Skip to main content

High Gain Finite-Time Trajectory Tracking Control of Pneumatic Muscle Actuator

  • Conference paper
  • First Online:
Proceedings of the 11th International Conference on Modelling, Identification and Control (ICMIC2019)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 582))

  • 2506 Accesses

Abstract

In this paper, a high gain trajectory tracking control method is proposed for the pneumatic muscle actuator with the tracking errors converging in a finite-time interval. Firstly, we design the sliding surface that ensure the system tracking error reach it within a finite time. Then, an controller with a disturbance observer is designed, which achieves the convergence of the errors within a finite time. At last, numerical simulations, which compare high-gain finite time control with normal finite time control, demonstrate the validity of the method we proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choi, T.-Y., Choi, B.-S., Seo, K.-H.: Position and compliance control of a pneumatic muscle actuated manipulator for enhanced safety. IEEE Trans. Control Syst. Technol. 19, 832–842 (2011)

    Article  Google Scholar 

  2. Huang, J., Tu, X., He, J.: Design and evaluation of the RUPERT wearable upper extremity exoskeleton robot for clinical and in-home therapies. IEEE Trans. Syst. Man Cybern. Syst. 46, 926–935 (2016)

    Article  Google Scholar 

  3. Huang, J., Cao, Y., Xiong, C.H., Zhang, H.T.: An echo state gaussian process based nonlinear model predictive control for pneumatic muscle actuators. IEEE Trans. Autom. Sci. Eng. (2018)

    Google Scholar 

  4. Huang, J., Qian, J.: Echo state network based predictive control with particle swarm optimization for pneumatic muscle actuator. J. Franklin Insti. 353, 2761–2782 (2016)

    Article  MathSciNet  Google Scholar 

  5. Chen C., Huang J.: T-S fuzzy logic control with genetic algorithm optimization for pneumatic muscle actuator. In: 2018 10th International Conference on Modelling, Identification and Control (ICMIC)

    Google Scholar 

  6. Kawashima, K., Sasaki, T., Ohkubo, A., Miyata, T., Kagawa, T.: Application of robot arm using fiber knitted type pneumatic artificial rubber muscles. In: IEEE Conference on Robotics and Automation, pp. 4937–4942. New Orleans (2004)

    Google Scholar 

  7. Xing, K., Huang, J., He, J., Wang, Y., Wu, J., Xu, Q.: Sliding mode tracking for actuators comprising pneumatic muscle and torsion spring. Trans. Inst. Meas. Control 34, 255–277 (2012)

    Article  Google Scholar 

  8. Bhat, S.P., Bernstein, D.S.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Autom. Control 43, 678–682 (1998)

    Article  MathSciNet  Google Scholar 

  9. Du, H. , Li, S.: Finite-time cooperative attitude control of multiple spacecraft using terminal sliding mode control technique. Int. J. Modell. Ident. Control (2012)

    Google Scholar 

  10. Saad, W., Sellami, A., Garcia, G.: Terminal sliding mode control-based MPPT for a photovoltaic system with uncertainties. Int. J. Modell. Ident. Control 29(2), 118–126 (2018)

    Article  Google Scholar 

  11. Levant, A., Michael, A.: Adjustment of high-order sliding mode controllers. Int. J. Robust Nonlinear Control 19, 1657–1672 (2009)

    Article  MathSciNet  Google Scholar 

  12. Chen, W.H.: Disturbance observer based control for nonlinear systems. IEEE/ASME Trans. Mechatron. 9, 706–710 (2004)

    Article  Google Scholar 

  13. Tan, C.P., Yu, X., Man, Z.: Terminal sliding mode observers for a class of nonlinear systems. Automatica 46, 1401–1404 (2010)

    Article  MathSciNet  Google Scholar 

  14. Reynolds, D.B., Repperger, D.W., Phillips, C.A., Bandry, G.: Modelling the dynamic characteristics of pneumatic muscle. Ann. Biomed. Eng. 31, 310–317 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shen, T., Huang, J. (2020). High Gain Finite-Time Trajectory Tracking Control of Pneumatic Muscle Actuator. In: Wang, R., Chen, Z., Zhang, W., Zhu, Q. (eds) Proceedings of the 11th International Conference on Modelling, Identification and Control (ICMIC2019). Lecture Notes in Electrical Engineering, vol 582. Springer, Singapore. https://doi.org/10.1007/978-981-15-0474-7_73

Download citation

Publish with us

Policies and ethics