Skip to main content

Switching in Nanoscale Hafnium Oxide-Based Ferroelectric Transistors

  • Chapter
  • First Online:

Part of the book series: Topics in Applied Physics ((TAP,volume 131))

Abstract

The recent advent of ferroelectricity in thin hafnium oxide films has enabled an unprecedented scaling of ferroelectric field-effect transistors (FeFETs) based on this material. However, the small-area devices, which have the channel length of only a few tens of nanometers, show some striking performance differences when compared to the large-area ones. In this chapter, the switching of these nanoscale FeFETs will be investigated. In particular, novel switching phenomena will be pointed out, including the abrupt and stepwise switching transitions, the appearance of switching stochasticity and the evidence for the accumulative switching upon identical voltage excitations. These properties not only provide new and useful insights for memory applications but also set the basis for exploiting FeFETs for novel applications, such as neuromorphic and stochastic computing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M.H. Park, Y.H. Lee, H.J. Kim, Y.J. Kim, T. Moon, K.D. Kim, J. Mueller, A. Kersch, U. Schroeder, T. Mikolajick, C.S. Hwang, Adv. Mater. 27, 1811 (2015)

    Google Scholar 

  2. J. Müller, E. Yurchuk, T. Schlösser, J. Paul, R. Hoffmann, S. Müller, D. Martin, S. Slesazeck, P. Polakowski, J. Sundqvist, M. Czernohorsky, K. Seidel, P. Kücher, R. Boschke, M. Trentzsch, K. Gebauer, U. Schröder, T. Mikolajick, VLSI Symp. Tech. Dig. 25 (2012)

    Google Scholar 

  3. S. Mueller, S. Slesazeck, S. Henker, S. Flachowsky, P. Polakowski, J. Paul, E. Smith, J. Müller, T. Mikolajick, Ferroelectrics, 497, 42 (2016)

    Google Scholar 

  4. M. Trentzsch, S. Flachowsky, R. Richter, J. Paul, B. Reimer, D. Utess, S. Jansen, H. Mulaosmanovic, S. Müller, S. Slesazeck, J. Ocker, M. Noack, J. Müller, P. Polakowski, J. Schreiter, S. Beyer, T. Mikolajick, B. Rice, IEDM Tech. Dig. 11.5.1 (2016)

    Google Scholar 

  5. S. Dünkel, M. Trentzsch, R. Richter, P. Moll, C. Fuchs, O. Gehring, M. Majer, S. Wittek, B. Müller, T. Melde, H. Mulaosmanovic, S. Slesazeck, S. Müller, J. Ocker, M. Noack, D.-A. Löhr, P. Polakowski, J. Müller, T. Mikolajick, J. Höntschel, B. Rice, J. Pellerin, S. Beyer, IEDM Tech. Dig. 19.7.1 (2017)

    Google Scholar 

  6. H. Mulaosmanovic, J. Ocker, S. Müller, U. Schroeder, J. Müller, P. Polakowski, S. Flachowsky, R. van Bentum, T. Mikolajick, S. Slesazeck, ACS Appl. Mater. Interfaces, 9, 3792 (2017)

    Google Scholar 

  7. J. Müller, T.S. Böscke, U. Schröder, R. Hoffmann, T. Mikolajick, L. Frey, IEEE Electron Device Lett., 33, 185 (2012)

    Google Scholar 

  8. H. Mulaosmanovic, J. Ocker, S. Müller, M. Noack, J. Müller, P. Polakowski, T. Mikolajick, S. Slesazeck, VLSI Technol. Symp. Tech. Dig. T176 (2017)

    Google Scholar 

  9. H. Mulaosmanovic, S. Slesazeck, J. Ocker, M. Pesic, S. Müller, S. Flachowsky, J. Müller, P. Polakowski, J. Paul, S. Jansen, S. Kolodinski, C. Richter, S. Piontek, T. Schenk, A. Kersch, C. Kunneth, R. van Bentum, U. Schroder, T. Mikolajick, IEDM Tech. Dig. 26.8.1 (2015)

    Google Scholar 

  10. A. Roelofs, T. Schneller, K. Szot, R. Waser, Appl.Phys. Lett. 81, 5231 (2002)

    Google Scholar 

  11. S.B. Ren, C.J. Lu, J.S. Liu, H.M. Shen, Y.N. Wang, Phys. Rev. B, 54, R14337 (1996)

    Google Scholar 

  12. M.H. Frey, Z. Xu, P. Han, D.A. Payne, Ferroelectrics, 206 337 (1998)

    Google Scholar 

  13. Y. Tan, J. Zhang, Y. Wu, C. Wang, V. Koval, B. Shi, H. Ye, R. McKinnon, G. Viola, H. Yan, Sci. Rep. 5, 9953 (2015)

    Google Scholar 

  14. A. Gruverman, Y. Ikeda, Jpn. J. Appl. Phys. 37, L939 (1998)

    Google Scholar 

  15. W.J. Merz, Phys. Rev. 95, 690 (1954)

    Google Scholar 

  16. R. Landauer, J. Appl. Phys. 28, 227 (1957)

    Google Scholar 

  17. A.K. Tagantsev, I. Stolichnov, N. Setter, J.S. Cross, M. Tsukada, Phys. Rev. B, 66, 214109 (2002)

    Google Scholar 

  18. H. Orihara, S. Hashimoto, Y.A. Ishibashi, J. Phys. Soc. Jpn. 63, 1031 (1994)

    Google Scholar 

  19. H. Mulaosmanovic, T. Mikolajick, S. Slesazeck, IEEE Electron Device Lett. 39, 135 (2018)

    Google Scholar 

  20. H. Mulaosmanovic, T. Mikolajick, S. Slesazeck, ACS Appl. Mater. Interfaces, 10, 23997 (2018)

    Google Scholar 

  21. H. Mulaosmanovic, E. Chicca, M. Bertele, T. Mikolajick, S. Slesazeck, Nanoscale, 10, 21755 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halid Mulaosmanovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mulaosmanovic, H., Schroeder, U., Mikolajick, T., Slesazeck, S. (2020). Switching in Nanoscale Hafnium Oxide-Based Ferroelectric Transistors. In: Park, BE., Ishiwara, H., Okuyama, M., Sakai, S., Yoon, SM. (eds) Ferroelectric-Gate Field Effect Transistor Memories. Topics in Applied Physics, vol 131. Springer, Singapore. https://doi.org/10.1007/978-981-15-1212-4_5

Download citation

Publish with us

Policies and ethics