Skip to main content

Chitosan and Its Derivatives: A New Versatile Biopolymer for Various Applications

  • Chapter
  • First Online:
Book cover Functional Chitosan

Abstract

Chitosan is a nontoxic, biodegradable, biocompatible natural aminopolysachharide with diverse applications. Chitosan can be easily modified into different forms such as membranes, sponges, gels, scaffolds, microparticles, nanoparticles, and nanofiber for drug delivery, gene therapy, tissue engineering, and wound healing in biomedical application. Recently, chitosan-based molecularly imprinted polymers have gained considerable attention and showed significant potential in fields, such as environmental remediation, medicine, as well as various industrial applications. However, the performance of the chitosan-based products in various applications is influenced by many factors including the source of chitin, extraction process, molecular weight, degree of deacetylation, pH, ionic strength, concentration, and temperature. This chapter will provide a brief overview of chitosan in molecular imprinting technique as a functional polymer or supporting matrix because of its low cost and high content of amino and hydroxyl functional groups as well as the computational modeling for the designing of chitosan-based material for desired application. Rational designing of chitosan-based derivatives using computational modeling is not only fast and economic but also a greener approach, which helps understanding various thermodynamic and spectroscopic aspects at molecular level. This chapter also discusses diverse applications of chitosan for biomedical, industrial, and environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiedeh K, Taha MO (2001) Synthesis of iron-crosslinked chitosan succinate and iron-crosslinked hydroxamated chitosan succinate and their in vitro evaluation as potential matrix materials for oral theophylline sustained-release beads. Eur J Pharm Sci 13(2):159–168

    CAS  PubMed  Google Scholar 

  • Al Sagheer FA, Al-Sughayer MA, Muslim S, Elsabee MZ (2009) Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydr Polym 77(2):410–419

    Google Scholar 

  • Amar B (2001) Fermentation of prawn shell waste and the application of its product as dietary ingredient for the Indian white prawn Penaeus indicus H Milne Edwards

    Google Scholar 

  • Amaral IF, Granja PL, Barbosa MA (2005) Chemical modification of chitosan by phosphorylation: an XPS, FT-IR and SEM study. J Biomater Sci Polym Ed 16(12):1575–1593

    CAS  PubMed  Google Scholar 

  • Andres Y, Giraud L, Gerente C, Le Cloirec P (2007) Antibacterial effects of chitosan powder: mechanisms of action. Environ Technol 28(12):1357–1363

    CAS  PubMed  Google Scholar 

  • Arena F, Di Chio R, Gumina B, Spadaro L, Trunfio G (2015) Recent advances on wet air oxidation catalysts for treatment of industrial wastewaters. Inorg Chim Acta 431:101–109

    CAS  Google Scholar 

  • Azimi A, Javanbakht M (2014) Computational prediction and experimental selectivity coefficients for hydroxyzine and cetirizine molecularly imprinted polymer based potentiometric sensors. Anal Chim Acta 812:184–190

    CAS  PubMed  Google Scholar 

  • Bastide J, Cambon JP, Breton F, Piletsky SA, Rouillon R (2005) The use of molecularly imprinted polymers for extraction of sulfonylurea herbicides. Anal Chim Acta 542(1):97–103

    CAS  Google Scholar 

  • Bolto B, Gregory J (2007) Organic polyelectrolytes in water treatment. Water Res 41(11):2301–2324

    CAS  PubMed  Google Scholar 

  • Bratby J (2006) Coagulation and flocculation in water and wastewater treatment. IWA Publishing, London

    Google Scholar 

  • Caner H, Yilmaz E, Yilmaz O (2007) Synthesis, characterization and antibacterial activity of poly (N-vinylimidazole) grafted chitosan. Carbohydr Polym 69(2):318–325

    CAS  Google Scholar 

  • Chang MY, Juang RS (2004) Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay. J Colloid Interface Sci 278(1):18–25

    CAS  PubMed  Google Scholar 

  • Chao AC, Shyu SS, Lin YC, Mi FL (2004) Enzymatic grafting of carboxyl groups on to chitosan––to confer on chitosan the property of a cationic dye adsorbent. Bioresour Technol 91(2):157–162

    CAS  PubMed  Google Scholar 

  • Chen G (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38(1):11–41

    Google Scholar 

  • Chen Y, Wang J (2012) Removal of radionuclide Sr2+ ions from aqueous solution using synthesized magnetic chitosan beads. Nucl Eng Des 242:445–451

    CAS  Google Scholar 

  • Chen AH, Liu SC, Chen CY, Chen CY (2008) Comparative adsorption of Cu (II), Zn (II), and Pb (II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin. J Hazard Mater 154(1–3):184–191

    CAS  PubMed  Google Scholar 

  • Chen AH, Yang CY, Chen CY, Chen CY, Chen CW (2009) The chemically crosslinked metal-complexed chitosan for comparative adsorptions of Cu (II), Zn (II), Ni (II) and Pb (II) ions in aqueous medium. J Hazard Mater 163(2–3):1068–1075

    CAS  PubMed  Google Scholar 

  • Chen A, Zeng G, Chen G, Hu X, Yan M, Guan S et al (2012) Novel thiourea-modified magnetic ion-imprinted chitosan/TiO2 composite for simultaneous removal of cadmium and 2, 4-dichlorophenol. Chem Eng J 191:85–94

    CAS  Google Scholar 

  • Chien PJ, Chou CC (2006) Antifungal activity of chitosan and its application to control post-harvest quality and fungal rotting of Tankan citrus fruit (Citrus tankan Hayata). J Sci Food Agric 86(12):1964–1969

