Skip to main content

Adverse Effect of Heavy Metal Toxicity in Plants’ Metabolic Systems and Biotechnological Approaches for Its Tolerance Mechanism

  • Chapter
  • First Online:
Book cover New Frontiers in Stress Management for Durable Agriculture

Abstract

Contamination of soil through heavy metals like As, Hg, Cd, Cr, Pb, etc. cause different environmental hazards, soil pollutions, and destruction of ecosystems integrity. Heavy metal exposure to plants causes severe oxidative stress due to production of free radical which leads to changes in morpho-physiological, biochemical, cellular, and tissue level gene integrity in entire plants. In these adverse conditions, crop plants develop several complex physiological, biochemical, and molecular adaptive mechanisms for better stability, tolerance, and survival. Plant scientists have used conventional breeding techniques for development of agriculturally important heavy metal stress tolerant cultivars which are time consuming and labor intensive. Recent advances in various branches of biological sciences such as hormonal interactions, microbiological engineering, transcriptomics, proteomics, metabolomics, and ionomics have dominantly supported the identification and characterization of genes, transcription factors, and stress tolerance proteins involved in heavy metal detoxifications, which apparently helps in developing metal stress tolerant crop cultivars. This book chapter summarizes several tolerance mechanisms of plants under heavy metal toxicity, the knowledge of recent advances on the role of hormones, microbes, genetic engineering, metabolomics, ionomics (trace elements), proteomics (stress related proteins), and various signal transduction pathways in relation to various heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas G, Murtaza B, Bibi I, Shahid M, Niazi NK, Khan MI, Amjad M, Hussain M, Natasha (2018) Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. Int J Environ Res Public Health 15(1):59

    Article  CAS  PubMed Central  Google Scholar 

  • Adediran GA, Ngwenya BT, Mosselmans JFW, Heal KV, Harvie BA (2015) Mechanism behind bacteria induced plant growth promotion and Zn accumulation in Brassica juncea. J Hazard Mater 283:490–499. https://doi.org/10.1016/j.jhazmat.2014.09.064

    Article  CAS  PubMed  Google Scholar 

  • Ahn YO, Kim SH, Lee J, Kim HR, Lee HS, Kwak SS (2012) Three Brassica rapa metallothionein genes are differentially regulated under various stress conditions. Mol Biol Rep 39(3):2059–2067

    Article  CAS  PubMed  Google Scholar 

  • Ahsan N, Lee DG, Alam I, Kim PJ, Lee JJ, Ahn YO, Kwak SS, Lee IJ, Bahk JD, Kang KY, Renaut J, Komatsu S, Lee BH (2008) Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress. Proteomics 8:3561–3576

    Article  CAS  PubMed  Google Scholar 

  • Akbulut M, Cakır S (2010) The effects of se phytotoxicity on the antioxidant systems of leaf tissues in barley (Hordeum vulgare L.) seedlings. Plant Physiol Biochem 48:160–166. https://doi.org/10.1016/j.plaphy.2009.11.001

    Article  CAS  PubMed  Google Scholar 

  • Ali B, Xu X, Gill RA, Yang S, Ali S, Tahir M (2014) Promotive role of 5-aminolevulinic acid on mineral nutrients and antioxidative defense system under lead toxicity in Brassica napus. Ind Crop Prod 52:617–626

    Article  CAS  Google Scholar 

  • Anawar HM, García-Sánchez A, Hossain ZM (2013) In: Gupta DK (ed) Biogeochemical cycling of arsenic in soil–plant continuum: perspectives for phytoremediation. Heavy metal stress in plants. Springer, Berlin, pp 203–224. https://doi.org/10.1007/978-3-642-38469-1-11

    Chapter  Google Scholar 

  • Arenhart RA, De Lima JC, Pedron M, Carvalho FEL, Da Silveira JAG, Rosa SB (2013) Involvement of ASR genes in aluminium tolerance mechanisms in rice. Plant Cell Environ 36:52–67

    Article  CAS  PubMed  Google Scholar 

  • Ashraf U, Kanu AS, Mo ZW, Hussain S, Anjum SA, Khan I (2015) Lead toxicity in rice; effects, mechanisms and mitigation strategies—a mini review. Environ Sci Pollut Res 22:18318–18332. https://doi.org/10.1007/s11356-015-5463-x

    Article  CAS  Google Scholar 

  • Atici O, Agar G, Battal P (2005) Changes in phytohormones contents in chickpea seeds germinating under lead or zinc stress. Biol Plant 49:215–222

    Article  CAS  Google Scholar 

  • Azcón R, Perálvarez MDC, Roldán A, Barea JM (2010) Arbuscular mycorrhizal fungi, Bacillus cereus, and Candida parapsilosis from a multi contaminated soil alleviate metal toxicity in plants. Microb Ecol 59:668–677

    Article  PubMed  Google Scholar 

  • Azevedo R, Rodriguez E (2012) Phytotoxicity of mercury in plants: a review. J Bot 2012:848614. https://doi.org/10.1155/2012/848614

    Article  CAS  Google Scholar 

  • Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB1. J Hazard Mater 250:477–483. https://doi.org/10.1016/j.jhazmat.2013.02.014

    Article  CAS  PubMed  Google Scholar 

  • Babu AG, Shea PJ, Sudhakar D, Jung IB, Oh BT (2015) Potential use of Pseudomonas koreensis AGB-1 in associated with Miscanthus sinensis to remediate heavy metal (loid)-contaminated mining site soil. J Environ Manage 151:160–166

