Skip to main content

Inspection of Crop-Weed Image Database Using Kapur’s Entropy and Spider Monkey Optimization

  • Conference paper
  • First Online:
Soft Computing for Problem Solving

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1048))

Abstract

Image assessment measures are commonly employed in different domains to extract the helpful information to take essential decisions. This paper implements a soft-computing approach to examine the Benchmark Crop-Weed (BCW) images of Computer Vision Problems in Plant Phenotyping (CVPPP2014) challenge database. The proposed work executes a hybrid procedure based on Spider Monkey Optimization (SMO) algorithm and Kapur’s multi-thresholding and the Watershed Segmentation (WS) based extraction. After extracting the Crop-Weed regions of BCW pictures, the superiority of the proposed tool is then assessed by implementing a relative study among extracted segment and its related ground-truth. Additionally, the prominence of SMO is validated against the Bat-Algorithm (BA) and Firefly-Algorithm (FA). The outcome of this study authenticates that SMO-based technique is competent in examining the BCW pictures with significant accuracy and precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haug, S., Michaels, A., Biber, P., Ostermann, J.: Plant classification system for crop/weed discrimination without segmentation. In: IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE, pp. 1142–1149 (2014). https://doi.org/10.1109/wacv.2014.6835733

  2. Bakhshipour, A., Jafari, A., Nassiri, S.M., Zare, D.: Weed segmentation using texture features extracted from wavelet sub-images. Biosys. Eng. 157, 1–12 (2017). https://doi.org/10.1016/j.biosystemseng.2017.02.002

    Article  Google Scholar 

  3. Haug, S., Ostermann, J.: Plant classification for field robots: a machine vision approach. In: Computer Vision and Pattern Recognition in Environmental Informatics, pp. 248 (2016). https://doi.org/10.4018/978-1-4666-9435-4.ch012

  4. Burgos-Artizzu, X.P., Ribeiro, A., Guijarro, M., Pajares, G.: Real-time image processing for crop/weed discrimination in maize fields. Comput. Electron. Agric. 75(2), 337–346 (2011). https://doi.org/10.1016/j.compag.2010.12.011

    Article  Google Scholar 

  5. Tellaeche, A., Pajares, G., Burgos-Artizzu, X.P., Ribeiro, A.: A computer vision approach for weeds identification through support vector machines. Appl. Soft Comput. 11, 908–915 (2011). https://doi.org/10.1016/j.asoc.2010.01.011

    Article  MATH  Google Scholar 

  6. Montalvo, M., Guerrero, J.M., Romeo, J., Emmi, L., Guijarro, M., Pajares, G.: Automatic expert system for weeds/crops identification in images from maize fields. Expert Syst. Appl. 40(1), 75–82 (2013). https://doi.org/10.1016/j.eswa.2012.07.034

    Article  Google Scholar 

  7. Aitkenhead, M.J., Dalgetty, I.A., Mullins, C.E., McDonald, A.J.S., Strachan, N.J.C.: Weed and crop discrimination using image analysis and artificial intelligence methods. Comput. Electron. Agric. 39(3), 157–171 (2003). https://doi.org/10.1016/s0168-1699(03)00076-0

    Article  Google Scholar 

  8. Herrera, P.J., Dorado, J., Ribeiro, A.: A novel approach for weed type classification based on shape descriptors and a fuzzy decision-making method. Sensors 14(8), 15304–15324 (2014). https://doi.org/10.3390/s140815304

    Article  Google Scholar 

  9. Haug, S., Ostermann, J.: A crop/weed field image dataset for the evaluation of computer vision based precision agriculture tasks. Lect. Notes Comput. Sci. 8928, 105–116 (2014). https://doi.org/10.1007/978-3-319-16220-1_8

    Article  Google Scholar 

  10. Bansal, J.C., Sharma, H., Jadon, S.S., Clerc, M.: Spider monkey optimization algorithm for numerical optimization. Memetic Comput. 6(1), 31–47 (2014)

    Article  Google Scholar 

  11. Sharma, H., Hazrati, G., Bansal, J.C.: Spider monkey optimization algorithm. In: Studies in Computational Intelligence, vol. 779, pp. 43–59 (2019). https://doi.org/10.1007/978-3-319-91341-4_4

    Google Scholar 

  12. Gupta, K., Deep, K., Bansal, J.C.: Spider monkey optimization algorithm for constrained optimization problems. Soft. Comput. 21(23), 6933–6962 (2017)

    Article  Google Scholar 

  13. Gupta, K., Deep, K., Bansal, J.C.: Improving the local search ability of spider monkey optimization algorithm using quadratic approximation for unconstrained optimization. Comput. Intell. 33(2), 210–240 (2017)

    Article  MathSciNet  Google Scholar 

  14. Sharma, A., Sharma, H., Bhargava, A., Sharma, N., Bansal, J.C.: Optimal power flow analysis using Lévy flight spider monkey optimisation algorithm. Int. J. Artif. Intell. Soft Comput. 5(2), 320–352 (2016)

    Article  Google Scholar 

  15. Dey, et al.: Firefly algorithm for optimization of scaling factors during embedding of manifold medical information: an application in ophthalmology imaging. J. Med. Imaging Health Inform. 4(3), 384–394 (2014). https://doi.org/10.1166/jmihi.2014.1265

    Article  Google Scholar 

  16. Satapathy, S.C., Raja, N.S.M., Rajinikanth, V., Ashour, A.S., Dey, N.: Multi-level image thresholding using Otsu and chaotic bat algorithm. Neural Comput. Appl. 29(12), 1285–1307 (2018). https://doi.org/10.1007/s00521-016-2645-5

    Article  Google Scholar 

  17. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms, 2nd edn. Luniver Press, Frome, UK (2011)

    Google Scholar 

  18. Kapur, J.N., Sahoo, P.K., Wong, A.K.C.: A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vision. Graph. Image Process. 29, 273–285 (1985)

    Article  Google Scholar 

  19. Dey, N., Rajinikanth, V., Ashour, A.S., Tavares, J.M.R.S.: Social group optimization supported segmentation and evaluation of skin melanoma images. Symmetry 10(2), 51 (2018). https://doi.org/10.3390/sym10020051

    Article  MATH  Google Scholar 

  20. Rajinikanth, V., Satapathy, S.C., Dey, N., Lin, H.: Evaluation of ischemic stroke region from CT/MR images using hybrid image processing techniques. In: Intelligent Multidimensional Data and Image Processing, pp. 194–219 (2018). https://doi.org/10.4018/978-1-5225-5246-8.ch007

  21. Deng, G., Li, Z.: An improved marker-controlled watershed crown segmentation algorithm based on high spatial resolution remote sensing imagery. Lect. Notes Electr. Eng. 128, 567–572 (2012)

    Article  Google Scholar 

  22. Rajinikanth, V., Dey, N., Satapathy, S.C., Ashour, A.S.: An approach to examine magnetic resonance angiography based on Tsallis entropy and deformable snake model. Futur. Gener. Comput. Syst. 85, 160–172 (2018). https://doi.org/10.1016/j.future.2018.03.025

    Article  Google Scholar 

  23. Raja, N.S.M., Fernandes, S.L. Dey, N., Satapathy, S.C., Rajinikanth, V.: Contrast enhanced medical MRI evaluation using Tsallis entropy and region growing segmentation. J. Ambient. Intell. Humaniz. Comput. 1–12 (2018). https://doi.org/10.1007/s12652-018-0854-8

  24. Rajinikanth, V., Satapathy, S.C., Fernandes, S.L., Nachiappan, S.: Entropy based segmentation of tumor from brain MR images–a study with teaching learning based optimization. Pattern Recogn. Lett. 94, 87–95 (2017). https://doi.org/10.1016/j.patrec.2017.05.028

    Article  Google Scholar 

  25. Rajinikanth, V., Raja, N.S.M., Satapathy, S.C., Dey, N., Devadhas, G.G.: Thermogram assisted detection and analysis of ductal carcinoma in situ (DCIS). In: International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), IEEE, pp. 1641–1646 (2018). https://doi.org/10.1109/icicict1.2017.8342817

  26. AlShahrani, A.M., Al-Abad, M.A., Al-Malki, A.S., Ashour, A.S., Dey, N.: Automated system for crops recognition and classification. In: Computer Vision: Concepts, Methodologies, Tools, and Applications, pp. 1208–1223. IGI Global (2018). https://doi.org/10.4018/978-1-5225-5204-8.ch050

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Rajinikanth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rajinikanth, V., Dey, N., Satapathy, S.C., Kamalanand, K. (2020). Inspection of Crop-Weed Image Database Using Kapur’s Entropy and Spider Monkey Optimization. In: Das, K., Bansal, J., Deep, K., Nagar, A., Pathipooranam, P., Naidu, R. (eds) Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol 1048. Springer, Singapore. https://doi.org/10.1007/978-981-15-0035-0_32

Download citation

Publish with us

Policies and ethics