    CAS  Google Scholar 

  • Chong MF (2012) Direct flocculation process for wastewater treatment. In: Advances in water treatment and pollution prevention. Springer, Dordrecht, pp 201–230

    Google Scholar 

  • Chung YC, Chen CY (2008) Antibacterial characteristics and activity of acid-soluble chitosan. Bioresour Technol 99(8):2806–2814

    CAS  PubMed  Google Scholar 

  • Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30(1):38–70

    CAS  Google Scholar 

  • Dao VH, Cameron NR, Saito K (2016) Synthesis, properties and performance of organic polymers employed in flocculation applications. Polym Chem 7(1):11–25

    CAS  Google Scholar 

  • Darias R, Villalonga R (2001) Functional stabilization of cellulase by covalent modification with chitosan. J Chem Technol Biotechnol 76(5):489–493

    CAS  Google Scholar 

  • Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan—A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36(8):981–1014

    CAS  Google Scholar 

  • Delgado Vela J, Stadler LB, Martin KJ, Raskin L, Bott CB, Love NG (2015) Prospects for biological nitrogen removal from anaerobic effluents during mainstream wastewater treatment. Environ Sci Technol Lett 2(9):234–244

    CAS  Google Scholar 

  • Derfus AM, Chan WC, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1):11–18

    CAS  PubMed  Google Scholar 

  • Domard A, Domard M (2001) Chitosan: structure-properties relationship and biomedical applications. Polym Biomater 2:187–212

    Google Scholar 

  • Don TM, King CF, Chiu WY (2002) Synthesis and properties of chitosan-modified poly (vinyl acetate). J Appl Polym Sci 86(12):3057–3063

    CAS  Google Scholar 

  • Dos Santos KSCR, Coelho JFJ, Ferreira P, Pinto I, Lorenzetti SG, Ferreira EI et al (2006) Synthesis and characterization of membranes obtained by graft copolymerization of 2-hydroxyethyl methacrylate and acrylic acid onto chitosan. Int J Pharm 310(1–2):37–45

    CAS  PubMed  Google Scholar 

  • Dutta PK, Ravikumar MNV, Dutta J (2002) Chitin and chitosan for versatile applications. J Macromol Sci Polym Rev 42(3):307–354

    Google Scholar 

  • Dutta PK, Dutta J, Tripathi VS (2004) Chitin and chitosan: chemistry, properties and applications. J Sci Ind Res 63:20–31

    CAS  Google Scholar 

  • El Ghaouth A, Arul J, Asselin A, Benhamou N (1992) Antifungal activity of chitosan on post-harvest pathogens: induction of morphological and cytological alterations in Rhizopus stolonifer. Mycol Res 96(9):769–779

    Google Scholar 

  • Fan L, Luo C, Lv Z, Lu F, Qiu H (2011) Removal of Ag+ from water environment using a novel magnetic thiourea-chitosan imprinted Ag+. J Hazard Mater 194:193–201

    CAS  PubMed  Google Scholar 

  • Fan L, Zhang Y, Li X et al (2012) Removal of alizarin red from water environment using magnetic chitosan with Alizarin Red as imprinted molecules. Colloids Surf B: Biointerfaces 91:250–257

    CAS  PubMed  Google Scholar 

  • Fane AG, Wang R, Hu MX (2015) Synthetic membranes for water purification: status and future. Angew Chem Int Ed 54(11):3368–3386

    CAS  Google Scholar 

  • Fei Liu X, Lin Guan Y, Zhi Yang D et al (2001) Antibacterial action of chitosan and carboxymethylated chitosan. J Appl Polym Sci 79(7):1324–1335

    Google Scholar 

  • Fox JC (1975) Silver sulfadiazine for control of burn wound infections. Int Surg 60(5):275–277

    PubMed  Google Scholar 

  • Freier T, Koh HS, Kazazian K et al (2005) Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials 26(29):5872–5878

    CAS  PubMed  Google Scholar 

  • Goy RC, Britto DD, Assis OB (2009) A review of the antimicrobial activity of chitosan. Polímeros 19(3):241–247

    CAS  Google Scholar 

  • Guibal E, Van Vooren M, Dempsey BA et al (2006) A review of the use of chitosan for the removal of particulate and dissolved contaminants. Sep Sci Technol 41(11):2487–2514

    CAS  Google Scholar 

  • Guo TY, Xia YQ, al HGJ (2004) Adsorptive separation of hemoglobin by molecularly imprinted chitosan beads. Biomaterials 25(27):5905–5912

    CAS  PubMed  Google Scholar 

  • Hasan M, Ahmad AL, Hameed BH (2008) Adsorption of reactive dye onto cross-linked chitosan/oil palm ash composite beads. Chem Eng J 136(2–3):164–172

    CAS  Google Scholar 

  • Hasipoglu HN, Yilmaz E, al YO (2005) Preparation and characterization of maleic acid grafted chitosan. Int J Polym Anal Charact 10(5–6):313–327

    CAS  Google Scholar 

  • Helander IM, Nurmiaho-Lassila EL, Ahvenainen R et al (2001) Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int J Food Microbiol 71(2–3):235–244

    CAS  PubMed  Google Scholar 

  • Hidaka Y, Ito M, Mori K et al (1999) Histopathological and immunohistochemical studies of membranes of deacetylated chitin derivatives implanted over rat calvaria. J Biomed Mater Res Off J Soc Biomate, Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater 46(3):418–423

    CAS  Google Scholar 

  • Hillis P (ed) (2007) Membrane technology in water and wastewater treatment. Royal Society of Chemistry, London

    Google Scholar 

  • Hlaváč D, Tokarský J (2013) Molecular modeling of chitosan/polyethylene oxide polymer blends, Nanocon 2013, Brno, Czech Republic, EU, 16–18. 10. 2013

