Skip to main content

Harmonic-Balanced Finite Element Method and Its Application

  • Chapter
  • First Online:
  • 731 Accesses

Abstract

This chapter mainly introduces the harmonic-balanced finite element method (HBFEM) and its application in electrical engineering. Different from the traditional frequency domain method, the HBFEM is able to compute the nonlinear magnetic field with electrical equipments with significant saturation. Compared with the time-stepping method, transient process can be avoided in HBFEM to reduce the computational time. Furthermore, the hybrid with the fixed-point technique realizes the decomposition of harmonic solutions, which greatly improves the efficiency of numerical computation in the frequency domain. The HBFEM is employed to compute the nonlinear electromagnetic field under DC bias condition and to investigate the force characteristic in a gapped reactor core model under harmonic magnetization. Actually the principle of harmonic-balanced method is applicable to steady-state thermal problems, and it is predicted to have further contribution on loss modeling and thermal analysis of power transformers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Y. Yao, C. S. Koh, G. Ni and D. Xie, “3-D nonlinear transient eddy current calculation of online power transformer under DC bias,” IEEE Trans. Magn., Vol. 41, no. 5, pp. 1840–1843, May. 2005.

    Google Scholar 

  2. S. Ausserhofer, O. Biro and K. Preis, “An efficient harmonic balance method for nonlinear eddy-current problems,” IEEE Trans. on Magn., vol. 43, no. 4, pp. 1229–1232, 2007.

    Article  Google Scholar 

  3. O. Deblecker and J. Lobry, “A new efficient technique for harmonic-balance finite-element analysis of saturated electromagnetic devices,” IEEE Trans. on Magn., vol. 42, no. 4, pp. 535–538, 2006.

    Article  Google Scholar 

  4. S. Yamada, K. Bessho, “Harmonic field calculation by the combination of finite element analysis and harmonic balance method,” IEEE Trans. Magn., vol. 24, no, 6, pp. 2588–2590, Nov. 1988.

    Google Scholar 

  5. J. Lu, S. Yamada and K. Bessho, “Time-periodic magnetic field analysis with saturation and hysteresis characteristics by harmonic balance finite element method,” IEEE Trans. Magn., vol. 2, no. 2, pp. 995–998, Mar. 1990.

    Google Scholar 

  6. I. Ciric, and F. Hantila, “An efficient harmonic method for solving nonlinear Time-periodic eddy-current problems,” IEEE Trans. on Magn., vol. 43, no. 4, pp. 1185–1188, 2007.

    Article  Google Scholar 

  7. X. Zhao, L. Li, J. Lu, Z. Cheng and T. Lu, “Characteristics analysis of the square laminated core under dc-biased magnetization by the fixed-point harmonic-balanced FEM,” IEEE Trans. on Magn., vol. 48, no. 2, pp. 747–750, 2012.

    Article  Google Scholar 

  8. X. Zhao, L. Li, J. Lu, Z. Cheng and T. Lu, “Analysis of saturated electromagnetic devices under DC bias condition by the decomposed harmonic balance finite element method,” COMPEL., vol. 31, no. 2, pp. 498–513, 2012.

    Google Scholar 

  9. E. Dlala, A. Belahcen and A. Arkkio, “A fast fixed-point method for solving magnetic field problems in media of hsyteresis,” IEEE Trans. on Magn., vol. 44, no. 6, pp. 1214–1217, 2008.

    Article  Google Scholar 

  10. E. Dlala and A. Arkkio, “Analysis of the convergence of the fixed-point method used for solving nonlinear rotational magnetic field problems,” IEEE Trans. on Magn., vol. 44, no. 4, pp. 473–478, 2008.

    Article  Google Scholar 

  11. M. Mathekga, R. Mcmahon and A. Knight, “Application of the fixed-point method for solution in time stepping finite element analysis using the inverse vector Jiles-Atherton model,” IEEE Trans. on Magn., vol. 47, no. 10, pp. 3048–3051, 2011.

    Article  Google Scholar 

  12. Xiaojun Zhao*, Junwei Lu, Lin Li, Huiqi Li, Zhiguang Cheng, Tiebing Lu. Fixed-point harmonic-balanced method for dc-biasing hysteresis analysis using the neural network and consuming function. IEEE Transactions on Magnetics. 48(11): 3356–3359, 2012. (SCI).

    Article  Google Scholar 

  13. Xiaojun Zhao, Lin Li, Zhiguang Cheng, Yuting Zhong and Gang Liu. Harmonic analysis of nonlinear magnetic field under sinusoidal and dc-biased magnetizations by the fixed-point method. IEEE Transactions on Magnetics. 51(3): 7000705. 2015. (SCI).

    Google Scholar 

  14. P. Zhou, W. N. Fu, D. Lin, and Z. J. Cendes, “Numerical modeling of magnetic devices,” IEEE Trans. Magn., vol. 40, no. 4, pp. 1803–1809, Mar. 2004.

    Google Scholar 

  15. K. Yamazaki, “An efficient procedure to calculate equivalent circuit parameter of induction motor using 3-D nonlinear time-stepping finite element method,” IEEE Trans. Magn., vol. 38, no. 2, pp. 1281–1283, Mar. 2002.

    Google Scholar 

  16. J. Lu, S. Yamada and K. Bessho, “Harmonic balance finite element method taking account of external circuit and motion,” IEEE Trans. Magn., vol. 27, no. 5, pp. 4024–4027, Sep. 1991.

    Google Scholar 

  17. Z. Cheng, N. Takahashi, and B. Forghani, Electromagnetic and Thermal Field Modeling and Application in Electrical Engineering. Beijing: Science Press, 2009, pp. 386–393.

    Google Scholar 

  18. O. Bíró, S. Außerhoher, G. Buchgraber, K. Preis, and W. Seitlinger, “Prediction of magnetizing current waveform in a single phase power transformer under DC bias,” IET Sci., Meas. Technol., vol. 1, no. 1, pp. 2–5, 2007.

    Article  Google Scholar 

  19. P. R. Price, “Geomagnetically induced current effects on transformers,” IEEE Trans. Magn., vol. 17, no. 4, pp. 1002–1008, Oct. 2002.

    Google Scholar 

  20. Picher, P., Bolduc, L., Dutil, A. and Pham, V.Q. (1997), “Study of the acceptable DC current limit in core-form power transformers”, IEEE Trans. on Power Delivery, Vol. 12, No. 1, pp. 257–65.

    Article  Google Scholar 

  21. N. Takasu, T. Oshi, F. Miyawaki, and S. Saito, “An experimental analysis of DC excitation of transformers by geomagnetically induced currents,” IEEE Trans. Power Delivery, vol. 9, no. 2, pp. 1173–1182, Apr. 1994.

    Google Scholar 

  22. F. I. Hantila, G. Preda and M. Vasiliu, “Polarization method for static field” IEEE Trans. on Magn., vol. 36, no. 4, pp. 672–675, 2000.

    Article  Google Scholar 

  23. V. D. Albertson, B. Bozoki, W. E. Feero, J. G. Kappenman, E. V. Larsen, D. E. Nordell, et al, “Geomagnetic disturbance effects on power systems,” IEEE Trans. Power Delivery, vol. 8, no. 3, pp. 1206–1216, Jul. 1993.

    Google Scholar 

  24. S. Yamada, K. Bessho and J. Lu, “Harmonic balance finite element method applied to nonlinear AC magnetic analysis” IEEE Trans. on Magn., vol. 25, no. 4, pp. 2971–2973, 1989.

    Article  Google Scholar 

  25. Zhao, X., Lu, J., Li, L., Cheng, Z. and Lu, T. (2011), “Analysis of the DC bias phenomenon by the harmonic balance finite element method”, IEEE Trans. Power Delivery, Vol. 26, No. 1, pp. 475–85.

    Article  Google Scholar 

  26. W. Fu, P. Zhou, D. Lin, S. Stanton and Z. Cendes, “Modeling of solid conductors in two-dimensional transient finite element analysis and its application to electrical machines,” IEEE Trans. Magn., 2004, 40(2): 426–434.

    Article  Google Scholar 

  27. P. Zhou, W. Fu, D. Lin, S. Stanton and Z. Cendes, “Numerical modeling of magnetic devices,” IEEE Trans. Magn., 2004, 40(4): 1803–1809.

    Article  Google Scholar 

  28. E. Dlala, A. Belahcen, and A. Arkkio, “Locally convergent fixed-point method for solving time-stepping nonlinear field problems,” IEEE Trans. Magn., 2007, 43(11): 3969–3975.

    Article  Google Scholar 

  29. S. Ausserhofer, O. Biro, and K. Preis, “A strategy to improve the convergence of the fixed-point method for nonlinear eddy current problems,” IEEE Trans. Magn., 2008, 44(6): 1282–1285.

    Article  Google Scholar 

  30. G. Koczka, S. Auberhofer, O. Biro and K. Preis, “Optimal convergence of the fixed point method for nonlinear eddy current problems,” IEEE Trans. Magn., 2009, 45(3): 948–951.

    Article  Google Scholar 

  31. O. Biro and K. Preis, “An efficient time domain method for nonlinear periodic eddy current problems,” IEEE Trans. Magn., 2006, 42(4): 695–698.

    Article  Google Scholar 

  32. G. Koczka, S. Auberhofer, O. Biro and K. Preis, “Optimal convergence of the fixed-point method for nonlinear eddy current problems,” IEEE Trans. Magn., vol. 45, no. 3, pp. 948–951, Mar. 2009.

    Google Scholar 

  33. J. Lu, X. Zhao and S. Yamada, Harmonic Balance Finite Element Method: Applications in Nonlinear Electromagnetics and Power Systems. Singapore, 2016.

    Google Scholar 

  34. O. Biro and K. Preis, “An efficient time domain method for nonlinear periodic eddy current problems,” IEEE Trans. Magn., vol. 42, no. 4, pp. 695–698, Apr. 2006.

    Google Scholar 

  35. A. Kameari, “Local force calculation in 3D FEM with edge elements” Int. J. of Applied Electromagnetics in Materials, vol. 3, pp. 231–240, 1993.

    Google Scholar 

  36. D. Xie and S. Yang, Numerical Analysis and Synthesis of Engineering Electromagnetic Field. Beijing: China Machine Press, 2009, pp. 176–187.

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Key Research and Development Program of China (Grant No. 2017YFB0902703), in part by the National Natural Science Foundation of China (Grant No. 51777073), in part by Hebei Province Natural Science Foundation (Grant No. E2017502061), in part by State Key Laboratory of Reliability and Intelligence of Electrical Equipment (Grant No. EERIKF2018011) and in part by the Fundamental Research Funds for the Central Universities (Grant No. 2019MS078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Science Press, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhao, X. (2020). Harmonic-Balanced Finite Element Method and Its Application. In: Cheng, Z., Takahashi, N., Forghani, B. (eds) Modeling and Application of Electromagnetic and Thermal Field in Electrical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-0173-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0173-9_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0172-2

  • Online ISBN: 978-981-15-0173-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics