Skip to main content

Analysis of Data Aggregation Techniques in WSN

  • Conference paper
  • First Online:
Book cover International Conference on Innovative Computing and Communications

Abstract

Wireless sensor networks (WSNs) produce a huge amount of application-specific data. These data need to be processed and transmitted to base station, which is a costly affair. Since WSN nodes are resource-constrained, efficient data processing and conserving energy are prime challenges. It has been observed that most of the data sensed by the sensors are redundant in nature. If data redundancy can be reduced, then it will lead to an increased lifetime of the network and reduced latency. In this paper, we surveyed different techniques for reducing redundancy in data, and in particular through aggregation. We have discussed data aggregation taxonomy, challenges and critically analysed aggregation techniques proposed in the last 10 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Packet length.

  2. 2.

    Node which aggregates the incoming data [38].

  3. 3.

    The sensing area in which sensors are deployed.

References

  1. Akyildiz I, Su W, Sankarasubramaniam Y, Cayirci E (2002) Wireless sensor networks: a survey. Comput Networks 38(4):393–422

    Article  Google Scholar 

  2. Pantazis NA, Nikolidakis SA, Vergados DD (2013) Energy-efficient routing protocols in wireless sensor networks: a survey. IEEE Commun Surveys Tutorials 15(2):551–591

    Article  Google Scholar 

  3. Rault T, Bouabdallah A, Challal Y (2014) Energy efficiency in wireless sensor networks: a top-down survey. Comput Networks 67(Suppl C):104–122

    Article  Google Scholar 

  4. Zuhra FT, Bakar KA, Ahmed A, Tunio MA (2017) Routing protocols in wireless body sensor networks: a comprehensive survey. J Network Comput Appl 99(Suppl C):73–97

    Article  Google Scholar 

  5. Rai R, Rai P (2019) Survey on energy-efficient routing protocols in wireless sensor networks using game theory. In: Advances in communication, cloud, and big data. Springer, Berlin, pp. 1–9

    Google Scholar 

  6. Heinzelman W, Chandrakasan A, Balakrishnan H (2002) An application-specific protocol architecture for wireless microsensor networks. IEEE Trans Wireless Commun 1:660–670

    Article  Google Scholar 

  7. Wang A, Sodini C (2004) A simple energy model for wireless microsensor transceivers. In: Global telecommunications conference (GLOBECOM ’04). IEEE, vol 5, pp 3205–3209, Nov 2004

    Google Scholar 

  8. Miller M, Vaidya N (2005) A mac protocol to reduce sensor network energy consumption using a wakeup radio. IEEE Trans Mob Comput 4:228–242

    Article  Google Scholar 

  9. Mallinson M, Drane P, Hussain S (2007) Discrete radio power level consumption model in wireless sensor networks. In: IEEE International conference on mobile adhoc and sensor systems (MASS 2007), pp 1–6, Oct 2007

    Google Scholar 

  10. Han B, Zhang D, Yang T (2008) Energy consumption analysis and energy management strategy for sensor node. In: International conference on information and automation (ICIA 2008), pp 211–214, June 2008

    Google Scholar 

  11. Halgamuge MN, Zukerman M, Ramamohanarao K, Vu HI (2009) An estimation of sensor energy consumption. In: Progress in electromagnetics research B

    Google Scholar 

  12. Zhou H-Y, Luo D-Y, Gao Y, Zuo D-C (2011) Modeling of node energy consumption for wireless sensor networks. Wireless Sens Network 3(01):18

    Article  Google Scholar 

  13. Kumar V, Yadav S, Kumar V, Sengupta J, Tripathi R, Tiwari S (2018) Optimal clustering in weibull distributed wsns based on realistic energy dissipation model. In: Progress in computing, analytics and networking, pp 61–73. Springer, Berlin

    Google Scholar 

  14. Madden S, Franklin MJ, Hellerstein JM, Hong W (2002) Tag: a tiny aggregation service for ad-hoc sensor networks. ACM SIGOPS Oper Syst Rev 36:131–146

    Article  Google Scholar 

  15. Roy NR, Chandra P (2018) A note on optimum cluster estimation in leach protocol. IEEE Access 6:65690–65696

    Article  Google Scholar 

  16. Hoang AT, Motani M (2005) Exploiting wireless broadcast in spatially correlated sensor networks. In: IEEE international conference on commun (ICC 2005), vol 4, pp 2807–2811. IEEE