    Google Scholar 

  • Honarkar H, Barikani M (2009) Applications of biopolymers I: chitosan. Chem Mon 140(12):1403

    CAS  Google Scholar 

  • Huamin Q, Lulu F, Li X et al (2013) Determination sulfamethoxazole based chemiluminescence and chitosan/graphene oxide-molecularly imprinted polymers. Carbohydr Polym 92(1):394–399

    PubMed  Google Scholar 

  • Huang M, Jin X, Li Y et al (2006) Syntheses and characterization of novel pH-sensitive graft copolymers of maleoylchitosan and poly (acrylic acid). React Funct Polym 66(10):1041–1046

    CAS  Google Scholar 

  • Hydari S, Sharififard H, Nabavinia M et al (2012) A comparative investigation on removal performances of commercial activated carbon, chitosan biosorbent and chitosan/activated carbon composite for cadmium. Chem Eng J 193:276–282

    Google Scholar 

  • Imran M, Crowley DE, Khalid A et al (2015) Microbial biotechnology for decolorization of textile wastewaters. Rev Environ Sci Biotechnol 14(1):73–92

    CAS  Google Scholar 

  • Janes KA, Fresneau MP, Marazuela A et al (2001) Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release 73(2–3):255–267

    CAS  PubMed  Google Scholar 

  • Jayakumar R, Prabaharan M, Reis RL et al (2005) Graft copolymerized chitosan—present status and applications. Carbohydr Polym 62(2):142–158

    CAS  Google Scholar 

  • Jeon YJ, Kim SK (2002) Antitumor activity of chitosan oligosaccharides produced in ultrafiltration membrane reactor system. J Microbiol Biotechnol 12(3):503–507

    CAS  Google Scholar 

  • Jeyasanta KISI, Allwin SIJ, Patterson J (2017) Development of nutritious chutney powder from head shrimp waste for better utilization to reduce environmental pollution. Res J Anim, Vet Fish Sci 5(3):1–8

    Google Scholar 

  • Jiang JQ (2015) The role of coagulation in water treatment. Curr Opin Chem Eng 8:36–44

    Google Scholar 

  • Jiang T, Abdel-Fattah WI, Laurencin CT (2006) In vitro evaluation of chitosan/poly (lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering. Biomaterials 27(28):4894–4903

    CAS  PubMed  Google Scholar 

  • Jiang T, Nukavarapu SP, Deng M, Jabbarzadeh E et al (2010) Chitosan–poly (lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: in vitro degradation and in vivo bone regeneration studies. Acta Biomater 6(9):3457–3470

    CAS  PubMed  Google Scholar 

  • Jun-Bo L, Yang S, Shan-Shan T et al (2015) Theoretical and experimental research on the self-assembled system of molecularly imprinted polymers formed by salbutamol and methacrylic acid. J Sep Sci 38(6):1065–1071

    PubMed  Google Scholar 

  • Khan S, Bhatia T, Trivedi P et al (2016) Selective solid-phase extraction using molecularly imprinted polymer as a sorbent for the analysis of fenarimol in food samples. Food Chem 199:870–875

    CAS  PubMed  Google Scholar 

  • Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24(13):2339–2349

    CAS  PubMed  Google Scholar 

  • Kim SY, Cho SM, Lee YM et al (2000) Thermo-and pH-responsive behaviors of graft copolymer and blend based on chitosan and N-isopropylacrylamide. J Appl Polym Sci 78(7):1381–1391

    CAS  Google Scholar 

  • Kong M, Chen XG, Xue YP et al (2008) Preparation and antibacterial activity of chitosan microspheres in a solid dispersing system. Front Mater Sci China 2(2):214–220

    Google Scholar 

  • Kong M, Chen XG, Xing K et al (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144(1):51–63

    CAS  PubMed  Google Scholar 

  • Kumar MNR (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27

    CAS  Google Scholar 

  • Kurit K, Tomita K, Ishii S et al (1993) β-chitin as a convenient starting material for acetolysis for efficient preparation of N-acetylchitooligosaccharides. J Polym Sci A Polym Chem 31(9):2393–2395

    Google Scholar 

  • Kyzas GZ, Bikiaris DN (2015) Recent modifications of chitosan for adsorption applications: a critical and systematic review. Mar Drugs 13(1):312–337

    PubMed  PubMed Central  Google Scholar 

  • Kyzas GZ, Lazaridis NK, Bikiaris DN (2013) Optimization of chitosan and β-cyclodextrin molecularly imprinted polymer synthesis for dye adsorption. Carbohydr Polym 91(1):198–208

    CAS  PubMed  Google Scholar 

  • Kyzas GZ, Siafaka PI, Pavlidou EG et al (2015) Synthesis and adsorption application of succinyl-grafted chitosan for the simultaneous removal of zinc and cationic dye from binary hazardous mixtures. Chem Eng J 259:438–448

    CAS  Google Scholar 

  • Laplante S, Turgeon SL, Paquin P (2005) Effect of pH, ionic strength, and composition on emulsion stabilising properties of chitosan in a model system containing whey protein isolate. Food Hydrocoll 19(4):721–729

    CAS  Google Scholar 

  • Lazaridis NK, Kyzas GZ, Vassiliou AA et al (2007) Chitosan derivatives as biosorbents for basic dyes. Langmuir 23(14):7634–7643

    CAS  PubMed  Google Scholar 

  • Lee HC, Jeong YG, Min BG et al (2009a) Preparation and acid dye adsorption behavior of polyurethane/chitosan composite foams. Fibers Polym 10(5):636–642

