Skip to main content

Pest Control of Jatropha curcas Plant for Different Response Functions

  • Conference paper
  • First Online:
Mathematical Analysis and Applications in Modeling (ICMAAM 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 302))

  • 605 Accesses

Abstract

Nowadays Jatropha curcas plants are being considered as a renewable energy feedstock for the production of biodiesel to overcome the crisis of natural fuel. The seeds of this plant contain oil which is one of the significant resources for alternative fuel production i.e. biodiesel. Though Jatropha curcas plant is proven to be toxic to many insects and animals, it is not pest and disease resistant. On this regard our research article presents formulation and analysis of a mathematical model for Jatropha plantation with a view to control its natural pests through application of biological pesticide. We assume linear and hyperbolic functional responses of predator for susceptible pest, where for infected pest the functional response is linear, as infected pests are weaker than susceptible pest and easy to catch. We study the dynamics of the system around each of the ecological feasible equilibrium. The reduction of disease eradication and predator-pest coexistence are observed around the predator free and disease free equilibrium respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ju, L.P., Chen, B.: Embodied energy and energy evaluation of a typical biodiesel production chain in China. Ecol. Model. 222, 2385–2392 (2011)

    Article  Google Scholar 

  2. Chowdhury, J., Al Basir, F., Pal, J., Roy, P.K.: Studies on biodiesel production from Jatropha curcas oil using chemical and biochemical methods–a mathematical approach. Fuel 158, 503–511 (2015)

    Article  Google Scholar 

  3. Roy, P.K., Datta, S., Nandi, S., Basir, F.A.: Effect of mass transfer kinetics for maximum production of biodiesel from Jatropha Curcas oil: a mathematical approach. Fuel 134, 39–44 (2014)

    Article  Google Scholar 

  4. Chowdhury, J., Al Basir, F., Pal, J., Roy, P.K.: Pest control for Jatropha curcas plant through viral disease: a mathematical approach.Nonlin. Stud. 23(4), 517–532 (2016)

    Google Scholar 

  5. Dias, W.O., Wanner, E.F., Cardoso, R.T.: A multiobjective optimization approach for combating Aedes aegypti using chemical and biological alternated step-size control. Math. Biosci. 269, 37–47 (2015)

    Article  MathSciNet  Google Scholar 

  6. E. Venturino, P. K. Roy, F. Al Basir, A. Datta, A model for the control of the mosaic virus disease in Jatropha Curcas plantations. Energy Ecology Environ. 10.1007-40974-016-0033-8 (2016)

    Google Scholar 

  7. Georghiou, G.P.: Overview of insecticide resistance, In: ACS Symposium Series-American Chemical Society (USA) (1990)

    Google Scholar 

  8. Thomas, M.B.: Ecological approaches and the development of truly integrated pest management. Proc. Natl. Acad. Sci 96(11), 5944–5951 (1999)

    Article  Google Scholar 

  9. Van Frankenhuyzen, K., Reardon, R.C., Dubois, N.R.: Forest defoliators, Field Manual of Techniques in Invertebrate Pathology, pp. 481–504. Springer, Netherlands (2007)

    Google Scholar 

  10. G. M. Tatchell, Microbial insecticides and IPM: current and future opportunities for the use of biopesticides. In: BCPC Symposium Proceedings (1997)

    Google Scholar 

  11. Dent, D.R.: Integrated pest management and microbial insecticides in Microbial Insecticides: Novelty or Necessity? In: Proceedings of the British Crop Protection Council Symposium 127–138, (1997)

    Google Scholar 

  12. Bhattacharya, D.K., Karan, S.: On bionomic model of integrated pest management of a single pest population. J. Differ. Equat. Dyn. Syst. 12(4), 301–330 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Franz, J.M., Huber, J.: Feldversuche mit insektenpathogenen Viren in Europa. Entomophaga 24(4), 333–343 (1979)

    Article  Google Scholar 

  14. Van den Bosch, R., Messenger P.S., Gutierrez, A.P.: Microbial control of insects, weeds, and plant pathogens. In: An Introduction to Biological Control. Springer US, pp. 59–74 (1982)

    Google Scholar 

  15. Terren, M., Mignon, J., De Clerck, C., Jijakli, H., Savery, S.: Principal disease and insect pests of Jatropha curcas L. in the Lower Valley of the Senegal River. Tropicultura, 30(4), 222–229 (2012)

    Google Scholar 

  16. Bhattacharyya, S., Bhattacharya, D.K.: Pest control through viral disease: mathematical modeling and analysis. J. Theor. Biol. 238(1), 177–197 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research work is financially supported by DST-INSPIRE fellowship, Government of India, Department of Mathematics, Jadavpur University, Kolkata-700032, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priti Kumar Roy .