    Google Scholar 

  17. Hoang AT, Motani M (2007) Collaborative broadcasting and compression in cluster-based wireless sensor networks. ACM Trans Sens Networks (TOSN) 3(3):17

    Article  Google Scholar 

  18. Kimura N, Latifi S (2005) A survey on data compression in wireless sensor networks. In: International conference on information technology: coding and computing (ITCC 2005), vol 2, pp 8–13. IEEE

    Google Scholar 

  19. Srisooksai T, Keamarungsi K, Lamsrichan P, Araki K (2012) Practical data compression in wireless sensor networks: a survey. J Network Comput Appl 35(1):37–59

    Article  Google Scholar 

  20. Barr KC, Asanović K (2006) Energy-aware lossless data compression. ACM Trans Comput Syst (TOCS) 24(3):250–291

    Article  Google Scholar 

  21. Oka A, Lampe L (2008) Energy efficient distributed filtering with wireless sensor networks. IEEE Trans Signal Process 56(5):2062–2075

    Article  MathSciNet  Google Scholar 

  22. Teng J, Snoussi H, Richard C (2010) Decentralized variational filtering for target tracking in binary sensor networks. IEEE Trans Mob Comput 9(10):1465–1477

    Article  Google Scholar 

  23. Tang Z, Glover I, Evans A, Monro D, He J (2006) An adaptive distributed source coding scheme for wireless sensor networks. In: 12th European wireless conference, University of Bath

    Google Scholar 

  24. Wang W, Peng D, Wang H, Sharif H, Chen H-H (2009) Cross-layer multirate interaction with distributed source coding in wireless sensor networks. IEEE Trans Wireless Commun 8(2):787–795

    Article  Google Scholar 

  25. Shao-Liang P, Shan-Shan L, Yu-Xing P, Pei-Dong Z, Nong X (2007) A delay sensitive feedback control data aggregation approach in wireless sensor network. In: International conference on computational science. Springer, Berlin, pp 393–400

    Chapter  Google Scholar 

  26. Heinzelman W, Chandrakasan A, Balakrishnan H (2000) Energy-efficient communication protocol for wireless microsensor networks. In: Proceedings of the 33rd annual Hawaii international conference on system sciences, vol 2, p 10, Jan 2000

    Google Scholar 

  27. Younis O, Fahmy S (2004) Heed: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Trans Mob Comput 3(4):366–379

    Article  Google Scholar 

  28. Smaragdakis G, Matta I, Bestavros A (2004) Sep: a stable election protocol for clustered heterogeneous wireless sensor networks. Technical report, Boston University, Computer Science Department

    Google Scholar 

  29. González-Manzano L, de Fuentes JM, Pastrana S, Peris-Lopez P, Hernández-Encinas L (2016) Pagiot-privacy-preserving aggregation protocol for internet of things. J Network Comput Appl 71:59–71

    Article  Google Scholar 

  30. Kim KT, Lyu CH, Moon SS, Youn HY (2010) Tree-based clustering (tbc) for energy efficient wireless sensor networks. In: IEEE 24th international conference on advanced information networking and applications workshops (WAINA). IEEE, pp 680–685

    Google Scholar 

  31. Kalpakis K, Dasgupta K, Namjoshi P (2002) Maximum lifetime data gathering and aggregation in wireless sensor networks. In: Networks. World Scientific, pp 685–696

    Google Scholar 

  32. Han Z, Wu J, Zhang J, Liu L, Tian K (2014) A general self-organized tree-based energy-balance routing protocol for wireless sensor network. IEEE Trans Nuclear Sci 61(2):732–740

    Article  Google Scholar 

  33. Shivkumar S, Kavitha A, Swaminathan J, Navaneethakrishnan R (2016) General self-organizing tree-based energy balance routing protocol with clustering for wireless sensor network. Asian J Inform Technol 15(24):5067–5074

    Google Scholar 

  34. Bahi JM, Makhoul A, Medlej M (2012) Frequency filtering approach for data aggregation in periodic sensor networks. In: Network operations and management symposium (NOMS). IEEE, pp 570–573

    Google Scholar 

  35. Dasgupta K, Kalpakis K, Namjoshi P (2003) An efficient clustering-based heuristic for data gathering and aggregation in sensor networks. In: Wireless communications and networking (WCNC 2003). IEEE, vol 3, pp 1948–1953

    Google Scholar 

  36. Zhang B, Guo W, Chen G, Li J (2013) In-network data aggregation route strategy based on energy balance in wsns. In: WiOpt, pp 540–547