    CAS  Google Scholar 

  • Lee EJ, Shin DS, Kim HE et al (2009b) Membrane of hybrid chitosan–silica xerogel for guided bone regeneration. Biomaterials 30(5):743–750

    CAS  PubMed  Google Scholar 

  • Lee CS, Robinson J, Chong MF (2014) A review on application of flocculants in wastewater treatment. Process Saf Environ Prot 92(6):489–508

    CAS  Google Scholar 

  • Li FT, Zhang SF, Zhao Y (2005a) Coagulants and flocculants. Chemical Industry Press, Beijing

    Google Scholar 

  • Li Z, Ramay HR, Hauch KD et al (2005b) Chitosan–alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26(18):3919–3928

    CAS  PubMed  Google Scholar 

  • Li T, Zhu Z, Wang D, Yao C et al (2006) Characterization of floc size, strength and structure under various coagulation mechanisms. Powder Technol 168(2):104–110

    CAS  Google Scholar 

  • Li Q, Su H, Tan T (2008) Synthesis of ion-imprinted chitosan-TiO2 adsorbent and its multi-functional performances. Biochem Eng J 38(2):212–218

    CAS  Google Scholar 

  • Li Y, Qiu T, Xu X (2013) Preparation of lead-ion imprinted crosslinked electro-spun chitosan nanofiber mats and application in lead ions removal from aqueous solutions. Eur Polym J 49(6):1487–1494

    CAS  Google Scholar 

  • Liu B, Wang D, Li H et al (2011a) As (III) removal from aqueous solution using α-Fe2O3 impregnated chitosan beads with As (III) as imprinted ions. Desalination 272(1–3):286–292

    CAS  Google Scholar 

  • Liu H, Yang F, Zheng Y et al (2011b) Improvement of metal adsorption onto chitosan/Sargassum sp. composite sorbent by an innovative ion-imprint technology. Water Res 45(1):145–154

    CAS  PubMed  Google Scholar 

  • Liu T, Wang ZL, Zhao L et al (2012) Enhanced chitosan/Fe0-nanoparticles beads for hexavalent chromium removal from wastewater. Chem Eng J 189:196–202

    Google Scholar 

  • Liu B, Lv X, Meng X et al (2013) Removal of Pb (II) from aqueous solution using dithiocarbamate modified chitosan beads with Pb (II) as imprinted ions. Chem Eng J 220:412–419

    CAS  Google Scholar 

  • Liu H, Yang X, Zhang Y et al (2014a) Flocculation characteristics of polyacrylamide grafted cellulose from Phyllostachys heterocycla: an efficient and eco-friendly flocculant. Water Res 59:165–171

    CAS  PubMed  Google Scholar 

  • Liu J, Wen XY, Lu JF et al (2014b) Free radical mediated grafting of chitosan with caffeic and ferulic acids: Structures and antioxidant activity. Int J Biol Macromol 65:97–106

    CAS  PubMed  Google Scholar 

  • Liu M, Li X, Li J et al (2017) Selective separation and determination of glucocorticoids in cosmetics using dual-template magnetic molecularly imprinted polymers and HPLC. J Colloid Interface Sci 504:124–133

    CAS  PubMed  Google Scholar 

  • López-Chávez E, Martínez-Magadán JM, Oviedo-Roa R et al (2005) Molecular modeling and simulation of ion-conductivity in chitosan membranes. Polymer 46(18):7519–7527

    Google Scholar 

  • Madihally SV, Matthew HW (1999) Porous chitosan scaffolds for tissue engineering. Biomaterials 20(12):1133–1142

    CAS  PubMed  Google Scholar 

  • Mahdavinia GR, Pourjavadi A, Hosseinzadeh H (2004) Modified chitosan 4. Superabsorbent hydrogels from poly (acrylic acid-co-acrylamide) grafted chitosan with salt-and pH-responsiveness properties. Eur Polym J 40(7):1399–1407

    CAS  Google Scholar 

  • Manzoor K, Johny S, Thomas D et al (2009) Bio-conjugated luminescent quantum dots of doped ZnS: a cyto-friendly system for targeted cancer imaging. Nanotechnology 20(6):065102

    PubMed  Google Scholar 

  • Mathew ME, Mohan JC, Manzoor K et al (2010) Folate conjugated carboxymethyl chitosan–manganese doped zinc sulphide nanoparticles for targeted drug delivery and imaging of cancer cells. Carbohydr Polym 80(2):442–448

    CAS  Google Scholar 

  • Meng M, Feng Y, Guan W et al (2014) Selective separation of salicylic acid from aqueous solutions using molecularly imprinted nano-polymer on wollastonite synthesized by oil-in-water microemulsion method. J Ind Eng Chem 20(6):3975–3983

    CAS  Google Scholar 

  • Mi FL, Shyu SS, Wu YB et al (2001) Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials 22(2):165–173

    CAS  PubMed  Google Scholar 

  • Mi FL, Wu YB, Shyu SS (2003) Asymmetric chitosan membranes prepared by dry/wet phase separation: a new type of wound dressing for controlled antibacterial release. J Membr Sci 212(1–2):237–254

    CAS  Google Scholar 

  • Mucha M (1997) Rheological characteristics of semi-dilute chitosan solutions. Macromol Chem Phys 198(2):471–484

    CAS  Google Scholar 

  • Mun GA, Nurkeeva ZS, Dergunov SA et al (2008) Studies on graft copolymerization of 2-hydroxyethyl acrylate onto chitosan. React Funct Polym 68(1):389–395

    CAS  Google Scholar 

  • Muzzarelli RA, Isolati A, Ferrero A (1974) Chitosan membranes. Ion Exch Membr 1(4):193–196

