Skip to main content

Diagnostic Testing in Uveitis

  • Chapter
  • First Online:
Uveitis

Part of the book series: Current Practices in Ophthalmology ((CUPROP))

  • 830 Accesses

Abstract

Introduction: The diagnostic workup upon the discovery of uveitis is challenging even for experienced ophthalmologists. This chapter gives a basic strategic overview when investigating the underlying cause of uveitis.

Diagnostic Strategy: There is no perfect diagnostic algorithm in uveitis. Rather, a detailed history and clinical exam provides clues that guide a more directed evaluation for an underlying cause, limiting the use of low positive predictive value (PPV) testing. Classifying the type of uveitis (laterality, granulomatous vs. nongranulomatous, location of inflammation) is an important step in developing an efficient diagnostic approach. Age, gender, race, and travel history are other important considerations.

Extraocular Imaging: Non-ocular imaging can be useful when determining a cause of uveitis. Chest radiography is frequently ordered during the initial workup in cases of unknown uveitis to evaluate for signs of tuberculosis and sarcoidosis. Chest X-ray is a safe and inexpensive first-line method, while chest computed tomography (CT) is more sensitive and specific in certain patient groups.

Infectious Testing: Samples of ocular fluid can be used to investigate specific pathogens in cases where infectious uveitis cannot be excluded. Polymerase chain reaction (PCR) is a directed method for which specific pathogens are investigated. Metagenomic deep sequencing is a novel unbiased sequencing technique capable of interrogating many pathogens at once that offers possible utility in the future. Tuberculosis and syphilis can mimic many types of uveitis and their testing should therefore be included in most initial uveitis workups.

Noninfectious Testing: Uveitis is frequently noninfectious in nature. Autoantibody testing, including antinuclear antibody (ANA) and rheumatoid factor (RF), is generally low yield. Human leukocyte antigen (HLA) testing can be useful in classifying certain uveitic entities, in particular birdshot chorioretinopathy and seronegative spondyloarthropathies. Urine beta-2 microglobulin and serum creatinine are important when evaluating a young patient for tubulointerstitial nephritis and uveitis syndrome (TINU). Tissue biopsy paired with histopathology, cytopathology, and immunohistochemistry are useful techniques when evaluating a patient for entities such as ocular sarcoidosis and primary vitreoretinal lymphoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosenbaum JT. An algorithm for the systemic evaluation of patients with uveitis: guidelines for the consultant. Semin Arthritis Rheum. 1990;19(4):248–57.

    Article  CAS  PubMed  Google Scholar 

  2. Smith JR, Rosenbaum JT. Management of uveitis: a rheumatologic perspective. Arthritis Rheum. 2002;46(2):309–18.

    Article  PubMed  Google Scholar 

  3. Rathinam SR, Babu M. Algorithmic approach in the diagnosis of uveitis. Indian J Ophthalmol. 2013;61(6):255–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dunn JP. Uveitis. Prim Care. 2015;42(3):305–23.

    Article  PubMed  Google Scholar 

  5. Lee CS, Randhawa S, Lee AY, Lam DL, Van Gelder RN. Patterns of laboratory testing utilization among uveitis specialists. Am J Ophthalmol. 2016;170:161–7.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hadjadj J, Dechartres A, Chapron T, et al. Relevance of diagnostic investigations in patients with uveitis: retrospective cohort study on 300 patients. Autoimmun Rev. 2017;16(5):504–11.

    Article  PubMed  Google Scholar 

  7. Seve P, Cacoub P, Bodaghi B, et al. Uveitis: diagnostic work-up. A literature review and recommendations from an expert committee. Autoimmun Rev. 2017;16(12):1254–64.

    Article  PubMed  Google Scholar 

  8. Rosenbaum JT, Wernick R. The utility of routine screening of patients with uveitis for systemic lupus erythematosus or tuberculosis. A Bayesian analysis. Arch Ophthalmol. 1990;108(9):1291–3.

    Article  CAS  PubMed  Google Scholar 

  9. de Parisot A, Kodjikian L, Errera MH, et al. Randomized controlled trial evaluating a standardized strategy for uveitis etiologic diagnosis (ULISSE). Am J Ophthalmol. 2017;178:176–85.

