and polymer matrix composites and their applications in aerospace engineering. Elsevier Ltd

    Google Scholar 

  3. Sanyang ML, Sapuan SM, Jawaid M (2016) Recent developments in sugar palm (Arenga pinnata) based biocomposites and their potential industrial applications: a review. Renew Sustain Energy Rev 54:533–549. https://doi.org/10.1016/j.rser.2015.10.037

    Article  CAS  Google Scholar 

  4. Sahu P, Gupta MK (2017) Sisal (Agave sisalana) fibre and its polymer-based composites: a review on current developments. J Reinf Plast Compos 36:1759–1780. https://doi.org/10.1177/0731684417725584

    Article  CAS  Google Scholar 

  5. Lopattananon N, Payae Y, Seadan M (2008) Influence of fiber modification on interfacial adhesion and mechanical properties of pineapple leaf fiber-epoxy composites. J Appl Polym Sci 110:433–443. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  6. Jaafar J, Rejab MRM, Jie CC (2019) The effect of maleic anhydride polyethylene on mechanical properties of pineapple leaf fibre reinforced polylactic acid composites. Int J Precis Eng Manuf Technol. https://doi.org/10.1007/s40684-019-00018-3

    Article  Google Scholar 

  7. Jaafar J, Siregar JP, Piah MBM (2018) Influence of selected treatment on tensile properties of short pineapple leaf fiber reinforced tapioca resin biopolymer composites. J Polym Environ 26:4271–4281. https://doi.org/10.1007/s10924-018-1296-2

    Article  CAS  Google Scholar 

  8. Siakeng R, Jawaid M, Ariffin H, Sapuan SM (2018) Mechanical, dynamic, and thermomechanical properties of coir/pineapple leaf fiber reinforced polylactic acid hybrid biocomposites. Polym Compos 1–12. https://doi.org/10.1002/pc.24978

  9. Asim M, Paridah MT, Jawaid M, (2018) Physical and flammability properties of kenaf and pineapple leaf fibre hybrid composites. IOP Conf Ser Mater Sci Eng 368. https://doi.org/10.1088/1757-899X/368/1/012018

  10. Rihayat T, Agusnar H, Wirjosentono B (2018) Mechanical properties evaluation of single and hybrid composites polyester reinforced bamboo, PALF and coir fiber. IOP Conf Ser Mater Sci Eng 334:12081. https://doi.org/10.1088/1757-899x/334/1/012081

    Article  CAS  Google Scholar 

  11. Rajini N, Senthilkumar K, Siengchin S (2018) Evaluation of mechanical and free vibration properties of the pineapple leaf fibre reinforced polyester composites. Constr Build Mater 195:423–431. https://doi.org/10.1016/j.conbuildmat.2018.11.081

    Article  CAS  Google Scholar 

  12. Pratumshat S, Soison P, Ross S (2015) Mechanical and thermal properties of silane treated pineapple leaf fiber reinforced polylactic acid composites. Key Eng Mater 659:446–452. https://doi.org/10.4028/www.scientific.net/kem.659.446

  13. Asim M, Jawaid M, Nasir M, Saba N (2017) Effect of fiber loadings and treatment on dynamic mechanical, thermal and flammability properties of pineapple leaf fiber and kenaf phenolic composites. J Renew Mater 6:383–393. https://doi.org/10.7569/jrm.2017.634162

    Article  CAS  Google Scholar 

  14. Ishak MR, Asim M, Abdan K (2017) Effect of hybridization on the mechanical properties of pineapple leaf fiber/kenaf phenolic hybrid composites. J Renew Mater 6:38–46. https://doi.org/10.7569/jrm.2017.634148

    Article  CAS  Google Scholar 

  15. Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of chemical modifications of the pineapple leaf fiber surfaces on the interfacial and mechanical properties of laminated biocomposites. Compos Interfaces 15:169–191. https://doi.org/10.1163/156855408783810920

    Article  CAS  Google Scholar 

  16. Glória GO, Teles MCA, Neves ACC (2017) Bending test in epoxy composites reinforced with continuous and aligned PALF fibers. J Mater Res Technol 6:411–416. https://doi.org/10.1016/j.jmrt.2017.09.003

    Article  CAS  Google Scholar 

  17. Glória GO, Teles MCA, Lopes FPD (2017) Tensile strength of polyester composites reinforced with PALF. J Mater Res Technol 6:401–405. https://doi.org/10.1016/j.jmrt.2017.08.006