    Article  CAS  PubMed  Google Scholar 

  • Baccouch S, Chaoui A, El Ferjani E (1998) Nickel-induced oxidative damage and antioxidant response in Zea mays shoots. Plant Physiol Biochem 36:689–694

    Article  CAS  Google Scholar 

  • Baryla A, Carrier P, Franck F, Coulomb C, Sahut C (2001) Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth. Planta 212:696–709

    Article  CAS  PubMed  Google Scholar 

  • Belimov AA, Puhalsky IV, Safronova VI, Shaposhnikov AI, Vishnyakova MA, Semenova EV (2015) Role of plant genotype and soil conditions in symbiotic plant-microbe interactions for adaptation of plants to cadmium polluted soils. Water Air Soil Pollut 226:264. https://doi.org/10.1007/s11270-015-2537-9

    Article  CAS  Google Scholar 

  • BGS & DPHE (2001) Arsenic contamination of groundwater in Bangladesh (four volumes). BGS technical report WC/00/19, British Geological Survey, Keyworth

    Google Scholar 

  • Bienert GP, Thorsen M, Schüssler MD (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Plant Biol 6:26

    Article  CAS  Google Scholar 

  • Boddi B, Oravecz A, Lehoczki E (1995) Effect of cadmium on organization and photoreduction of protochlorphyllide in dark-grown leaves and etioplast inner membrane preparations of wheat. Photosynthetica 31:411–420

    CAS  Google Scholar 

  • Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40(12):1335–1351

    Article  CAS  PubMed  Google Scholar 

  • Boominathan R, Doran PM (2002) Ni-induced oxidative stress in roots of the Ni hyperaccumulator, Alyssum bertolonii. New Phytol 156:205–215

    Article  CAS  PubMed  Google Scholar 

  • Castiglione S, Franchin C, Fossati T, Lingua G, Torrigiani P, Biondi S (2007) High zinc concentrations reduce rooting capacity and alter metallothionein gene expression in white poplar (Populus alba L. cv. Villafranca). Chemosphere 67(6):1117–1126

    Article  CAS  PubMed  Google Scholar 

  • Castillo-Michel H, Hernandez-Viezcas J, Dokken KM, Marcus MA, Peralta-Videa JR, Gardea-Torresdey JL (2011) Localization and speciation of arsenic in soil and desert plant Parkinsonia florida using mu XRF and mu XANES. Environ Sci Technol 45:7848–7785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charfeddine M, Charfeddine S, Bouaziz D, Messaoud RB, Bouzid RG (2017) The effect of cadmium on transgenic potato (Solanum tuberosum) plants overexpressing the StDREB transcription factors. Plant Cell Tiss Org Cult 128(3):521–541

    Article  CAS  Google Scholar 

  • Chatterjee J, Chatterjee C (2000) Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Pollut 109:69–74

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee C, Dube BK, Sinha P, Srivastava P (2004) Detrimental effects of lead phytotoxicity on growth, yield, and metabolism of rice. Commun Soil Sci Plant Anal 35:255–265. https://doi.org/10.1081/CSS-120027648

    Article  CAS  Google Scholar 

  • Chen YA, Chi WC, Huang TL, Lin CY, Quynh Nguyeh TT, Hsuing YC (2012) Mercury-induced biochemical and proteomic changes in rice roots. Plant Physiol Biochem 55:23–32. https://doi.org/10.1016/j.plaphy.2012.03.008

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Luo SL, Li XJ, Wan Y, Chen JL, Liu CB (2014) Interaction of Cd-hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol Biochem 68:300–308. https://doi.org/10.1016/j.soilbio.2013.10.021

    Article  CAS  Google Scholar 

  • Chen Y, Wang S, Nan Z, Ma J, Zang F (2017) Effect of fluoride and cadmium stress on the uptake and translocation of fluoride and cadmium and other mineral nutrition elements in radish in single element or co-taminated sierozem. Environ Exp Bot 134:54–61

    Article  CAS  Google Scholar 

  • Chiang HC, Lo JC, Yeh KC (2006) Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray. Environ Sci Technol 40(21):6792–6798

    Article  CAS  PubMed  Google Scholar 

  • Choudhary SP, Kanwar M, Bhardwaj R, Yu JQ, Tran LS (2012) Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS One 7:e33210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clemens S, Palmgreen MG, Kramer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    Article  CAS  PubMed  Google Scholar 

  • Dalcorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5(6):1–5

    Article  Google Scholar 

  • Dar TA, Moin U, Khan MMA, Hakeem KR, Jaleel H (2015) Jasmonates counter plant stress: a review. Environ Exp Bot 115:49–57

    Article  CAS  Google Scholar 

  • Das N, Bhattacharya S, Maiti MK (2016) Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation. Plant Physiol Biochem 105:297–309

    Article  CAS  PubMed  Google Scholar 

  • De Araújo RP, de Almeida AAF, Pereira LS, Mangabeira PA, Souza JO (2017) Photosynthetic, antioxidative, molecular and ultrastructural responses of young cacao plants to Cd toxicity in the soil. Ecotoxicol Environ Saf 144:148–157

    Article  CAS  Google Scholar 

  • Delnomdedieu M, Basti MM, Otvos JD, Thomas DJ (1994) Reduction and binding of arsenate and dimethyl arsenate by glutathione a magnetic resonance study. Chem Biol Interact 90:139–155