    Google Scholar 

  37. Xiao S, Li B, Yuan X (2015) Maximizing precision for energy-efficient data aggregation in wireless sensor networks with lossy links. Ad Hoc Networks 26:103–113

    Article  Google Scholar 

  38. Atoui I, Ahmad A, Medlej M, Makhoul A, Tawbe S, Hijazi A (2016) Tree-based data aggregation approach in wireless sensor network using fitting functions. In: 2016 sixth international conference on digital information processing and communications (ICDIPC). IEEE, pp 146–150

    Google Scholar 

  39. Yu Y, Prasanna VK, Krishnamachari B (2006) Energy minimization for real-time data gathering in wireless sensor networks. IEEE Trans Wireless Commun 5(11):3087–3096

    Article  Google Scholar 

  40. Bagaa M, Younis M, Ouadjaout A, Badache N (2013) Efficient multi-path data aggregation scheduling in wireless sensor networks. In: 2013 IEEE international conference on communications (ICC). IEEE, pp 1560–1564

    Google Scholar 

  41. Kumar S, Kim H (2019) Energy efficient scheduling in wireless sensor networks for periodic data gathering. In: IEEE access

    Google Scholar 

  42. Sarangi K, Bhattacharya I (2019) A study on data aggregation techniques in wireless sensor network in static and dynamic scenarios. In: Innovations in systems and software engineering, pp 1–14

    Article  Google Scholar 

  43. Yadav S, Yadav RS (2019) Redundancy elimination during data aggregation in wireless sensor networks for iot systems. In: Recent trends in communication, computing, and electronics. Springer, Berlin, pp 195–205

    Google Scholar 

  44. SreeRanjani N, Ananth A, Reddy LS (2018) An energy efficient data gathering scheme in wireless sensor networks using adaptive optimization algorithm. J Comput Theor Nanosci 15(11–12):3456–3461

    Article  Google Scholar 

  45. Khriji S, Raventos GV, Kammoun I, Kanoun O (2018) Redundancy elimination for data aggregation in wireless sensor networks. In: 2018 15th international multi-conference on systems, signals & devices (SSD). IEEE, , pp 28–33

    Google Scholar 

  46. Mottaghi S, Zahabi MR (2015) Optimizing leach clustering algorithm with mobile sink and rendezvous nodes. AEU-Int J Electron Commun 69(2):507–514

    Article  Google Scholar 

  47. Yuan F, Zhan Y, Wang Y (2014) Data density correlation degree clustering method for data aggregation in wsn. IEEE Sens J 14(4):1089–1098

    Article  Google Scholar 

  48. Guo S, Wang C, Yang Y (2013) Mobile data gathering with wireless energy replenishment in rechargeable sensor networks. In: INFOCOM, 2013 Proceedings IEEE. IEEE, , pp 1932–1940

    Google Scholar 

  49. Jin N, Chen K, Gu T (2012) Energy balanced data collection in wireless sensor networks. In: 2012 20th IEEE international conference on network protocols (ICNP). IEEE, pp 1–10

    Google Scholar 

  50. Mathapati BS, Patil SR, Mytri V (2012) Energy efficient reliable data aggregation technique for wireless sensor networks. In: 2012 international conference on computing sciences (ICCS). IEEE, pp 153–158

    Google Scholar 

  51. Zhao M, Ma M, Yang Y (2011) Efficient data gathering with mobile collectors and space-division multiple access technique in wireless sensor networks. IEEE Trans Comput 60(3):400–417

    Article  MathSciNet  Google Scholar 

  52. Yang C, Yang Z, Ren K, Liu C (2011) Transmission reduction based on order compression of compound aggregate data over wireless sensor networks. In: 2011 6th international conference on pervasive computing and applications (ICPCA). IEEE, pp 335–342

    Google Scholar 

  53. Zhao M, Yang Y (2010) Data gathering in wireless sensor networks with multiple mobile collectors and sdma technique sensor networks. In: 2010 IEEE Wireless communications and networking conference (WCNC). IEEE, pp 1–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nihar Ranjan Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roy, N.R., Chandra, P. (2020). Analysis of Data Aggregation Techniques in WSN. In: Khanna, A., Gupta, D., Bhattacharyya, S., Snasel, V., Platos, J., Hassanien, A. (eds) International Conference on Innovative Computing and Communications. Advances in Intelligent Systems and Computing, vol 1059. Springer, Singapore. https://doi.org/10.1007/978-981-15-0324-5_48

Download citation

Publish with us

Policies and ethics