    Article  PubMed  Google Scholar 

  10. Febvay C, Kodjikian L, Maucort-Boulch D, et al. Clinical features and diagnostic evaluation of 83 biopsy-proven sarcoid uveitis cases. Br J Ophthalmol. 2015;99(10):1372–6.

    Article  PubMed  Google Scholar 

  11. Ganesh SK, Roopleen, Biswas J, Veena N. Role of high-resolution computerized tomography (HRCT) of the chest in granulomatous uveitis: a tertiary uveitis clinic experience from India. Ocul Immunol Inflamm. 2011;19(1):51–7.

    Article  PubMed  Google Scholar 

  12. Kaiser PK, Lowder CY, Sullivan P, et al. Chest computerized tomography in the evaluation of uveitis in elderly women. Am J Ophthalmol. 2002;133(4):499–505.

    Article  PubMed  Google Scholar 

  13. Wroblewski KJ, Hidayat AA, Neafie RC, Rao NA, Zapor M. Ocular tuberculosis: a clinicopathologic and molecular study. Ophthalmology. 2011;118(4):772–7.

    Article  PubMed  Google Scholar 

  14. Gil H, Fery-Blanco C, Schwartz C, et al. Contribution of cerebral magnetic resonance imaging to etiological investigation of uveitis. Rev Med Interne. 2014;35(12):790–3.

    Article  CAS  PubMed  Google Scholar 

  15. Petrushkin H, Kidd D, Pavesio C. Intermediate uveitis and multiple sclerosis: to scan or not to scan. Br J Ophthalmol. 2015;99(12):1591–3.

    Article  PubMed  Google Scholar 

  16. Algahtani H, Shirah B, Algahtani R, Alkahtani A, Alwadie S. Vogt Koyanagi Harada syndrome mimicking multiple sclerosis: a case report and review of the literature. Mult Scler Relat Disord. 2017;12:44–8.

    Article  PubMed  Google Scholar 

  17. Keles S, Ogul H, Pinar LC, Kantarci M. Teaching neuroimages: cerebral white matter involvement in a patient with Vogt-Koyanagi-Harada syndrome. Neurology. 2013;81(11):e85–6.

    Article  PubMed  Google Scholar 

  18. Mohamed C, Najib K, Essaadouni L. Radiological findings in Behcet disease. Pan Afr Med J. 2015;20:51.

    PubMed  PubMed Central  Google Scholar 

  19. Chan CC, Rubenstein JL, Coupland SE, et al. Primary vitreoretinal lymphoma: a report from an International Primary Central Nervous System Lymphoma Collaborative Group symposium. Oncologist. 2011;16(11):1589–99.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sen HN, Bodaghi B, Hoang PL, Nussenblatt R. Primary intraocular lymphoma: diagnosis and differential diagnosis. Ocul Immunol Inflamm. 2009;17(3):133–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Anwar Z, Galor A, Albini TA, Miller D, Perez V, Davis JL. The diagnostic utility of anterior chamber paracentesis with polymerase chain reaction in anterior uveitis. Am J Ophthalmol. 2013;155(5):781–6.

    Article  CAS  PubMed  Google Scholar 

  22. Chronopoulos A, Roquelaure D, Souteyrand G, Seebach JD, Schutz JS, Thumann G. Aqueous humor polymerase chain reaction in uveitis—utility and safety. BMC Ophthalmol. 2016;16(1):189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. De Groot-Mijnes JD, Rothova A, Van Loon AM, et al. Polymerase chain reaction and Goldmann-Witmer coefficient analysis are complimentary for the diagnosis of infectious uveitis. Am J Ophthalmol. 2006;141(2):313–8.

    Article  PubMed  CAS  Google Scholar 

  24. Errera MH, Goldschmidt P, Batellier L, et al. Real-time polymerase chain reaction and intraocular antibody production for the diagnosis of viral versus toxoplasmic infectious posterior uveitis. Graefes Arch Clin Exp Ophthalmol. 2011;249(12):1837–46.

    Article  PubMed  Google Scholar 

  25. Rothova A, de Boer JH, Ten Dam-van Loon NH, et al. Usefulness of aqueous humor analysis for the diagnosis of posterior uveitis. Ophthalmology. 2008;115(2):306–11.

    Article  PubMed  Google Scholar 

  26. Sugita S, Ogawa M, Shimizu N, et al. Use of a comprehensive polymerase chain reaction system for diagnosis of ocular infectious diseases. Ophthalmology. 2013;120(9):1761–8.