    CAS  PubMed  Google Scholar 

  • Najjar AMK, Yunus WMZW, Ahmad MB et al (2000) Preparation and characterization of poly (2-acrylamido-2-methylpropane-sulfonic acid) grafted chitosan using potassium persulfate as redox initiator. J Appl Polym Sci 77(10):2314–2318

    CAS  Google Scholar 

  • Nguyen TTB, Hein S, Ng CH et al (2008) Molecular stability of chitosan in acid solutions stored at various conditions. J Appl Polym Sci 107(4):2588–2593

    CAS  Google Scholar 

  • Nishad PA, Bhaskarapillai A, Velmurugan S et al (2012) Cobalt (II) imprinted chitosan for selective removal of cobalt during nuclear reactor decontamination. Carbohydr Polym 87(4):2690–2696

    Google Scholar 

  • Oh HI, Kim YJ, Chang EJ et al (2001) Antimicrobial characteristics of chitosans against food spoilage microorganisms in liquid media and mayonnaise. Biosci Biotechnol Biochem 65(11):2378–2383

    CAS  PubMed  Google Scholar 

  • Pal J, Verma HO, Munka VK et al (2014) Biological method of chitin extraction from shrimp waste an eco-friendly low cost technology and its advanced application. Int J Fish Aquat Stud 1(6):104–107

    Google Scholar 

  • Pan J, Yao H, Li X et al (2011) Synthesis of chitosan/γ-Fe2O3/fly-ash-cenospheres composites for the fast removal of bisphenol A and 2, 4, 6-trichlorophenol from aqueous solutions. J Hazard Mater 190(1–3):276–284

    CAS  PubMed  Google Scholar 

  • Pandele AM, Ioniţă M, Iovu H (2014) Molecular modeling of mechanical properties of the chitosan based graphene composites. UPB Sci Bull Ser B Chem Mater Sci 76:107–112

    CAS  Google Scholar 

  • Pang HT, Chen XG, Ji QX (2008) Preparation and function of composite asymmetric chitosan/CM-chitosan membrane. J Mater Sci Mater Med 19(3):1413–1417

    CAS  PubMed  Google Scholar 

  • Papineau AM, Hoover DG, Knorr D et al (1991) Antimicrobial effect of water-soluble chitosans with high hydrostatic pressure. Food Biotechnol 5(1):45–57

    CAS  Google Scholar 

  • Pardeshi S, Dhodapkar R, Kumar A (2012a) Studies of the molecular recognition abilities of gallic acid-imprinted polymer prepared using a molecular imprinting technique. Adsorpt Sci Technol 30(1):23–34

    CAS  Google Scholar 

  • Pardeshi S, Patrikar R, Dhodapkar R, Kumar A (2012b) Validation of computational approach to study monomer selectivity toward the template Gallic acid for rational molecularly imprinted polymer design. J Mol Model 18(11):4797–4810

    CAS  PubMed  Google Scholar 

  • Pardeshi S, Dhodapkar R, Kumar A (2013) Quantum chemical density functional theory studies on the molecular structure and vibrational spectra of Gallic acid imprinted polymers. Spectrochim Acta A Mol Biomol Spectrosc 116:562–573

    CAS  PubMed  Google Scholar 

  • Park PJ, Je JY, Byun HG et al (2004) Antimicrobial activity of hetero-chitosans and their oligosaccharides with different molecular weights. J Microbiol Biotechnol 14(2):317–323

    CAS  Google Scholar 

  • Peter M, Binulal NS, Soumya S, Nair SV, Furuike T, Tamura H, Jayakumar R (2010) Nanocomposite scaffolds of bioactive glass ceramic nanoparticles disseminated chitosan matrix for tissue engineering applications. Carbohydr Polym 79(2):284–289

    CAS  Google Scholar 

  • Pourjavadi A, Mahdavinia GR, Zohuriaan-Mehr MJ et al (2003) Modified chitosan. I. Optimized cerium ammonium nitrate-induced synthesis of chitosan-graft-polyacrylonitrile. J Appl Polym Sci 88(8):2048–2054

    CAS  Google Scholar 

  • Prabaharan M, Jayakumar R (2009) Chitosan-graft-β-cyclodextrin scaffolds with controlled drug release capability for tissue engineering applications. Int J Biol Macromol 44(4):320–325

    CAS  PubMed  Google Scholar 

  • Prabaharan M, Rodriguez-Perez MA, De Saja JA et al (2007) Preparation and characterization of poly (L-lactic acid)-chitosan hybrid scaffolds with drug release capability. J Biomed Mater Res Part B: Appl Biomater: Off J Soc Biomater, Jpn Soc Biomater, Aust Soc Biomater Korean Soc Biomater 81(2):427–434

    CAS  Google Scholar 

  • Prashanth KH, Tharanathan RN (2003) Studies on graft copolymerization of chitosan with synthetic monomers. Carbohydr Polym 54(3):343–351

    CAS  Google Scholar 

  • Prashanth KH, Kittur FS, Tharanathan RN (2002) Solid state structure of chitosan prepared under different N-deacetylating conditions. Carbohydr Polym 50(1):27–33

    Google Scholar 

  • Prasitsilp M, Jenwithisuk R, Kongsuwan K et al (2000) Cellular responses to chitosan in vitro: the importance of deacetylation. J Mater Sci Mater Med 11(12):773–778

    CAS  PubMed  Google Scholar 

  • Rahangdale D, Kumar A (2018a) Acrylamide grafted chitosan based ion imprinted polymer for the recovery of cadmium from nickel-cadmium battery waste. J Environ Chem Eng 6(2):1828–1839

    CAS  Google Scholar 

  • Rahangdale D, Kumar A (2018b) Derivatized chitosan: fundamentals to applications. In: Biopolymer grafting. Elsevier, Cambridge, MA, pp 251–284

    Google Scholar 

  • Rahangdale D, Kumar A (2018c) Chitosan as a substrate for simultaneous surface imprinting of salicylic acid and cadmium. Carbohydr Polym 202:334–344

    CAS  PubMed  Google Scholar 

  • Rahangdale D, Kumar A (2019) Water compatible functionalized chitosan-based 4-HBA mimic imprinted polymer as a potential sorbent for salicylic acid. Sep Sci Technol:1–14. https://doi.org/10.1080/01496395.2018.154673

  • Rahangdale D, Archana G, Kumar A (2016) Molecularly imprinted chitosan-based adsorbents for the removal of salicylic acid and its molecular modeling to study the influence of intramolecular hydrogen bonding of template on molecular recognition of molecularly imprinted polymer. Adsorpt Sci Technol 34(7–8):405–425

    CAS  Google Scholar 

  • Rahangdale D, Archana G, Dhodapkar R et al (2017) Chitosan-based biosorbents: modifications and application for sequestration of PPCPs and metals for water remediation. In: Handbook of Composites from Renewable Materials, Functionalization, vol 4, p 1. https://doi.org/10.1002/9781119441632

    Chapter  Google Scholar 

  • Rahangdale D, Kumar A, Archana G et al (2018) Ion cum molecularly dual imprinted polymer for simultaneous removal of cadmium and salicylic acid. J Mol Recognit 31(3):e2630

    Google Scholar 

  • Ramesh A, Hasegawa H, Sugimoto W et al (2008) Adsorption of gold (III), platinum (IV) and palladium (II) onto glycine modified crosslinked chitosan resin. Bioresour Technol 99(9):3801–3809

    CAS  PubMed  Google Scholar 

  • Ravikumar MNV, Dutta PK (1998) Industrial products: emerging technologies and business opportunities, Industrial Products Finder

    Google Scholar 

  • Razali MAA, Ahmad Z, Ahmad MSB et al (2011) Treatment of pulp and paper mill wastewater with various molecular weight of polyDADMAC induced flocculation. Chem Eng J 166(2):529–535

    CAS  Google Scholar 

  • Renault F, Sancey B, Badot PM et al (2009) Chitosan for coagulation/flocculation processes–an eco-friendly approach. Eur Polym J 45(5):1337–1348

    CAS  Google Scholar 

  • Rezakazemi M, Albadarin AB, Walker GM et al (2018) Quantum chemical calculations and molecular modeling for methylene blue removal from water by a lignin-chitosan blend. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2018.09.027

    CAS  PubMed  Google Scholar 

  • Rhee JS, Jung MW, Paeng KJ (1998) Evaluation of chitin and chitosan as a sorbent for the preconcentration of phenol and chlorophenols in water. Anal Sci 14(6):1089–1092

    CAS  Google Scholar 

  • Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632

    CAS  Google Scholar 

  • Rivero S, García MA, Pinotti A (2011) Heat treatment to modify the structural and physical properties of chitosan-based films. J Agric Food Chem 60(1):492–499

    PubMed  Google Scholar 

  • Roller S, Covill N (1999) The antifungal properties of chitosan in laboratory media and apple juice. Int J Food Microbiol 47(1–2):67–77

    CAS  PubMed  Google Scholar 

  • Rorrer GL, Hsien TY, Way JD (1993) Synthesis of porous-magnetic chitosan beads for removal of cadmium ions from wastewater. Ind Eng Chem Res 32(9):2170–2178

    CAS  Google Scholar 

  • Ruel-Gariepy E, Chenite A, Chaput C et al (2000) Characterization of thermosensitive chitosan gels for the sustained delivery of drugs. Int J Pharm 203(1–2):89–98

    CAS  PubMed  Google Scholar 

  • Sashiwa H, Aiba SI (2004) Chemically modified chitin and chitosan as biomaterials. Prog Polym Sci 29(9):887–908

    CAS  Google Scholar 

  • Sashiwa H, Kawasaki N, Nakayama A et al (2002) Chemical modification of chitosan. 14: synthesis of water-soluble chitosan derivatives by simple acetylation. Biomacromolecules 3(5):1126–1128

    CAS  PubMed  Google Scholar 

  • Savard T, Beaulieu C, Boucher I et al (2002) Antimicrobial action of hydrolyzed chitosan against spoilage yeasts and lactic acid bacteria of fermented vegetables. J Food Prot 65(5):828–833

    CAS  PubMed  Google Scholar 

  • Schwarzenbach RP, Escher BI, Fenner K et al (2006) The challenge of micropollutants in aquatic systems. Science 313(5790):1072–1077

    CAS  PubMed  Google Scholar 

  • Shalumon KT, Binulal NS, al SN (2009) Electrospinning of carboxymethyl chitin/poly (vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohydr Polym 77(4):863–869

    CAS  Google Scholar 

  • Shannon MA, Bohn PW, Elimelech M et al (2008) Science and technology for water purification in the coming decades. Nature 452:301–310

    CAS  PubMed  Google Scholar 

  • Shantha KL, Bala U, Rao KP (1995) Tailor-made chitosans for drug delivery. Eur Polym J 31(4):377–382

    CAS  Google Scholar 

  • Sharma BR, Dhuldhoya NC, Merchant UC (2006) Flocculants—an ecofriendly approach. J Polym Environ 14(2):195–202

    CAS  Google Scholar 

  • Shen JW, Li J, Zhao Z et al (2017) Molecular dynamics study on the mechanism of polynucleotide encapsulation by chitosan. Sci Rep 7(1):5050

    PubMed  PubMed Central  Google Scholar 

  • Shigemasa Y, Oota H, Tokura S et al (1992) Biological filling agent and wound healing agent. EP Patent, (0477979)

    Google Scholar 

  • Silva SS, Luna SM, Gomes ME et al (2008) Plasma surface modification of chitosan membranes: characterization and preliminary cell response studies. Macromol Biosci 8(6):568–576

    CAS  PubMed  Google Scholar 

  • Singh J, Dutta PK (2011) Antibacterial and physiochemical behavior of prepared chitosan/pyridine-3, 5-di-carboxylic acid complex for biomedical applications. J Macromol Sci Part A 48(3):246–253

    CAS  Google Scholar 

  • Singh RP, Karmakar GP, Rath SK et al (2000) Biodegradable drag reducing agents and flocculants based on polysaccharides: materials and applications. Polym Eng Sci 40(1):46–60

    CAS  Google Scholar 

  • Singh V, Tripathi DN, Tiwari A et al (2006) Microwave synthesized chitosan-graft-poly (methylmethacrylate): An efficient Zn2+ ion binder. Carbohydr Polym 65(1):35–41

    CAS  Google Scholar 

  • Stamford TCM, Stamford-Arnaud TM, de Medeiros Cavalcante HM, Macedo RO, de Campos-Takaki GM (2013) Microbiological chitosan: Potential application as anticariogenic agent. In: Practical applications in biomedical engineering. InTech, Rijeka

    Google Scholar 

  • Sudarshan NR, Hoover DG, Knorr D (1992) Antibacterial action of chitosan. Food Biotechnol 6(3):257–272

    CAS  Google Scholar 

  • Suh JKF, Matthew HW (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21(24):2589–2598

    CAS  PubMed  Google Scholar 

  • Sun S, Wang A (2006) Adsorption properties of carboxymethyl-chitosan and cross-linked carboxymethyl-chitosan resin with Cu (II) as template. Sep Purif Technol 49(3):197–204

    CAS  Google Scholar 

  • Sun Y, Cui F, Shi K, Wang J, Niu M, Ma R (2009) The effect of chitosan molecular weight on the characteristics of spray-dried methotrexate-loaded chitosan microspheres for nasal administration. Drug Dev Ind Pharm 35(3):379–386

    CAS  PubMed  Google Scholar 

  • Tianwei T, Xiaojing H, Weixia D (2001) Adsorption behaviour of metal ions on imprinted chitosan resin. J Chem Technol Biotechnol: Int Res Process, Environ Clean Technol 76(2):191–195

    Google Scholar 

  • Tipparat H, Riyaphan O (2008) Effect of deacetylation conditions on antimicrobial activity of chitosan prepared from carapace of black tiger shrimp (Penaeus monodon). Songklanakarin J Sci Technol 30(1):1–9

    Google Scholar 

  • Tran HV, Dai Tran L, Nguyen TN (2010) Preparation of chitosan/magnetite composite beads and their application for removal of Pb (II) and Ni (II) from aqueous solution. Mater Sci Eng C 30(2):304–310

    CAS  Google Scholar 

  • Tsai GUO, Su WH, Chen HC, Pan CL (2002) Antimicrobial activity of shrimp chitin and chitosan from different treatments. Fish Sci 68(1):170–177

    CAS  Google Scholar 

  • Tseng HJ, Hsu SH, Wu MW, Hsueh TH, Tu PC (2009) Nylon textiles grafted with chitosan by open air plasma and their antimicrobial effect. Fibers Polym 10(1):53–59

    CAS  Google Scholar 

  • Urgen Kaessmann HJ, Haak KWA (1997) U.S. Patent No. 5,597,581. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Vårum KM, Ottøy MH, Smidsrød O (2001) Acid hydrolysis of chitosans. Carbohydr Polym 46(1):89–98

    Google Scholar 

  • Varun TK, Senani S, Jayapal N, Chikkerur J, Roy S, Tekulapally VB et al (2017) Extraction of chitosan and its oligomers from shrimp shell waste, their characterization and antimicrobial effect. Vet World 10(2):170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vilchez S, Manich AM, Jovancic P, Erra P (2008) Chitosan contribution on wool treatment. Carbohydr Polym 71:515–523

    CAS  Google Scholar 

  • Walton JR (2013) Aluminum involvement in the progression of Alzheimer’s disease. J Alzheimers Dis 35(1):7–43

    CAS  PubMed  Google Scholar 

  • Wan Ngah WS, Ariff NFM, Hanafiah MAKM (2010a) Preparation, characterization, and environmental application of crosslinked chitosan-coated bentonite for tartrazine adsorption from aqueous solutions. Water Air Soil Pollut 206(1–4):225–236

    Google Scholar 

  • Wan Ngah WS, Ariff NFM, Hashim A, Hanafiah MAKM (2010b) Malachite green adsorption onto chitosan coated bentonite beads: isotherms, kinetics and mechanism. CLEAN–Soil, Air, Water 38(4):394–400

    Google Scholar 

  • Wang X, Du Y, Fan L, Liu H, Hu Y (2005) Chitosan-metal complexes as antimicrobial agent: synthesis, characterization and structure-activity study. Polym Bull 55(1–2):105–113

    CAS  Google Scholar 

  • Wang C, Fu X, Yang L (2007) Water-soluble chitosan nanoparticles as a novel carrier system for protein delivery. Chin Sci Bull 52(7):883–889

    CAS  Google Scholar 

  • Wang Y, Wang E, Wu Z, Li H, Zhu Z, Zhu X, Dong Y (2014) Synthesis of chitosan molecularly imprinted polymers for solid-phase extraction of methandrostenolone. Carbohydr Polym 101:517–523

    CAS  PubMed  Google Scholar 

  • Wang Y, Liu JB, Tang SS, Jin RF (2015) Preparation of melamine molecularly imprinted polymer by computer-aided design. J Sep Sci 38(15):2647–2654

    CAS  PubMed  Google Scholar 

  • Wang J, Wang L, Yu H, Chen Y, Chen Q, Zhou W et al (2016) Recent progress on synthesis, property and application of modified chitosan: an overview. Int J Biol Macromol 88:333–344

    CAS  PubMed  Google Scholar 

  • Ward RJ, McCrohan CR, White KN (2006) Influence of aqueous aluminium on the immune system of the freshwater crayfish Pacifasticus leniusculus. Aquat Toxicol 77(2):222–228

    CAS  PubMed  Google Scholar 

  • Weng X, Lin S, Zhong Y, Chen Z (2013) Chitosan stabilized bimetallic Fe/Ni nanoparticles used to remove mixed contaminants-amoxicillin and Cd (II) from aqueous solutions. Chem Eng J 229:27–34

    CAS  Google Scholar 

  • Xia YQ, Guo TY, Song MD, Zhang BH, Zhang BL (2006) Selective separation of quercetin by molecular imprinting using chitosan beads as functional matrix. React Funct Polym 66(12):1734–1740

    CAS  Google Scholar 

  • Xu L, Pan J, Dai J, Li X, Hang H, Cao Z, Yan Y (2012) Preparation of thermal-responsive magnetic molecularly imprinted polymers for selective removal of antibiotics from aqueous solution. J Hazard Mater 233:48–56

    PubMed  Google Scholar 

  • Yang TC, Chou CC, Li CF (2005) Antibacterial activity of N-alkylated disaccharide chitosan derivatives. Int J Food Microbiol 97(3):237–245

    CAS  PubMed  Google Scholar 

  • Yazdani-Pedram M, Retuert J (1997) Homogeneous grafting reaction of vinyl pyrrolidone onto chitosan. J Appl Polym Sci 63(10):1321–1326

    CAS  Google Scholar 

  • Yazdani-Pedram M, Retuert J, Quijada R (2000) Hydrogels based on modified chitosan, 1. Synthesis and swelling behavior of poly (acrylic acid) grafted chitosan. Macromol Chem Phys 201(9):923–930

    CAS  Google Scholar 

  • Yazdani-Pedram M, Lagos A, Retuert PJ (2002) Study of the effect of reaction variables on grafting of polyacrylamide onto chitosan. Polym Bull 48(1):93–98

    CAS  Google Scholar 

  • Yilmaz E, Adali T, Yilmaz O, Bengisu M (2007) Grafting of poly (triethylene glycol dimethacrylate) onto chitosan by ceric ion initiation. React Funct Polym 67(1):10–18

    CAS  Google Scholar 

  • Younes I, Ghorbel-Bellaaj O, Chaabouni M, Rinaudo M, Souard F, Vanhaverbeke C et al (2014) Use of a fractional factorial design to study the effects of experimental factors on the chitin deacetylation. Int J Biol Macromol 70:385–390

    CAS  PubMed  Google Scholar 

  • Yu L, He Y, Bin L, Yue’e F (2003) Study of radiation-induced graft copolymerization of butyl acrylate onto chitosan in acetic acid aqueous solution. J Appl Polym Sci 90(10):2855–2860

    Google Scholar 

  • Zhang Y, Zhang M (2001) Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. J Biomed Mater Res Off J Soc Biomate, Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater 55(3):304–312

    CAS  Google Scholar 

  • Zhang J, Yuan Y, Shen J, Lin S (2003) Synthesis and characterization of chitosan grafted poly (N, N-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl) ammonium) initiated by ceric (IV) ion. Eur Polym J 39(4):847–850

    CAS  Google Scholar 

  • Zhang HL, Wu SH, Tao Y, Zang LQ, Su ZQ (2010) Preparation and characterization of water-soluble chitosan nanoparticles as protein delivery system. J Nanomater 2010:1

    Google Scholar 

  • Zhang L, Yang S, Han T, Zhong L, Ma C, Zhou Y, Han X (2012) Improvement of Ag (I) adsorption onto chitosan/triethanolamine composite sorbent by an ion-imprinted technology. Appl Surf Sci 263:696–703

    CAS  Google Scholar 

  • Zhang YL, Zhang J, Dai CM, Zhou XF, Liu SG (2013) Sorption of carbamazepine from water by magnetic molecularly imprinted polymers based on chitosan-Fe3O4. Carbohydr Polym 97(2):809–816

    CAS  PubMed  Google Scholar 

  • Zhou L, Shang C, Liu Z, Huang G, Adesina AA (2012) Selective adsorption of uranium (VI) from aqueous solutions using the ion-imprinted magnetic chitosan resins. J Colloid Interface Sci 366(1):165–172

    CAS  PubMed  Google Scholar 

  • Zhu HY, Jiang R, Xiao L (2010) Adsorption of an anionic azo dye by chitosan/kaolin/γ-Fe2O3 composites. Appl Clay Sci 48(3):522–526

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupama Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rahangdale, D., Joshi, N., Kumar, A. (2019). Chitosan and Its Derivatives: A New Versatile Biopolymer for Various Applications. In: Jana, S., Jana, S. (eds) Functional Chitosan. Springer, Singapore. https://doi.org/10.1007/978-981-15-0263-7_1

Download citation

Publish with us

Policies and ethics