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Svatoš A, Dabrowska P, Schmidt A, Boland W, Kothe E (2008) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74:19–25. https://doi.org/10.1016/j.chemosphere.2008.09.079

    Article  CAS  PubMed  Google Scholar 

  • Dumont E, Vanhaecke F, Cornelis R (2006) Selenium speciation from food source to metabolites: a critical review. Anal Bioanal Chem 385:1304–1323. https://doi.org/10.1007/s00216-006-0529-8

    Article  CAS  PubMed  Google Scholar 

  • Faè M, Balestrazzi A, Confalonieri M, Donà M, Macovei A, Valassi A, Carbonera D (2014) Copper-mediated genotoxic stress is attenuated by the overexpression of the DNA repair gene MtTdp2α (tyrosyl-DNA phosphodiesterase 2) in Medicago truncatula plants. Plant Cell Rep 33(7):1071–1080

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Wang Y, Zha J, Zhu L, Bian X, Zhang W (2011) Source attributions of heavy metals in rice plant along highway in eastern China. J Environ Sci 23:1158–1164. https://doi.org/10.1016/S1001-0742(10)60529-3

    Article  CAS  Google Scholar 

  • Flathman PE, Lanza GR (1998) Phytoremediation: current views on an emerging green technology. J Soil Contam 7:415–432

    Article  Google Scholar 

  • Flora SJS (2009) Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxid Med Cell Longev 2:191–206

    Article  PubMed  PubMed Central  Google Scholar 

  • Gajewska E, Wielanek M, Bergier K, Skłodowska M (2009) Nickel induced depression of nitrogen assimilation in wheat roots. Acta Physiol Plant 31:1291–1300

    Article  CAS  Google Scholar 

  • Gangwar S, Singh VP, Srivastava PK, Maurya JN (2011) Modification of chromium (VI) phytotoxicty by exogenous gibberellic acid application in Pisum sativa (L.) seedlings. Acta Physiol Plant 33:1385–1397

    Article  CAS  Google Scholar 

  • Gao Y, Miao C, Mao L, Zhou P, Jin Z (2010) Improvement of phytoextraction and antioxidative defense in Solanum nigrum L. under cadmium stress by application of cadmium-resistant strain and citric acid. J Hazard Mater 181:771–777

    Article  CAS  PubMed  Google Scholar 

  • Garg N, Aggarwal N (2012) Effect of mycorrhizal inoculations on heavy metal uptake and stress alleviation of Cajanus cajan (L.) Millsp. Genotypes grown in cadmium and lead contaminated soils. Plant Growth Regul 66:9–26

    Article  CAS  Google Scholar 

  • Gielen H, Vangronsveld J, Cuypers A (2017) Cd-induced Cu deficiency responses in Arabidopsis thaliana: are phytochelatins involved? Plant Cell Environ 40:390–400

    Article  CAS  PubMed  Google Scholar 

  • Gong B, Nie W, Yan Y, Gao Z, Shi Q (2017) Unravelling cadmium toxicity and nitric oxide induced tolerance in Cucumis sativus: insight into regulatory mechanisms using proteomics. J Hazard Mater 336:202–213

    Article  CAS  PubMed  Google Scholar 

  • Gontia-Mishra I, Sapre S, Sharma A, Tiwari S (2016) Alleviation of mercury toxicity in wheat by the interaction of mercury-tolerant plant growth promoting rhizobacteria. J Plant Growth Regul 35:1000–1012. https://doi.org/10.1007/s00344-016-9598-x

    Article  CAS  Google Scholar 

  • Gonzales-Chavez MC, Carrillo-Gonzales R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323. https://doi.org/10.1016/j.envpol.2004.01.004

    Article  CAS  Google Scholar 

  • Grill E, Loffler S, Winnacke EL, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86(18):6838–6842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan Z, Chai T, Zhang Y, Xu J, Wei W (2009) Enhancement of Cd tolerance in transgenic tobacco plants overexpressing a Cd-induced catalase cDNA. Chemosphere 76:623–630. https://doi.org/10.1016/j.chemosphere.2009.04.047

    Article  CAS  PubMed  Google Scholar 

  • Gumaelius L, Lahner B, Salt DE, Banks JA (2004) Arsenic hyperaccumulation in gametophytes of Pteris vittata. A new model system for analysis of arsenic hyperaccumulation. Plant Physiol 136:3198–3208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han FX, Su YDL, Monts MJ, Plodine C, Banin A, Triplett GE (2003) Assessment of global industrial-age anthropogenic arsenic contamination. Naturwissenschaften 90(9):395–401

    Article  CAS  PubMed  Google Scholar 

  • Hansda A, Kumar V (2017) Cu-resistant Kocuria sp. CRB15: a potential PGPR isolated from the dry tailing of Rakha copper mine. 3 Biotech 7:132. https://doi.org/10.1007/s13205-017-0757-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassan TU, Bano A, Naz I (2017) Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat grown in saline sodic field. Int J Phytoremediation 19:522–529. https://doi.org/10.1080/15226514.2016.1267696

    Article  CAS  PubMed  Google Scholar 

  • He H, Ye Z, Yang D, Yan J, Xiao L, Zhong T, Yuan M, Cai X, Fang Z, Jing Y (2013) Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere 90:1960–1965

    Article  CAS  PubMed  Google Scholar 

  • Hossain Z, Komatsu S (2013) Contribution of proteomic studies towards understanding plant heavy metals stress response. Front Plant Sci 3:310. https://doi.org/10.3389/fpls.2012.00310