    Article  PubMed  Google Scholar 

  27. Barza M, Pavan PR, Doft BH, et al. Evaluation of microbiological diagnostic techniques in postoperative endophthalmitis in the endophthalmitis vitrectomy study. Arch Ophthalmol. 1997;115(9):1142–50.

    Article  CAS  PubMed  Google Scholar 

  28. Groen-Hakan F, Babu K, Tugal-Tutkun I, et al. Challenges of diagnosing viral anterior uveitis. Ocul Immunol Inflamm. 2017;25(5):710–20.

    Article  PubMed  Google Scholar 

  29. Relvas LJM, Antoun J, de Groot-Mijnes JDF, et al. Diagnosis of cytomegalovirus anterior uveitis in two European referral centers. Ocul Immunol Inflamm. 2018;26(1):116–21.

    Article  PubMed  Google Scholar 

  30. Doan T, Acharya NR, Pinsky BA, et al. Metagenomic DNA sequencing for the diagnosis of intraocular infections. Ophthalmology. 2017;124(8):1247–8.

    Article  PubMed  Google Scholar 

  31. Doan T, Wilson MR, Crawford ED, et al. Illuminating uveitis: metagenomic deep sequencing identifies common and rare pathogens. Genome Med. 2016;8(1):90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Feng Y, Diao N, Shao L, et al. Interferon-gamma release assay performance in pulmonary and extrapulmonary tuberculosis. PLoS One. 2012;7(3):e32652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ang M, Htoon HM, Chee SP. Diagnosis of tuberculous uveitis: clinical application of an interferon-gamma release assay. Ophthalmology. 2009;116(7):1391–6.

    Article  PubMed  Google Scholar 

  34. Ang M, Wong W, Ngan CC, Chee SP. Interferon-gamma release assay as a diagnostic test for tuberculosis-associated uveitis. Eye (Lond). 2012;26(5):658–65.

    Article  CAS  Google Scholar 

  35. Ang M, Wong WL, Li X, Chee SP. Interferon gamma release assay for the diagnosis of uveitis associated with tuberculosis: a Bayesian evaluation in the absence of a gold standard. Br J Ophthalmol. 2013;97(8):1062–7.

    Article  PubMed  Google Scholar 

  36. Ang M, Kiew SY, Wong WL, Chee SP. Discordance of two interferon-gamma release assays and tuberculin skin test in patients with uveitis. Br J Ophthalmol. 2014;98(12):1649–53.

    Article  PubMed  Google Scholar 

  37. Liu LL, Lin LR, Tong ML, et al. Incidence and risk factors for the prozone phenomenon in serologic testing for syphilis in a large cohort. Clin Infect Dis. 2014;59(3):384–9.

    Article  CAS  PubMed  Google Scholar 

  38. Davis JL. Ocular syphilis. Curr Opin Ophthalmol. 2014;25(6):513–8.

    Article  PubMed  Google Scholar 

  39. Dai T, Wu X, Zhou S, Wang Q, Li D. Clinical manifestations and cerebrospinal fluid status in ocular syphilis in HIV-negative patients. BMC Infect Dis. 2016;16:245.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Reekie I, Reddy Y. Use of lumbar punctures in the management of ocular syphilis. Semin Ophthalmol. 2018;33:271–4.

    PubMed  Google Scholar 

  41. CDC. Clinical advisory: ocular syphilis in the United States. 2016; https://www.cdc.gov/std/syphilis/clinicaladvisoryos2015.htm. Accessed Feb 9, 2018.

  42. Brydak-Godowska J, Kopacz D, Borkowski PK, et al. Seroprevalence of Bartonella species in patients with ocular inflammation. Adv Exp Med Biol. 2017;1020:33–42.

    Article  PubMed  Google Scholar 

  43. Papadia M, Aldigeri R, Herbort CP. The role of serology in active ocular toxoplasmosis. Int Ophthalmol. 2011;31(6):461–5.

    Article  PubMed  Google Scholar 

  44. Bernard A, Kodjikian L, Abukhashabh A, et al. Diagnosis of Lyme-associated uveitis: value of serological testing in a tertiary centre. Br J Ophthalmol. 2018;102(3):369–72.