Editor information

Editors and Affiliations

Appendices

Appendix A

Coefficients of \(A\bar{s}^3+B\bar{s}^2+C\bar{s}+D=0\) are as follows,

\(A= \frac{A'}{r_j k_s \xi [\mu _v -(\kappa \lambda - \gamma )\bar{s}]}\), \(B= \frac{B'}{r_j k_s \xi [\mu _v -(\kappa \lambda - \gamma )\bar{s}]}\),

\(C= \frac{C'}{r_j k_s \xi [\mu _v -(\kappa \lambda - \gamma )\bar{s}]}\), \(D=\frac{D'-\lambda \pi _v r_j k_s \xi }{r_j k_s \xi [\mu _v -(\kappa \lambda - \gamma )\bar{s}]}\);

where

\(A'= r_s k_j \alpha \xi (\gamma - \kappa \lambda )\), \(B'= r_s k_j (\alpha \xi k_s \kappa \lambda - \alpha \xi \lambda k_s + \alpha \xi \mu _v + \xi r_j \kappa \lambda - r_j \xi \gamma + \alpha \mu \lambda )\),

\(C'= r_s k_j (\xi \lambda r_j k_s - \alpha \xi \mu _v k_s - \xi k_s \kappa \lambda r_j - \xi \mu _v r_j - \lambda \mu _v r_j)\), \(D'= \xi \mu _v r_s r_j k_j k_s\),

The Jacobian matrix for predator free equilibrium point for type I functional response is given by,

$$J = \left( \begin{array}{ccccc} a^{11} &{} a^{12} &{} 0 &{} 0 &{} 0 \\ a^{21} &{} a^{22} &{} a^{23} &{} a^{24} &{} a^{25}\\ 0 &{} a^{32} &{} a^{33} &{} a^{34} &{} a^{35}\\ 0 &{} 0 &{} 0 &{} a^{44} &{} 0\\ 0 &{} a^{52} &{} a^{53} &{} 0 &{} a^{55} \end{array} \right) $$

where

\(a^{11}=r_j-\alpha \bar{s}-2\bar{j}\frac{r_j}{k_j}\), \(a^{12}=-\alpha \bar{j}\), \(a^{21}=r_s\bar{s}(1-\frac{\bar{s}+\bar{i}}{k_s})\),

\(a^{22}=r_s\bar{j}(1-\frac{\bar{s}+\bar{i}}{k_s})-\frac{r_s}{k_s}\bar{j}\bar{s}-\lambda \bar{v}\), \(a^{23}=-\frac{r_s}{k_s}\bar{j}\bar{s}\),

\(a^{24}=-\beta \bar{s}\), \(a^{25}=-\lambda \bar{s}\), \(a^{32}=\lambda \bar{v}\), \(a^{33}=-\xi \),

\(a^{34}=-l\bar{i}\), \(a^{35}=\lambda \bar{s}\), \(a^{44}=-d_p+\theta _1 \beta \bar{s}+\theta _2 \bar{i}\), \(a^{52}=-\gamma \bar{v}\), \(a^{53}=k\xi \), \(a^{55}=-(\mu _v+\gamma \bar{s}).\)

The coefficients of Eq. 1 are as follows,

\(B_1=-\sum {a^{ii}}\),

\(B_2=\sum {a^{ii}a^{jj}}-\sum {a^{ij}a^{ji}}\),

\(B_3=-\sum {a^{ii}a^{jj}a^{kk}}+\sum {a^{ij}a^{ji}a^{kk}}-\sum {a^{ij}a^{jk}a^{ki}}\),

\(B_4=\sum {a^{ii}a^{jj}a^{kk}a^{ll}}-\sum {a^{ij}a^{ji}a^{kk}a^{ll}}+\sum {a^{ij}a^{jk}a^{ki}a^{ll}}-\sum {a^{ij}a^{ji}a^{kl}a^{lk}}\),

\(B_5=-a^{ii}a^{jj}a^{kk}a^{ll}a^{mm}+\sum {a^{ij}a^{ji}a^{kk}a^{ll}a^{mm}}-\sum {a^{ij}a^{jk}a^{ki}a^{ll}a^{nn}}+\sum {a^{ij}a^{ji}a^{kl}a^{lk}a^{mm}}\).

(\(i,j,k,l,m=\{1,2,3,4,5\}\) and \(i\ne {j}\ne {k}\ne {l}\ne {m}\))

Appendix B

The coefficients of Eq. 5 are given as follows,

\(C_1\)=\(\frac{l\mu _v \theta _2}{\varepsilon _p s^*}+\gamma l \theta _2\),

\(C_2\)=\(k\lambda \xi -\mu _v\xi -\frac{l\mu _v\theta _1\beta }{\varepsilon _p}-\frac{l\mu _v d_p}{\varepsilon _p s^*}-\gamma \xi -\frac{\gamma l}{\varepsilon _p}(\theta _1\beta s^*-d_p)\),

\(C_3\)=\(\lambda \pi _v\).

The constants in \((s-a)(s-b)>0 (a<b)\) are

\(a=\frac{-(\varepsilon _p\mu _v\xi +l\mu _v\theta _1\beta +\varepsilon _p\gamma \xi -\kappa \varepsilon _p\xi -l\gamma d_p)-\surd ((\varepsilon _p\mu _v\xi +l\mu _v\theta _1\beta +\varepsilon _p\gamma \xi -\kappa \varepsilon _p\xi -l\gamma d_p)^2-4l^2\gamma \theta _1\beta \mu _v d_p)}{2l\gamma \theta _1\beta }\) and

\(b=\frac{-(\varepsilon _p\mu _v\xi +l\mu _v\theta _1\beta +\varepsilon _p\gamma \xi -\kappa \varepsilon _p\xi -l\gamma d_p)+\surd ((\varepsilon _p\mu _v\xi +l\mu _v\theta _1\beta +\varepsilon _p\gamma \xi -\kappa \varepsilon _p\xi -l\gamma d_p)^2-4l^2\gamma \theta _1\beta \mu _v d_p)}{2l\gamma \theta _1\beta }\).

The Jacobian matrix for the interior equilibrium point for type I functional response is given by,

$$J = \left( \begin{array}{ccccc} a_{11} &{} a_{12} &{} 0 &{} 0 &{} 0 \\ a_{21} &{} a_{22} &{} a_{23} &{} a_{24} &{} a_{25}\\ 0 &{} a_{32} &{} a_{33} &{} a_{34} &{} a_{35}\\ 0 &{} a_{42} &{} a_{43} &{} a_{44} &{} 0\\ 0 &{} a_{52} &{} a_{53} &{} 0 &{} a_{55} \end{array} \right) $$

where,

where, \(a_{11}=r_j-\alpha s^*-2j^*\frac{r_j}{k_j}\), \(a_{12}=-\alpha j^*\), \(a_{21}=r_ss^*(1-\frac{s^*+i^*}{k_s})\),

\(a_{22}=r_sj^*(1-\frac{s^*+i^*}{k_s})-\frac{r_s}{k_s}j^*s^*-\lambda v^*-\beta p^*\), \(a_{23}=-\frac{r_s}{k_s}j^*s^*\),

\(a_{24}=-\beta s^*\), \(a_{25}=-\lambda s^*\), \(a_{32}=\lambda v^*\), \(a_{33}=-(\xi +lp^*)\),

\(a_{34}=-li^*\), \(a_{35}=\lambda s^*\), \(a_{42}=\theta _1 \beta p^*\), \(a_{43}=\theta _2 p^*\),

\(a_{44}=-d_p-2\varepsilon _p p^*+\theta _1 \beta s^*+\theta _2 i^*\), \(a_{52}=-\gamma v^*\) \(a_{53}=\kappa \xi \) \(a_{55}=-(\mu _v+\gamma s^*).\)

The coefficients of Eq. 6 are as follows,

\(D_1=-\sum {a_{ii}}\),

\(D_2=\sum {a_{ii}a_{jj}}-\sum {a_{ij}a_{ji}}\),

\(D_3=-\sum {a_{ii}a_{jj}a_{kk}}+\sum {a_{ij}a_{ji}a_{kk}}-\sum {a_{ij}a_{jk}a_{ki}}\),

\(D_4=\sum {a_{ii}a_{jj}a_{kk}a_{ll}}-\sum {a_{ij}a_{ji}a_{kk}a_{ll}}+\sum {a_{ij}a_{jk}a_{ki}a_{ll}}-\sum {a_{ij}a_{ji}a_{kl}a_{lk}}\),

\(D_5=-a_{ii}a_{jj}a_{kk}a_{ll}a_{mm}+\sum {a_{ij}a_{ji}a_{kk}a_{ll}a_{mm}}-\sum {a_{ij}a_{jk}a_{ki}a_{ll}a_{nn}}+\sum {a_{ij}a_{ji}a_{kl}a_{lk}a_{mm}}-\sum {a_{ii}a_{jk}a_{kl}a_{lm}a_{mj}}\).

(\(i,j,k,l,m=\{1,2,3,4,5\}\) and \(i\ne {j}\ne {k}\ne {l}\ne {m}\))

Appendix C

Coefficients of \(\grave{A}\hat{s}^3+\grave{B}\hat{s}^2+\grave{C}\hat{s}+\grave{D}=0\) are as follows,

\(\grave{A}= \frac{\tilde{A}}{r_j k_s \xi [\mu _v -(\kappa \lambda - \gamma )\hat{s}]}\), \(\grave{B}= \frac{\tilde{B}}{r_j k_s \xi [\mu _v -(\kappa \lambda - \gamma )\hat{s}]}\),

\(\grave{C}= \frac{\tilde{C}}{r_j k_s \xi [\mu _v -(\kappa \lambda - \gamma )\hat{s}]}\), \(\grave{D}=\frac{\tilde{D}-\lambda \pi _v r_j k_s \xi }{r_j k_s \xi [\mu _v -(\kappa \lambda - \gamma )\hat{s}]}\);

where

\(\tilde{A}= r_s k_j \alpha \xi (\gamma - \kappa \lambda )\), \(\tilde{B}= r_s k_j (\alpha \xi k_s \kappa \lambda - \alpha \xi \lambda k_s + \alpha \xi \mu _v + \xi r_j \kappa \lambda - r_j \xi \gamma + \alpha \mu \lambda )\),

\(\tilde{C}= r_s k_j (\xi \lambda r_j k_s - \alpha \xi \mu _v k_s - \xi k_s \kappa \lambda r_j - \xi \mu _v r_j - \lambda \mu _v r_j)\), \(\tilde{D}= \xi \mu _v r_s r_j k_j k_s\),

The Jacobian matrix for the predator-free equilibrium point for type II functional response is given by,

$$ J = \left( \begin{array}{ccccc} b^{11} &{} b^{12} &{} 0 &{} 0 &{} 0 \\ b^{21} &{} b^{22} &{} b^{23} &{} b^{24} &{} b^{25}\\ 0 &{} b^{32} &{} b^{33} &{} b^{34} &{} b^{35}\\ 0 &{} 0 &{} 0 &{} b^{44} &{} 0\\ 0 &{} b^{52} &{} b^{53} &{} 0 &{} b^{55} \end{array} \right) $$

where

\(b^{11}=r_j-\alpha \hat{s}-2\hat{j}\frac{r_j}{k_j}\), \(b^{12}=-\alpha \hat{j}\), \(b^{21}=r_s\hat{s}(1-\frac{\hat{s}+\hat{i}}{k_s})\),