    Article  PubMed  PubMed Central  Google Scholar 

  • Hossain MA, Hossain MD, Rohman MM, da Silva JAT, Fujita M (2012) Onion major compounds (flavonoids, organosulfurs) and highly expressed glutathione-related enzymes: possible physiological interaction, gene cloning and abiotic stress response. In: Aguirre CB, Jaramillo LM (eds) Onion consumption and health. Nova Science, New York

    Google Scholar 

  • Iuchi S, Koyama H, Iuchi A, Kobayashi Y, Kitabayashi S, Kobayashi Y (2007) Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proc Natl Acad Sci U S A 104:9900–9905. https://doi.org/10.1073/pnas.0700117104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain CK, Ali I (2000) Arsenic: occurrence, toxicity and speciation techniques. Water Res 34:4304–4312

    Article  CAS  Google Scholar 

  • Jaiswal S (2011) Role of rhizobacteria in reduction of arsenic uptake, by plants: a review. J Bioremed Biodegr 2:126

    Article  CAS  Google Scholar 

  • Jarvis C, Jones LHP, Hopper MJ (1976) Cadmium uptake from solution by plants and its transport from roots to shoots. Plant Soil 44:179–191

    Article  CAS  Google Scholar 

  • Jonak C, Nakagami H, Hirt H (2004) Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol 136(2):3276–3283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanwar MK, Bhardwaj R, Arora P, Chowdhary SP, Sharma P, Kumar S (2012) Plant steroid hormones produced under Ni stress are involved in the regulation of metal uptake and oxidative stress in Brassica juncea L. Chemosphere 86:41–49

    Article  CAS  PubMed  Google Scholar 

  • Khan MIR, Khan NA (2014) Ethylene reverses photosynthetic inhibition by nickel and zinc in mustard through changes in PS II activity, photosynthetic nitrogen use efficiency, and antioxidant metabolism. Protoplasma 251:1007–1019

    Article  CAS  PubMed  Google Scholar 

  • Khan I, Ahmad A, Iqbal M (2009) Modulation of antioxidant defence system for arsenic detoxification in Indian mustard. Ecotoxicol Environ Saf 72:626–634

    Article  CAS  PubMed  Google Scholar 

  • Kim T, Balish RS, Heaton AC, McKinney EC, Dhankher OP, Meagher RB (2005) Engineering a root specific, repressor-operator gene complex. Plant Biotechnol J 3:571–582

    Article  CAS  PubMed  Google Scholar 

  • Koch I, Wang L, Ollson CA, Cullen WR, Reimer KJ (2000) The predominance of inorganic arsenic species in plants from yellow knife, Northwest Territories, Canada. Environ Sci Technol 34(1):22–26

    Article  CAS  Google Scholar 

  • Kopittke PM, de Jonge MD, Wang P, McKenna BA, Lombi E, Paterson DJ, Howard DL, James SA (2013) Laterally resolved speciation of arsenic in roots of wheat and rice using fluorescence-XANES imaging. New Phytol 201:1251–1262

    Article  CAS  PubMed  Google Scholar 

  • Koprivova A, North KA, Kopriva S (2008) Complex signalling network in regulation of adenosine-5′-phosphosulphate reductase by salt stress in Arabidopsis roots. Plant Physiol 146:1408–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Łabanowska M, Filek M, Koscielniak J, Kurdziel M, Kulis E, Hartikainen H (2012) The effects of short-term selenium stress on Polish and Finnish wheat seedlings-EPR, enzymatic and fluorescence studies. J Plant Physiol 169:275–284. https://doi.org/10.1016/j.jplph.2011.10.012

    Article  CAS  PubMed  Google Scholar 

  • Larsson EH, Bornman JF, Asp H (1998) Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in Brassica napus. J Exp Bot 49:1031–1039

    Article  CAS  Google Scholar 

  • Lee K, Bae DW, Kim SH (2010) Comparative proteomic analysis of the short-term responses of rice roots and leaves to cadmium. J Plant Physiol 167(3):161–168

    Article  CAS  PubMed  Google Scholar 

  • Lehotai N, Kolbert Z, Peto A, Feigl G, Ördög A, Kumar D (2012) Selenite-induced hormonal and signaling mechanisms during root growth of Arabidopsis thaliana L. J Exp Bot 63:5677–5687

    Article  CAS  PubMed  Google Scholar 

  • Lequeux H, Hermans C, Lutts S, Verbruggen N (2010) Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol Biochem 48:673–682

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Leng X, Wang M, Zhu Z, Dai Q (2011) Iron plaque formation on roots of different rice cultivars and the relation with lead uptake. Ecotoxicol Environ Saf 74:1304–1309. https://doi.org/10.1016/j.ecoenv.2011.01.017

    Article  CAS  PubMed  Google Scholar 

  • Luo S, Xu T, Chen L, Chen J, Rao C, Xiao X, Wan Y, Zeng G, Long F, Liu C, Liu Y (2012) Endophyte-assisted promotion of biomass production and metal uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18. Appl Microbiol Biotechnol 93:1745–1753

    Article  CAS  PubMed  Google Scholar 

  • Luo ZB, He J, Polle A, Rennenberg H (2016) Heavy metal accumulation and signal transduction in herbaceous and woody plants: paving the way for enhancing phytoremediation efficiency. Biotechnol Adv 34:1131–1148

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258. https://doi.org/10.1016/j.biotechadv.2010.12.001

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Rajkumar M, Luo Y, Freitas H (2013) Phytoextraction of heavy metal polluted soils using Sedum plumbizincicola inoculated with metal mobilizing Phyllobacterium myrsinacearum RC6b. Chemosphere 93:1386–1392

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Oliveira RS, Nai FJ, Rajkumar M, Luo YM, Rocha I, Freitas H (2015) The hyperaccumulator Sedum Plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J Environ Manage 156:62–69. https://doi.org/10.1016/j.jenvman.2015.03.024

    Article  CAS  PubMed  Google Scholar 

  • Magdziak Z, Kozlowska M, Kaczmarek Z, Mleczek M, Chadzinikolau T, Drzewiecka K (2011) Influence of Ca/Mg ratio on phytoextraction properties of Salix viminalis II. Secretion of low molecular weight organic acids to the rhizosphere. Ecotoxicol Environ Saf 74:33–40. https://doi.org/10.1007/s00468-012-0821-5

    Article  CAS  PubMed  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London, p 889

    Google Scholar 

  • Masood A, Iqbal N, Khan NA (2012) Role of ethylene in alleviation of cadmium-induced photosynthetic capacity inhibition by sulphur in mustard. Plant Cell Environ 35:524–533

    Article  CAS  PubMed  Google Scholar 

  • Mayerová M, Petrová Š, Madaras M, Lipavský J, Šimon T (2017) No enhanced phytoextraction of cadmium, zinc, and lead by high yielding crops. Environ Sci Pollut Res 24:14706–14716

    Article  CAS  Google Scholar 

  • McLaughlin MJ, Tiller KG, Naidu R, Stevens DP (1996) Reviewed: the behaviour and impact of contaminants in fertilizers. Aust J Soil Res 34:1–54

    Article  CAS  Google Scholar 

  • Meng H, Hua S, Shamsi IH, Jilani G, Li Y, Jiang L (2009) Cadmium- induced stress on the seed germination and seedling growth of Brassica napus and its alleviation through exogenous plant growth regulators. Plant Growth Regul 58:47–59

    Article  CAS  Google Scholar 

  • Miransari M (2011) Arbuscular mycorrhizal fungi and nitrogen uptake. Arch Microbiol 193:77–81

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Choudhary MA (1998) Amelioration of lead and mercury effects on germination and rice seedling growth by antioxidants. Biol Plantarum 41:469–473

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidant and stress tolerance. Trends Plant Sci 7:841–851. https://doi.org/10.1016/S1360-1385(02)02312-9

    Article  Google Scholar 

  • Mohan D, Pittman CU (2006) Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water. J Hazard Mater 137:762–811

    Article  CAS  PubMed  Google Scholar 

  • Mohan TC, Castrillo G, Navarro C, Zarco-Fernandez S, Ramireddy E, Mateo C, Zanarreno AM, Paz-Ares J, Munoz R, Garcia-Mina JM, Hernandez LE, Schmulling T, Leyva A (2016) Cytokinin determines thiol-mediated arsenic tolerance and accumulation. Plant Physiol 171:1418–1426

    PubMed  PubMed Central  Google Scholar 

  • Mortel VD, Villanueva JE, Schat LA, Kwekkeboom H, Coughlan J, Moerland S (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1134. https://doi.org/10.1104/pp.106.082073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosa KA, Ismail A, Helmy M (2017) Functional genomics combined with other omics approaches for better understanding abiotic stress tolerance in plants. In: Sunkar R (ed) Plant stress tolerance. Springer International, Cham, pp 55–73

    Chapter  Google Scholar 

  • Mroczek-Zdyrska M, Wójcik M (2012) The influence of selenium on root growth and oxidative stress induced by lead in Vicia faba L. minor plants. Biol Trace Elem Res 147:320–328. https://doi.org/10.1007/s12011-011-9292-6

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay A, Vij S, Tyagi AK (2004) Overexpression of a zinc finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci U S A 101:6309–6314. https://doi.org/10.1073/pnas.0401572101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Oliveira H (2012) Chromium as an environmental pollutant: insights on induced plant toxicity. J Bot 37:1–8

    Google Scholar 

  • Opdenakker K, Remans T, Keunen E, Vangronsveld J, Cuypers A (2012) Exposure of Arabidopsis thaliana to Cd or Cu excess leads to oxidative stress mediated alterations in MAPKinase transcript levels. Environ Exp Bot 83:53–61. https://doi.org/10.1016/j.envexpbot.2012.04.003

    Article  CAS  Google Scholar 

  • Ortega-Villasante C, Rellán-Álvarez R, Del Campo FF, Carpena-Ruiz RO, Hernández LE (2005) Cellular damage induced by cadmium and mercury in Medicago sativa. J Exp Bot 56:2239–2251. https://doi.org/10.1093/jxb/eri223

    Article  CAS  PubMed  Google Scholar 

  • Palmieri L, Picault N, Arrigoni R, Besin E, Palmieri F, Hodges M (2008) Molecular identification of three Arabidopsis thaliana mitochondrial dicarboxylate carrier isoforms: organ distribution, bacterial expression, reconstitution into liposomes and functional characterization. Biochem J 410:621–629

    Article  CAS  PubMed  Google Scholar 

  • Panday N, Sharma CP (2002) Effect of heavy metals Co2+, Ni2+, and Cd2+ on growth and metabolism of cabbage. Plant Sci 163:753–758

    Article  Google Scholar 

  • Pandey S, Ghosh PK, Ghosh S, De TK, Maiti TK (2013) Role of heavy metal resistant Ochrobactrum sp. and Bacillus sp. strains in bioremediation of a rice cultivar and their PGPR like activities. J Microbiol 51:11–17. https://doi.org/10.1007/s12275-013-2330-7

    Article  CAS  PubMed  Google Scholar 

  • Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66(3):379–422

    Article  Google Scholar 

  • Patra M, Bhowmik N, Bandopadhyay B, Sharma A (2004) Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot 52(3):199–223

    Article  CAS  Google Scholar 

  • Pietrini F, Iannelli MA, Pasqualini S, Massacci A (2003) Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel. Plant Physiol 133:829–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  PubMed  Google Scholar 

  • Pourrut B, Shahid M, Camille D, Peter W, Eric P (2011) Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol 213:113–136. https://doi.org/10.1007/978-1-4419-9860-6_4

    Article  CAS  PubMed  Google Scholar 

  • Raab A, Wright SH, Jaspars M, Meharg AA, Feldmann J (2007) Penta valent arsenic can bind to biomolecules. Angew Chem Int Ed Engl 46:2594–2597

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574. https://doi.org/10.1016/j.biotechadv.2012.04.011

    Article  CAS  PubMed  Google Scholar 

  • Ramos J, Clemente MR, Naya L, Loscos J, Rontome C, Sato S (2007) Phytochelatin synthases of the model legume Lotus japonicas. A small multigene family with different responses to cadmium and alternative lyspiced variants. Plant Physiol 143:110–118

    Article  CAS  Google Scholar 

  • Rao KVM, Sresty TVS (2004) Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci 157:113–118

    Google Scholar 

  • Ruiz ON, Alvarez D, Torres C, Roman L, Daniell H (2011) Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability. Plant Biotechnol J 9:609–617. https://doi.org/10.1111/j.1467-7652.2011.00616.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarry JE, Kuhn L, Ducruix C (2006) The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics 6(7):2180–2198

    Article  CAS  PubMed  Google Scholar 

  • Schiavon M, Moro I, PilonSmits EA, Matozzo V, Malagoli M, DallaVecchia F (2012) Accumulation of selenium in Ulva sp. and effects on morphology, ultrastructure and antioxidant enzymes and metabolites. Aquat Toxicol 123:222–231

    Article  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stress : heavy metal-induced oxidative stress and protection by mycorrization. J Exp Bot 53:1351–1365

    PubMed  Google Scholar 

  • Shahid M, Pinelli E, Dumat C (2012) Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. J Hazard Mater 219–220:1–12. https://doi.org/10.1016/j.jhazmat.2012.01.060

    Article  CAS  PubMed  Google Scholar 

  • Shahzad Z, Gosti F, Frerot H, Lacombe E, Roosens N, Saumitou Laprade P (2010) The five AhMTP1 zinc transporters undergo different evolutionary fates towards adaptive evolution to zinc tolerance in Arabidopsis halleri. PLoS Genet 6:e1000911. https://doi.org/10.1371/journal.pgen.1000911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanker AK (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  CAS  PubMed  Google Scholar 

  • Sharaf AEMM, Farghal II, Sofy MR (2009) Role of gibberellic acid in abolishing the detrimental effects of cadmium and lead on the broad bean and lupin plants. Res J Agric Biol Sci 5:668–673

    CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    Article  CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14(1):43–50

    Article  CAS  PubMed  Google Scholar 

  • Sharma DC, Sharma CP (1996) Chromium uptake and toxicity effects on growth and metabolic activities in wheat, Triticum aestivum L. cv. UP 2003. Indian J Exp Biol 34:689–691

    CAS  PubMed  Google Scholar 

  • Shaw BP, Sahu SK, Mishra RK (2004) Heavy metal induced oxidative damage in terrestrial plants. In: Prasad MNV (ed) Heavy metal stress in plants: from biomolecules to ecosystems. Narosa Publishing House, New Delhi, pp 84–126

    Chapter  Google Scholar 

  • Shi WG, Li H, Liu TX, Polle A, Peng CH, Luo ZB (2015) Exogenous abscisic acid alleviates zinc uptake and accumulation in Populus × canescens exposed to excess zinc. Plant Cell Environ 38:207–223

    Article  CAS  PubMed  Google Scholar 

  • Shin H, Shin HS, Gary R, Harrison MJ (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J 39:629–642

    Article  CAS  PubMed  Google Scholar 

  • Shin M, Shim J, You Y, Myung H, Bang KS, Cho M (2012) Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma. J Hazard Mater 19:314–320. https://doi.org/10.1016/j.jhazmat.2011.11.010

    Article  CAS  Google Scholar 

  • Singh N, Ma LQ, Srivastava M, Rathinasabapathi B (2006) Metabolic adaptations to arsenic induced oxidative stress in Pteris vittata L. and Pterisensi formis L. Plant Sci 170:274–282

    Article  CAS  Google Scholar 

  • Singh HP, Mahajan P, Kaur S, Batish DR, Kohli RK (2013) Chromium toxicity and tolerance in plants. Environ Chem Lett 11:229–254

    Article  CAS  Google Scholar 

  • Singh S, Barla A, Srivastava A, Bose S (2015) Isolation of arsenic resistant bacteria from Bengal Delta sediments and their efficiency in arsenic removal from soil in association with Pteris vittata. Geomicrobiol J 32(8):712–723