    Article  PubMed  Google Scholar 

  45. Madsen KB, Wallmenius K, Fridman A, Pahlson C, Nilsson K. Seroprevalence against rickettsia and Borrelia species in patients with uveitis: a prospective survey. J Ophthalmol. 2017;2017:9247465.

    PubMed  PubMed Central  Google Scholar 

  46. Murray P. Serum autoantibodies and uveitis. Br J Ophthalmol. 1986;70(4):266–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gallagher K, Viswanathan A, Okhravi N. Association of systemic lupus erythematosus with uveitis. JAMA Ophthalmol. 2015;133(10):1190–3.

    Article  PubMed  Google Scholar 

  48. Lin P, Bhullar SS, Tessler HH, Goldstein DA. Immunologic markers as potential predictors of systemic autoimmune disease in patients with idiopathic scleritis. Am J Ophthalmol. 2008;145(3):463–71.

    Article  CAS  PubMed  Google Scholar 

  49. Wladis EJ, Pappa C, Cavaliere LF. Anticyclic-citrullinated protein antibodies in the diagnosis of ophthalmic inflammatory disease. Ophthal Plast Reconstr Surg. 2011;27(1):e1–2.

    Article  PubMed  Google Scholar 

  50. Lim MK, Sheen DH, Lee YJ, Mun YR, Park M, Shim SC. Anti-cyclic citrullinated peptide antibodies distinguish hepatitis B virus (HBV)-associated arthropathy from concomitant rheumatoid arthritis in patients with chronic HBV infection. J Rheumatol. 2009;36(4):712–6.

    Article  PubMed  Google Scholar 

  51. Nolle B, Coners H, Duncker G. ANCA in ocular inflammatory disorders. Adv Exp Med Biol. 1993;336:305–7.

    Article  CAS  PubMed  Google Scholar 

  52. Grange L, Dalal M, Nussenblatt RB, Sen HN. Autoimmune retinopathy. Am J Ophthalmol. 2014;157(2):266–72,e26.1

    Article  CAS  PubMed  Google Scholar 

  53. Braithwaite T, Holder GE, Lee RW, Plant GT, Tufail A. Diagnostic features of the autoimmune retinopathies. Autoimmun Rev. 2014;13(4–5):534–8.

    Article  CAS  PubMed  Google Scholar 

  54. Shimazaki K, Jirawuthiworavong GV, Heckenlively JR, Gordon LK. Frequency of anti-retinal antibodies in normal human serum. J Neuroophthalmol. 2008;28(1):5–11.

    Article  PubMed  Google Scholar 

  55. Choo SY. The HLA system: genetics, immunology, clinical testing, and clinical implications. Yonsei Med J. 2007;48(1):11–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zamecki KJ, Jabs DA. HLA typing in uveitis: use and misuse. Am J Ophthalmol. 2010;149(2):189–93, e182.

    Article  CAS  PubMed  Google Scholar 

  57. Szpak Y, Vieville JC, Tabary T, et al. Spontaneous retinopathy in HLA-A29 transgenic mice. Proc Natl Acad Sci U S A. 2001;98(5):2572–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Donvito B, Monnet D, Tabary T, et al. A new HLA extended haplotype containing the A∗2910 allele in birdshot retinochoroidopathy: susceptibility narrowed to the HLA molecule itself. Invest Ophthalmol Vis Sci. 2010;51(5):2525–8.

    Article  PubMed  Google Scholar 

  59. Kuiper J, Rothova A, de Boer J, Radstake T. The immunopathogenesis of birdshot chorioretinopathy; a bird of many feathers. Prog Retin Eye Res. 2015;44:99–110.

    Article  CAS  PubMed  Google Scholar 

  60. Nussenblatt RB, Mittal KK, Ryan S, Green WR, Maumenee AE. Birdshot retinochoroidopathy associated with HLA-A29 antigen and immune responsiveness to retinal S-antigen. Am J Ophthalmol. 1982;94(2):147–58.

    Article  CAS  PubMed  Google Scholar 

  61. Levinson RD, Rajalingam R, Park MS, et al. Human leukocyte antigen A29 subtypes associated with birdshot retinochoroidopathy. Am J Ophthalmol. 2004;138(4):631–4.

    Article  CAS  PubMed  Google Scholar 

  62. Donvito B, Monnet D, Tabary T, et al. Different HLA class IA region complotypes for HLA-A29.2 and -A29.1 antigens, identical in birdshot retinochoroidopathy patients or healthy individuals. Invest Ophthalmol Vis Sci. 2005;46(9):3227–32.

