Skip to main content

Real-Time State Estimator Without Noise Covariance Matrices Knowledge

  • Chapter
  • First Online:
  • 1625 Accesses

Abstract

The digital filtering technology has been widely applied in a majority of signal processing applications. For the linear systems with state-space model, Kalman filter provides optimal state estimates in the sense of minimum mean squared errors and maximum likelihood estimation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R. Cui, B. Ren, S.S. Ge, Synchronised tracking control of multi-agent system with high-order dynamics. IET Control Theory Appl. 6(5), 603–614 (2012)

    Article  MathSciNet  Google Scholar 

  2. W. Wu, S. Chen, A.Q. Qin, Online estimation of ship dynamic flexure model parameters for transfer alignment. IEEE Trans. Control Syst. Technol. 21(5), 1666–1678 (2013)

    Article  Google Scholar 

  3. Y. Mostofi, R. Murray, To drop or not to drop: design principles for Kalman filtering over wireless fading channels. IEEE Trans. Autom. Control 54(2), 376–381 (2009)

    Article  MathSciNet  Google Scholar 

  4. H. Xu, S. Mannor, A Kalman filter design based on the performance/robustness tradeoff. IEEE Trans. Autom. Control 54(5), 1171–1175 (2009)

    Article  MathSciNet  Google Scholar 

  5. R.E. Kalman, A new approach to linear filtering and prediction problems. Trans. ASME-J. Basic Eng. 82 (Series D), 35–45 (1960)

    Google Scholar 

  6. R.E. Kalman, R.S. Bucy, New results in linear filtering and prediction theory. Trans. ASME. Ser. D, J. Basic Eng. 83, 95–107 (1961)

    Google Scholar 

  7. S.F. Schmidt, The Kalman filter: its recognition and development for aerospace applications. AIAA J. Guid. Control 4(1), 4–7 (1981)

    Article  MathSciNet  Google Scholar 

  8. S. Bogosyan, M. Barut, M. Gokasan, Braided extended Kalman filters for sensorless estimation in induction motors at high-low/zero speed. IET Control Theory Appl. 1(4), 987–998 (2007)

    Article  Google Scholar 

  9. M.A. Khanesar, E. Kayacan, M. Teshnehlab, O. Kaynak, Extended Kalman filter based learning algorithm for type-2 fuzzy logic systems and its experimental evaluation. IEEE Trans. Ind. Electron. 59(11), 4443–4455 (2012)

    Article  Google Scholar 

  10. S. Kluge, K. Reif, M. Brokate, Stochastic stability of the extended Kalman filter with intermittent observations. IEEE Trans. Autom. Control 55(2), 514–518 (2010)

    Article  MathSciNet  Google Scholar 

  11. N. Carlson, Fast triangular formulation of the square root filter. AIAA J 11(9), 1259–1265 (1973)

    Article  Google Scholar 

  12. N.A. Carlson, Federated square root filter for decentralized parallel processors. IEEE Trans. Aerosp. Electron. Syst. 26(3), 517–525 (1990)

    Article  Google Scholar 

  13. S.J. Julier, J.K. Uhlmann, Unscented filtering and nonlinear estimation. Proc. IEEE 92(3), 644 401–422 (2004)

    Google Scholar 

  14. S. Jafarzadeh, C. Lascu, M.S. Fadali, State estimation of induction motor drives using the unscented Kalman filter. IEEE Trans. Ind. Electron. 59(11), 4207–4216 (2012)

    Article  Google Scholar 

  15. H. Marina, F.J. Pereda, J.M. Giron-Sierra, F. Espinosa, UAV attitude estimation using unscented Kalman filter and TRIAD. IEEE Trans. Ind. Electron. 59(11), 4465–4474 (2012)

    Article  Google Scholar 

  16. S. Bhaumik, S. Sadhu, T.K. Ghoshal, Risk-sensitive formulation of unscented Kalman filter. IET Control Theory Appl. 3(4), 375–382 (2009)

    Article  MathSciNet  Google Scholar 

  17. L. Chang, B. Hu, G. Chang, A. Li, Marginalised iterated unscented Kalman filter. IET Control Theory Appl. 6(6), 847–854 (2012)

    Article  MathSciNet  Google Scholar 

  18. I.R. Petersen, A.V. Savkin, Robust Kalman Filtering for Signals and Systems with Large Uncertainties (Birkhause Boston, 1999)

    Google Scholar 

  19. B. Hassibi, A.H. Sayed, T. Kailath, \({H}_{\infty }\) optimality of the LMS algorithm. IEEE Trans. Signal Process. 44(2), 267–280 (1996)

    Article  Google Scholar 

  20. W.S. Ra, I.H. Whang, J.B. Park, Non-conservative robust Kalman filtering using a noise corrupted measurement matrix. IET Control Theory Appl. 3(9), 1226–1236 (2009)

    Article  MathSciNet  Google Scholar 

  21. B. Chen, L. Yu, W.A. Zhang, Robust Kalman filtering for uncertain state delay systems with random observation delays and missing measurements. IET Control Theory Appl. 5(17), 1945–1954 (2011)

    Article  MathSciNet  Google Scholar 

  22. R.K. Mehra, On the identification of variances and adaptive Kalman filtering. IEEE Trans. Autom. Control 15(2), 175–184 (1970)

    Article  MathSciNet  Google Scholar 

  23. K. Xiong, H. Zhang, L. Liu, Adaptive robust extended Kalman filter for nonlinear stochastic systems. IET Control Theory Appl. 2(3), 239–250 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbin Ma .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, H., Yan, L., Xia, Y., Fu, M. (2020). Real-Time State Estimator Without Noise Covariance Matrices Knowledge. In: Kalman Filtering and Information Fusion. Springer, Singapore. https://doi.org/10.1007/978-981-15-0806-6_6

Download citation

Publish with us

Policies and ethics