    Article  CAS  Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143. https://doi.org/10.3389/fpls.2015.01143

    Article  PubMed  PubMed Central  Google Scholar 

  • Sirhindi G, Mir MA, Sharma P, Singh GS, Kaur H, Mushtaq R (2015) Modulatory role of jasmonic acid on photosynthesis pigments, antioxidants and stress makers of Glycine max L. under nickel stress. Physiol Mol Biol Plants 21:559–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song WY, Yamaki T, Yamaji N, Ko D, Jung KH, Fujii-Kashino M (2014) A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. PNAS 111:15699–15704. https://doi.org/10.1073/pnas.1414968111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sors TG, Ellis DR, Na GN, Lahner B, Lee S, Leustek T (2005) Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. Plant J 42:785–797. https://doi.org/10.1111/j.1365-313X.2005.02413.x

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Shanker K, Srivatava R, Srivastava S, Dass S, Prakash S, Srivastava MM (1998) Effect of selenium supplementation on the uptake and translocation of chromium in spinach (Spinacea oleracea). Bull Environ Contam Toxicol 60:750–758

    Article  CAS  PubMed  Google Scholar 

  • Srivastava AK, Venkatachalam P, Raghothama KG, Sahi SV (2007) Identification of lead-regulated genes by suppression subtractive hybridization in the heavy metal accumulator Sesbania drummondii. Planta 225:1353–1365

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Suprasanna P, D’Souza SF (2011) Redox states and energetic equilibrium determine the magnitude of stress in Hydrilla verticillata upon exposure to arsenate. Protoplasma 248:805–816

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Srivastava AK, Suprasanna P, D’Souza SF (2013a) Identification and profiling of arsenic stress induced microRNA in Brassica juncea. J Exp Bot 64:303–315

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Verma PC, Chaudhary V, Singh N, Abhilash PC, Kumar KV (2013b) Inoculation of arsenic-resistant Staphylococcus arlettae on growth and arsenic uptake in Brassica juncea (L.) Czern. var. R-46. J Hazard Mater 262:1039–1047. https://doi.org/10.1016/j.jhazmat.2012.08.019

    Article  CAS  PubMed  Google Scholar 

  • Sun WJ, Sierra-Alvarez R, Milner L, Field JA (2010) Anoxic oxidation of arsenite linked to chlorate reduction. Appl Environ Microbiol 76:6804–6811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun SK, Chen Y, Che J, Konishi N, Tang Z, Miller AJ, Ma JF, Zhao FJ (2018) Decreasing arsenic accumulation in rice by overexpressing OsNIP1;1 and OsNIP3;3 through disrupting arsenite radial transport in roots. New Phytol 219(2):641–653. https://doi.org/10.1111/nph.15190

    Article  CAS  PubMed  Google Scholar 

  • Tamaoki M, Freeman JL, Pilon-Smits EAH (2008) Cooperative ethylene and jasmonic acid signaling regulates selenate resistance in Arabidopsis. Plant Physiol 146:1219–1230. https://doi.org/10.1104/pp.107.110742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang W, Charles TM, Newton RJ (2005) Overexpression of the pepper transcription factor CaPF1 in transgenic Virginia pine (Pinus Virginiana Mill.) confers multiple stress tolerance and enhances organ growth. Plant Mol Biol 59:603–617

    Article  CAS  PubMed  Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. EXS 101:133–164

    PubMed  PubMed Central  Google Scholar 

  • Thomas JC, Perron M, LaRosa PC, Smigocki AC (2005) Cytokinin and the regulation of a tobacco metallothionein-like gene during copper stress. Physiol Plant 123:262–271

    Article  CAS  Google Scholar 

  • Tu C, Ma LQ (2003) Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyperaccumulator Pteris vittata L. under hydroponic conditions. Environ Exp Bot 50:243–251

    Article  CAS  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Sarniguet A, deBoer W, Leveau JHJ (2009) Efficient mineral weathering is a distinctive functional trait of the bacterial genus Collimonas. Soil Biol Biochem 41:2178–2186. https://doi.org/10.1016/j.soilbio.2009.07.031

    Article  CAS  Google Scholar 

  • Vassilev A, Lidon F, Scotti P, Da Graca M, Yordanov I (2004) Cadmium-induced changes in chloroplast lipids and photosystem activities in barley plants. Biol Plant 48:153–156

    Article  CAS  Google Scholar 

  • Vázquez S, Esteban E, Carpena RO (2008) Evolution of arsenate toxicity in nodulated white lupine in a long-term culture. J Agric Food Chem 56:8580–8587

    Article  CAS  PubMed  Google Scholar 

  • Villiers F, Ducruix C, Hugouvieux V, Jarno N, Ezan E, Garin J (2011) Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches. Proteomics 11:1650–1663

    Article  CAS  PubMed  Google Scholar 

  • Wagner GJ (1993) Accumulation of cadmium in crop plants and its consequences to human health. Adv Agron 51:173–212

    Article  CAS  Google Scholar 

  • Wang HH, Kang J, Zeng FH, Jiang MY (2001) Effect of nickel at high concentractions on growth activities of enzymes of rice seedlings. Acta Agron Sin 27:953–957

    Google Scholar 

  • WHO (2009) Global health risks: mortality and burden of disease attributable to selected major risks. http://www.who.int/healthinfo/global_burden_disease/GlobalHealth2009:Risks_report_annex.pdf

  • Wilkinson S, Kudoyarova GR, Veselov DS, Arkhipova TN, Davies WJ (2012) Plant hormones interactions: innovative target for plant breeding and management. J Exp Bot 63:3499–3509

    Article  CAS  PubMed  Google Scholar 

  • Wu XX, Chen JL, Xu S, Zhu ZW, Zha DS (2016) Exogenous 24- epibrasinosteroid alleviates zinc-induced toxicity in eggplant (Solanum melongena L.) seedlings by regulating the glutathione ascorbate- dependent detoxification pathway. J Hortic Sci Biotech 91:412–420

    Article  CAS  Google Scholar 

  • Xia Z, Sun K, Wang M, Wu K, Zhang H, Wu J (2012) Overexpression of a maize sulfite oxidase gene in tobacco enhances tolerance to sulfite stress via sulfite oxidation and CAT-mediated H2O2 scavenging. PLoS One 7:e37383. https://doi.org/10.1371/journal.pone.0037383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu XY, McGrath SP, Zhao FJ (2007) Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol 176:590–599

    Article  PubMed  Google Scholar 

  • Xu J, Wang W, Sun J (2011) Involvement of auxin and nitric oxide in plant Cd-stress responses. Plant and Soil 346(1):107–119

    Article  CAS  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179. https://doi.org/10.1016/j.sajb.2009.10.007

    Article  CAS  Google Scholar 

  • Yang X, Feng Y, He Z, Stoffell PJ (2005a) Molecular mechanisms of heavy metal hyper accumulation and phytoremediation. J Trace Elem Med Biol 18:339–353

    Article  CAS  PubMed  Google Scholar 

  • Yang XE, Jin XF, Feng Y, Islam E (2005b) Molecular mechanisms and genetic basis of heavy metal tolerance/ hyperaccumulation in plants. J Integr Plant Biol 47(9):1025–1035

    Article  CAS  Google Scholar 

  • Yu L, Luo YF, Liao B, Xie LJ, Chen L, Xiao S, Li J, Hu S, Shu W (2012) Comparative transcriptomics analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa). New Phytol 195:97–112

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Sun C, Shen C, Wang S, Liu F, Liu Y, Chen Y, Li C, Qian Q, Aryal B, Geisler M, Jiang de A, Qi Y (2015) The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryza sativa L.). Plant J 83:818–830

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Huang X (2016) Inhibition of root meristem growth by cadmium involves nitric oxide-mediated repression of auxin accumulation and signalling in Arabidopsis. Plant Cell Environ 39:120–135

    Article  CAS  PubMed  Google Scholar 

  • Yuan M, He H, Xiao L, Zhong T, Liu L, Li S, Deng P, Ye Z, Jing Y (2014) Enhancement of Cd phytoextraction by two Amaranthus species with endophytic Rahnella sp. JN27. Chemosphere 103:99–104

    Article  CAS  PubMed  Google Scholar 

  • Yusuf M, Khan TA, Fariduddin Q (2016) Interaction of epibrassinolide and selenium ameliorates the excess copper in Brassica juncea through altered proline metabolism and antioxidants. Ecotoxicol Environ Saf 129:25–34

    Article  CAS  PubMed  Google Scholar 

  • Zafar S, Aqil F, Ahmad I (2007) Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour Technol 98:2557–2561. https://doi.org/10.1016/j.biortech.2006.09.051

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Cai Y, Tu C, Ma LQ (2002) Arsenic speciation and distribution in an arsenic hyper accumulating plant. Sci Total Environ 300:167–177

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Zhang H, Xia Y, Wang G, Xu L, Shen Z (2011) Exogenous application of salicylic acid alleviates Cd-toxicity and reduces hydrogen peroxide accumulation in root apoplasts of Phaseolus aureus and Vicia sativa. Plant Cell Rep 30:1475–1483

    Article  CAS  PubMed  Google Scholar 

  • Zhao R, Zhao MX, Wang H, Taneiki Y, Zhang XR (2006) Arsenic speciation in moso bamboo shoot—a terrestrial plant that contains organoarsenic species. Sci Total Environ 37:293–303

    Article  CAS  Google Scholar 

  • Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorg Biochem 101:1–9. https://doi.org/10.1016/j.jinorgbio.2006.05.011

    Article  CAS  PubMed  Google Scholar 

  • Zhou ZS, Wang SJ, Yang ZM (2008) Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants. Chemosphere 70:1500–1509

    Article  CAS  PubMed  Google Scholar 

  • Zhu YG, Pilon Smits EAH, Zhao FJ, Williams PN, Meharg AA (2009) Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci 19:436–442. https://doi.org/10.1016/j.tplants.06.006

    Article  Google Scholar 

  • Zhu XF, Jiang T, Wang ZW, Lei GJ, Shi YZ, Li GX (2012) Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana. J Hazard Mater 240:302–307

    Article  CAS  Google Scholar 

  • Zou J, Wang G, Ji J, Wang J, Wu H (2017) Transcriptional, physiological and cytological analysis validated the roles of some key genes linked Cd stress in Salix matsudana Koidz. Environ Exp Bot 134:116–129

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarma, R.S., Prakash, P. (2020). Adverse Effect of Heavy Metal Toxicity in Plants’ Metabolic Systems and Biotechnological Approaches for Its Tolerance Mechanism. In: Rakshit, A., Singh, H., Singh, A., Singh, U., Fraceto, L. (eds) New Frontiers in Stress Management for Durable Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-15-1322-0_9

Download citation

Publish with us

Policies and ethics