    Article  PubMed  Google Scholar 

  63. Vitale AT. Birdshot retinochoroidopathy. J Ophthalmic Vis Res. 2014;9(3):350–61.

    PubMed  PubMed Central  Google Scholar 

  64. Minos E, Barry RJ, Southworth S, et al. Birdshot chorioretinopathy: current knowledge and new concepts in pathophysiology, diagnosis, monitoring and treatment. Orphanet J Rare Dis. 2016;11(1):61.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Herbort CP Jr, Pavesio C, LeHoang P, et al. Why birdshot retinochoroiditis should rather be called ‘HLA-A29 uveitis’? Br J Ophthalmol. 2017;101(7):851–5.

    Article  PubMed  Google Scholar 

  66. Valls Pascual E, Fontanilla Ortega P, Vicens Bernabeu E, Martinez-Costa L, Blanco AR. Clinical characteristics, treatment and ocular complications of HLA-B27-related anterior uveitis and HLA-B27-non related anterior uveitis. Reumatol Clin. 2016;12(5):244–7.

    Article  PubMed  Google Scholar 

  67. Chang JH, McCluskey PJ, Wakefield D. Acute anterior uveitis and HLA-B27. Surv Ophthalmol. 2005;50(4):364–88.

    Article  PubMed  Google Scholar 

  68. Wakefield D, Yates W, Amjadi S, McCluskey P. HLA-B27 anterior uveitis: immunology and immunopathology. Ocul Immunol Inflamm. 2016;24(4):450–9.

    Article  CAS  PubMed  Google Scholar 

  69. Reveille JD, Hirsch R, Dillon CF, Carroll MD, Weisman MH. The prevalence of HLA-B27 in the US: data from the US National Health and nutrition examination survey, 2009. Arthritis Rheum. 2012;64(5):1407–11.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Robinson PC, Claushuis TA, Cortes A, et al. Genetic dissection of acute anterior uveitis reveals similarities and differences in associations observed with ankylosing spondylitis. Arthritis Rheumatol. 2015;67(1):140–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Paovic J, Paovic P, Sredovic V. Behcet’s disease: systemic and ocular manifestations. Biomed Res Int. 2013;2013:247345.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Klaeger AJ, Tran VT, Hiroz CA, Morisod L, Herbort CP. Use of ultrasound biomicroscopy, indocyanine green angiography and HLA-B51 testing as adjunct methods in the appraisal of Behcet’s uveitis. Int Ophthalmol. 2004;25(1):57–63.

    Article  PubMed  Google Scholar 

  73. Levinson RD, Park MS, Rikkers SM, et al. Strong associations between specific HLA-DQ and HLA-DR alleles and the tubulointerstitial nephritis and uveitis syndrome. Invest Ophthalmol Vis Sci. 2003;44(2):653–7.

    Article  PubMed  Google Scholar 

  74. Reddy AK, Hwang YS, Mandelcorn ED, Davis JL. HLA-DR, DQ class II DNA typing in pediatric panuveitis and tubulointerstitial nephritis and uveitis. Am J Ophthalmol. 2014;157(3):678–86, e671-672.

    Article  CAS  PubMed  Google Scholar 

  75. Hettinga YM, Scheerlinck LM, Lilien MR, Rothova A, de Boer JH. The value of measuring urinary beta2-microglobulin and serum creatinine for detecting tubulointerstitial nephritis and uveitis syndrome in young patients with uveitis. JAMA Ophthalmol. 2015;133(2):140–5.

    Article  PubMed  Google Scholar 

  76. Sahin O, Ziaei A, Karaismailoglu E, Taheri N. The serum angiotensin converting enzyme and lysozyme levels in patients with ocular involvement of autoimmune and infectious diseases. BMC Ophthalmol. 2016;16:19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Herbort CP, Rao NA, Mochizuki M, members of Scientific Committee of First International Workshop on Ocular S. International criteria for the diagnosis of ocular sarcoidosis: results of the first international workshop on ocular Sarcoidosis (IWOS). Ocul Immunol Inflamm. 2009;17(3):160–9.

    Article  CAS  PubMed  Google Scholar 

  78. Chan CC, Sen HN. Current concepts in diagnosing and managing primary vitreoretinal (intraocular) lymphoma. Discov Med. 2013;15(81):93–100.