    Article  CAS  Google Scholar 

  18. Margem FM, Monteiro SN, Margem JI (2018) Dynamic-mechanical analysis of epoxy composites reinforced with giant bamboo fiber 492–497

    Google Scholar 

  19. Uma Devi L, Bhagawan SS, Thomas S (2010) Dynamic mechanical analysis of pineapple leaf/glass hybrid fiber reinforced polyester composites. Polym Compos 31:956–965. https://doi.org/10.1002/pc.20880

  20. Nasir M, Saba N, Paridah MT (2018) Thermal, physical properties and flammability of silane treated kenaf/pineapple leaf fibres phenolic hybrid composites. Compos Struct 202:1330–1338. https://doi.org/10.1016/j.compstruct.2018.06.068

    Article  Google Scholar 

  21. Motaleb KZMA, Islam MS, Hoque MB (2018) Improvement of physicomechanical properties of pineapple leaf fiber reinforced composite. Int J Biomater. https://doi.org/10.1155/2018/7384360

  22. Nagarajan TT, Babu AS, Palanivelu K, Nayak SK (2016) Mechanical and thermal properties of PALF reinforced epoxy composites. In: Macromolecular Symposia, pp 57–63

    Google Scholar 

  23. Mittal M, Chaudhary R (2018) Biodegradability and mechanical properties of pineapple leaf/coir fiber reinforced hybrid epoxy composites. Mater Res Express 6:45301. https://doi.org/10.1088/2053-1591/aaf8d6

    Article  CAS  Google Scholar 

  24. da Luz FS, Monteiro SN, Tommasini FJ (2018) Evaluation of dynamic mechanical properties of PALF and coir fiber reinforcing epoxy composites. Mater Res 21:1–5. https://doi.org/10.1590/1980-5373-mr-2017-1108

    Article  CAS  Google Scholar 

  25. Ghassemieh E, Nassehi V, Le L, Kingdom U (2000) Stiffness analysis of polymeric composites using the finite element method. Polymer (Guildf) 20:42–57

    Google Scholar 

  26. Ionita A, Weitsman YJ (2006) Randomly reinforced composites: properties, failure and aspects of material design. Probabilistic Eng Mech 21:64–72. https://doi.org/10.1016/j.probengmech.2005.07.006

    Article  Google Scholar 

  27. Kari S, Berger H, Rodriguez-Ramos R, Gabbert U (2007) Computational evaluation of effective material properties of composites reinforced by randomly distributed spherical particles. Compos Struct 77:223–231. https://doi.org/10.1016/j.compstruct.2005.07.003

    Article  Google Scholar 

  28. Devireddy SBR, Biswas S (2016) Thermo-physical properties of short banana-jute fiber-reinforced epoxy-based hybrid composites. Proc Inst Mech Eng Part L J Mater Des Appl 0:1–13. https://doi.org/10.1177/1464420716656883

  29. Zin MH, Abdan K, Norizan MN (2018) The effect of different fiber loading on flexural and thermal properties of banana/pineapple leaf (PALF)/glass hybrid composite. Elsevier

    Google Scholar 

  30. Ahmad F, Bajpai PK (2018) Evaluation of stiffness in a cellulose fiber reinforced epoxy laminates for structural applications: experimental and finite element analysis. Def Technol 14:278–286. https://doi.org/10.1016/j.dt.2018.05.006

    Article  Google Scholar 

  31. Nirbhay M, Misra RK, Dixit A (2015) Finite-element analysis of jute- and coir-fiber-reinforced hybrid composite multipanel plates. Mech Compos Mater 51:505–520. https://doi.org/10.1007/s11029-015-9521-8

    Article  CAS  Google Scholar 

  32. Ramesh M, Sudharsan P (2018) Experimental investigation of mechanical and morphological properties of flax-glass fiber reinforced hybrid composite using finite element analysis. Silicon 10:747–757. https://doi.org/10.1007/s12633-016-9526-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yashwant S. Munde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Munde, Y.S., Ingle, R.B., Shinde, A.S., Irulappasamy, S. (2020). Micromechanical Modelling and Evaluation of Pineapple Leaves Fibre (PALF) Composites Through Representative Volume Element Method. In: Jawaid, M., Asim, M., Tahir, P., Nasir, M. (eds) Pineapple Leaf Fibers. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-1416-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-1416-6_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-1415-9

  • Online ISBN: 978-981-15-1416-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics