Skip to main content

The Use of Reaction Network Theory for Finding Network Motifs in Oscillatory Mechanisms and Kinetic Parameter Estimation

  • Conference paper
  • First Online:
Mathematical Analysis and Applications in Modeling (ICMAAM 2018)

Abstract

Stoichiometric network analysis (SNA) is a method of studying stability of steady states of reaction systems obeying mass action kinetics. Reaction rates are expressed as a linear combination of elementary subnetworks with nonnegative coefficients (convex parameters) as opposed to standard formulation using rate coefficients and input parameters (kinetic parameters). We present examples of core reaction subnetworks that provide for oscillatory instability. Frequently there is an autocatalytic cycle in the core subnetwork, but in biochemical reactions such cycle is often replaced by a pathway called competitive autocatalysis. Rate coefficients in complex networks are often only partly known. We present a method of estimating the unknown rate coefficients, in which known/measured kinetic parameters and steady state concentrations are used to determine convex parameters, which in turn allows for determination of unknown rate coefficients by solving a set of constraint equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albers, C.J., Critchley, F., Gower, J.C.: Quadratic minimisation problems in statistics. J. Multivar. Anal. 102(3), 698–713 (2011)

    Article  MathSciNet  Google Scholar 

  2. Cerveny, J., Salagovic, J., Muzika, F., Safranek, D., Schreiber, I.: Influence of circadian clocks on optimal regime of central C-N metabolism of cyanobacteria. In: Mishra, A.K., Tiwari, D.N., Rai, A.N. (eds.) Cyanobacteria: From Basic Science to Applications, Chap. 9, pp. 193–206. Academic Press, London (2019)

    Chapter  Google Scholar 

  3. Clarke, B.L.: Stability of complex reaction networks. Adv. Chem. Phys. 43, 1–278 (1980)

    Google Scholar 

  4. Eiswirth, M., Bürger, J., Strasser, P., Ertl, G.: Oscillating Langmuir-Hinshelwood mechanisms. J. Phys. Chem. 100(49), 19118–19123 (1996)

    Article  Google Scholar 

  5. Eiswirth, M., Freund, A., Ross, J.: Mechanistic classification of chemical oscillators and the role of species. Adv. Chem. Phys. 80, 127–199 (1991)

    Google Scholar 

  6. Errami, H., Eiswirth, M., Grigoriev, D., Seiler, W.M., Sturm, T., Weber, A.: Detection of Hopf bifurcations in chemical reaction networks using convex coordinates. J. Comput. Phys. 291, 279–302 (2015)

    Article  MathSciNet  Google Scholar 

  7. Gonze, D.: Modeling circadian clocks: from equations to oscillations. Cent. Eur. J. Biol. 6(5), 699–711 (2011)

    Google Scholar 

  8. Hadac, O., Muzika, F., Nevoral, V., Pribyl, M., Schreiber, I.: Minimal oscillating subnetwork in the Huang-Ferrell model of the MAPK cascade. Plos One 12(6) (2017)

    Article  Google Scholar 

  9. Hadley, G.: Linear Programming. Addison-Wesley Publishing Company (1962)

    Google Scholar 

  10. Marsden, J.E., McCracken, M.: The Hopf Bifurcation and Its Applications. Springer, New York (1976)

    Book  Google Scholar 

  11. Muzika, F., Jurasek, R., Schreiberova, L., Radojkovic, V., Schreiber, I.: Identifying the oscillatory mechanism of the glucose oxidase-catalase coupled enzyme system. J. Phys. Chem. A 121(40), 7518–7523 (2017)

    Article  Google Scholar 

  12. Noyes, R.M., Field, R.J., Koros, E.: Oscillations in chemical systems. 1. Detailed mechanism in a system showing temporal oscillations. J. Am. Chem. Soc. 94(4), 1394–1395 (1972)

    Article  Google Scholar 

  13. Palsson, B.: Systems Biology: Properties of Reconstructed Networks. Cambridge University Press, Cambridge, New York (2006)

    Book  Google Scholar 

  14. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in Fortran. Cambridge University Press, Cambridge (1986, 1992)

    Google Scholar 

  15. Radojkovic, V., Schreiber, I.: Constrained stoichiometric network analysis. PCCP 20, 9910–9921 (2018)

    Article  Google Scholar 

  16. Ross, J., Schreiber, I., Vlad, M.O.: Determination of Complex Reaction Mechanisms. Oxford University Press Inc., New York (2006)

    Google Scholar 

  17. Schilling, C.H., Letscher, D., Palsson, B.Ø.: Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J. Theor. Biol. 203(3), 229–248 (2000)

    Article  Google Scholar 

  18. Schreiber, I., Ross, J.: Mechanisms of oscillatory reactions deduced from bifurcation diagrams. J. Phys. Chem. A 107(46), 9846–9859 (2003)

    Article  Google Scholar 

  19. Zhabotinskii, A.M.: Periodic course of the oxidation of malonic acid in a solution (studies on the kinetics of Belousov’s reaction). Biofizika 9, 306–11 (1964)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the grant 18-24397S from the Czech Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Schreiber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schreiber, I., Radojković, V., Muzika, F., Jurašek, R., Schreiberová, L. (2020). The Use of Reaction Network Theory for Finding Network Motifs in Oscillatory Mechanisms and Kinetic Parameter Estimation. In: Roy, P., Cao, X., Li, XZ., Das, P., Deo, S. (eds) Mathematical Analysis and Applications in Modeling. ICMAAM 2018. Springer Proceedings in Mathematics & Statistics, vol 302. Springer, Singapore. https://doi.org/10.1007/978-981-15-0422-8_2

Download citation

Publish with us

Policies and ethics