\(b^{22}=r_s\hat{j}(1-\frac{\hat{s}+\hat{i}}{k_s})-\frac{r_s}{k_s}\hat{j}\hat{s}-\lambda \hat{v}\), \(b^{23}=-\frac{r_s}{k_s}\hat{j}\hat{s}\),

\(b^{24}=-\beta \frac{\hat{s}}{\alpha +\hat{s}}\), \(b^{25}=-\lambda \hat{s}\), \(b^{32}=\lambda \hat{v}\), \(b^{33}=-\xi \),

\(b^{34}=-l\hat{i}\), \(b^{35}=\lambda \hat{s}\), \(b^{44}=-d_p+\theta _1 \beta \frac{\hat{s}}{\alpha +\hat{s}}+\theta _2 \hat{i}\), \(b^{52}=-\gamma \hat{v}\), \(b^{53}=\kappa \xi \), \(b^{55}=-(\mu _v+\gamma \hat{s}).\)

The coefficients of Eq.  9 are as follows,

\(b_1=-\sum {b^{ii}}\),

\(b_2=\sum {b^{ii}b^{jj}}-\sum {b^{ij}b^{ji}}\),

\(b_3=-\sum {b^{ii}b^{jj}b^{kk}}+\sum {b^{ij}b^{ji}b^{kk}}-\sum {b^{ij}b^{jk}b^{ki}}\),

\(b_4=\sum {b^{ii}b^{jj}b^{kk}b^{ll}}-\sum {b^{ij}b^{ji}b^{kk}b^{ll}}+\sum {b^{ij}b^{jk}b^{ki}b^{ll}}-\sum {b^{ij}b^{ji}b^{kl}b^{lk}}\),

\(b_5=-b^{ii}b^{jj}b^{kk}b^{ll}b^{mm}+\sum {b^{ij}b^{ji}b^{kk}b^{ll}b^{mm}}-\sum {b^{ij}b^{jk}b^{ki}b^{ll}b^{nn}}+\sum {b^{ij}b^{ji}b^{kl}b^{lk}b^{mm}}\).

(\(i,j,k,l,m=\{1,2,3,4,5\}\) and \(i\ne {j}\ne {k}\ne {l}\ne {m}\))

Appendix D

The coefficients of Eq. 11 are as follows,

\(c_1=\pi _v\lambda \varepsilon _p r_j^2+\kappa \xi \lambda \varepsilon _p r_j^2-\gamma \xi \varepsilon _pr_j^2i_*-\gamma \theta _1\beta r_j^2+\gamma \theta _2\alpha k_j a r_j-\gamma \theta _2 r_ji_*\),

\(c_2=-\pi _v\lambda r_j\varepsilon _pa\alpha k_j-\kappa \xi \lambda r_j \varepsilon _pa\alpha k_ji_*-2\pi _v\lambda r_j^2\varepsilon _p k_j-2\kappa k_j\xi \lambda r_j^2\varepsilon _p+\\ \xi \mu _v\alpha k_jr_j\varepsilon _pi-\mu _v\alpha k_jld_pr_ji_*+\theta _1\beta r_j+\theta _2i_*+\gamma \xi \varepsilon _p a\alpha r_jk_ji_*+2\gamma \xi \varepsilon _pr_j^2k_ji_*-\gamma r_jd_pal\alpha r_ji_*-\\ \gamma r_j^2d_pk_jli_*+\gamma r_j^2\theta _1\beta k_j+\gamma r_jk_j\theta _1\beta +\gamma r_jk_j^2\theta _2a\alpha +\gamma r_j^2\theta _2k_ji_*+\\ \gamma r_jk_j\theta _2i_*,\)

\(c_3=\pi _v\lambda r_j\varepsilon _pa\alpha k_j^2+\kappa k_j^2\xi \lambda r_j^2\varepsilon _p+\kappa \xi \lambda r_j\varepsilon _pa\alpha k_j^2i_*-\xi \mu _v\alpha ^2k_j^2\varepsilon _p-\xi \mu _v\alpha k_j^2r_j\varepsilon _pi_*\\ +\mu _v\alpha ^2k_j^2ld_pai_*+\mu _v\alpha k_j^2ld_pr_ji_*-\theta _1\beta r_jk_j-\theta _2a\alpha k_ji_*-\theta _2k_jr_ji_*-\\ \lambda \xi \varepsilon _pa\alpha r_jk_j^2i_*-\gamma \xi \varepsilon _p r_j^2k_j^2i_*+\gamma r_jk_j^2d_pal\alpha i_*+\gamma r_j^2k_j^2d_pli_*-\gamma r_j^2k_j^2\theta _1\beta - \\ \gamma r_j^2k_j^2\theta _2i_*.\)

The Jacobian matrix for the interior equilibrium point for type II functional response is given by,

$$ J = \left( \begin{array}{ccccc} b_{11} &{} b_{12} &{} 0 &{} 0 &{} 0 \\ b_{21} &{} b_{22} &{} b_{23} &{} b_{24} &{} b_{25}\\ 0 &{} b_{32} &{} b_{33} &{} b_{34} &{} b_{35}\\ 0 &{} b_{42} &{} b_{43} &{} b_{44} &{} 0\\ 0 &{} b_{52} &{} b_{53} &{} 0 &{} b_{55} \end{array} \right) $$

where,

\(b_{11}=r_j-\alpha s^*-2j^*\frac{r_j}{k_j}\), \(b_{12}=-\alpha j^*\), \(b_{21}=r_ss^*(1-\frac{s^*+i^*}{k_s})\),

\(b_{22}=r_sj^*(1-\frac{s^*+i^*}{k_s})-\frac{r_s}{k_s}j^*s^*-\lambda v^*-\beta p^*\), \(b_{23}=-\frac{r_s}{k_s}j^*s^*\),

\(b_{24}=-\beta s^*\), \(b_{25}=-\lambda s^*\), \(b_{32}=\lambda v^*\), \(b_{33}=-(\xi +lp^*)\),

\(b_{34}=-li^*\), \(b_{35}=\lambda s^*\), \(b_{42}=\theta _1 \beta p^*\), \(b_{43}=\theta _2 p^*\),

\(b_{44}=-d_p-2\varepsilon _p p^*+\theta _1 \beta s^*+\theta _2 i^*\), \(b_{52}=-\gamma v^*\), \(b_{53}=\kappa \xi \), \(b_{55}=-(\mu _v+\gamma s^*)\).

The coefficients of Eq. 12 are as follows,

\(\grave{B_1}=-\sum {b_{ii}}\),

\(\grave{B_2}=\sum {b_{ii}b_{jj}}-\sum {b_{ij}b_{ji}}\),

\(\grave{B_3}=-\sum {b_{ii}b_{jj}b_{kk}}+\sum {b_{ij}b_{ji}b_{kk}}-\sum {b_{ij}b_{jk}b_{ki}}\),

\(\grave{B_4}=\sum {b_{ii}b_{jj}b_{kk}b_{ll}}-\sum {b_{ij}b_{ji}b_{kk}b_{ll}}+\sum {b_{ij}b_{jk}b_{ki}b_{ll}}-\sum {b_{ij}b_{ji}b_{kl}b_{lk}}\),

\(\grave{B_5}=-b_{ii}b_{jj}b_{kk}b_{ll}b_{mm}+\sum {b_{ij}b_{ji}b_{kk}b_{ll}b_{mm}}-\sum {b_{ij}b_{jk}b_{ki}b_{ll}b_{nn}}+\sum {b_{ij}b_{ji}b_{kl}b_{lk}b_{mm}}-\sum {b_{ii}b_{jk}b_{kl}b_{lm}b_{mj}}\).

(\(i,j,k,l,m=\{1,2,3,4,5\}\) and \(i\ne {j}\ne {k}\ne {l}\ne {m}\))

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sengupta, A., Chowdhury, J., Cao, X., Roy, P.K. (2020). Pest Control of Jatropha curcas Plant for Different Response Functions. In: Roy, P., Cao, X., Li, XZ., Das, P., Deo, S. (eds) Mathematical Analysis and Applications in Modeling. ICMAAM 2018. Springer Proceedings in Mathematics & Statistics, vol 302. Springer, Singapore. https://doi.org/10.1007/978-981-15-0422-8_32

Download citation

Publish with us

Policies and ethics