    PubMed  PubMed Central  Google Scholar 

  79. Gonzales JA, Chan CC. Biopsy techniques and yields in diagnosing primary intraocular lymphoma. Int Ophthalmol. 2007;27(4):241–50.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Rajagopal R, Harbour JW. Diagnostic testing and treatment choices in primary vitreoretinal lymphoma. Retina. 2011;31(3):435–40.

    Article  CAS  PubMed  Google Scholar 

  81. Raja H, Salomao DR, Viswanatha DS, Pulido JS. Prevalence of Myd88 L265p mutation in histologically proven, diffuse large B-cell vitreoretinal lymphoma. Retina. 2016;36(3):624–8.

    Article  CAS  PubMed  Google Scholar 

  82. Bonzheim I, Giese S, Deuter C, et al. High frequency of MYD88 mutations in vitreoretinal B-cell lymphoma: a valuable tool to improve diagnostic yield of vitreous aspirates. Blood. 2015;126(1):76–9.

    Article  CAS  PubMed  Google Scholar 

  83. Cani AK, Hovelson DH, Demirci H, Johnson MW, Tomlins SA, Rao RC. Next generation sequencing of vitreoretinal lymphomas from small-volume intraocular liquid biopsies: new routes to targeted therapies. Oncotarget. 2017;8(5):7989–98.

    Article  PubMed  Google Scholar 

  84. Gonzales J, Doan T, Shantha JG, et al. Metagenomic deep sequencing of aqueous fluid detects intraocular lymphomas. Br J Ophthalmol. 2018;102(1):6–8.

    Article  PubMed  Google Scholar 

  85. Tsai JH, Sukavatcharin S, Rao NA. Utility of lumbar puncture in diagnosis of Vogt-Koyanagi-Harada disease. Int Ophthalmol. 2007;27(2–3):189–94.

    Article  PubMed  Google Scholar 

  86. Kira J. Vogt-Koyanagi-Harada disease and polymorphonuclear leukocytes pleocytosis in cerebrospinal fluid. Intern Med. 2006;45(14):839–40.

    Article  PubMed  Google Scholar 

  87. Livrea P, Simone IL, Trojano M, Pisicchio L, Logroscino G, Rosato A. Cerebrospinal fluid (CSF) parameters and clinical course of multiple sclerosis. Riv Neurol. 1987;57(3):189–96.

    CAS  PubMed  Google Scholar 

  88. Pohl D, Rostasy K, Reiber H, Hanefeld F. CSF characteristics in early-onset multiple sclerosis. Neurology. 2004;63(10):1966–7.

    Article  CAS  PubMed  Google Scholar 

  89. Saruhan-Direskeneli G, Yentur SP, Mutlu M, et al. Intrathecal oligoclonal IgG bands are infrequently found in neuro-Behcet’s disease. Clin Exp Rheumatol. 2013;31(3 Suppl 77):25–7.

    PubMed  Google Scholar 

  90. McLean BN, Miller D, Thompson EJ. Oligoclonal banding of IgG in CSF, blood-brain barrier function, and MRI findings in patients with sarcoidosis, systemic lupus erythematosus, and Behcet’s disease involving the nervous system. J Neurol Neurosurg Psychiatry. 1995;58(5):548–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Scott TF, Seay AR, Goust JM. Pattern and concentration of IgG in cerebrospinal fluid in neurosarcoidosis. Neurology. 1989;39(12):1637–9.

    Article  CAS  PubMed  Google Scholar 

  92. Borucki SJ, Nguyen BV, Ladoulis CT, McKendall RR. Cerebrospinal fluid immunoglobulin abnormalities in neurosarcoidosis. Arch Neurol. 1989;46(3):270–3.

    Article  CAS  PubMed  Google Scholar 

  93. Tong ML, Lin LR, Liu LL, et al. Analysis of 3 algorithms for syphilis serodiagnosis and implications for clinical management. Clin Infect Dis. 2014;58(8):1116–24.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Gonzales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joye, A., Gonzales, J. (2020). Diagnostic Testing in Uveitis. In: Lin, P. (eds) Uveitis . Current Practices in Ophthalmology. Springer, Singapore. https://doi.org/10.1007/978-981-15-0331-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0331-3_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0330-6

  • Online ISBN: 978-981-15-0331-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics