Skip to main content

Agronomic Crops Response and Tolerance to Allelopathic Stress

  • Chapter
  • First Online:
Agronomic Crops

Abstract

Under agricultural situations, plants are often exposed to various environmental stresses, including biotic and abiotic stresses. Allelopathy is one of the most important interactions among plants. Nowadays, allelopathy is known as one of the biotic stresses affecting growth and development of plants, especially crops. Responsible compounds in allelopathy named allelochemicals are derived from the secondary metabolism of plants and are species and tissue specific. These compounds are released from the plants into the environment as leachates, volatiles, and root exudates and from biomass decomposition. Their action mechanism affecting the receiver plants also differs. Some of these compounds, such as volatile compounds, directly impact the receiver plant, while other compounds need microorganism’s intermediation. Allelopathic stress is a multidimensional stress, and in receiver plants, it occurs at molecular, biochemical, physiological, morphological, and eventually ecological levels. In addition, it can negatively affect the quantity and quality of growth in agronomic crops. Plants have several resistance mechanisms to counteract the adverse effects of this phenomenon at physiological, biochemical, and molecular levels that all these mechanisms lead to the detoxification of allelochemicals. Generally, allelochemical’s detoxification processes were aimed to facilitate allelochemicals’ outlet from the cells that eventually leads to normal cell functions. Environmental stresses, viz., drought, deficiency and toxicity of nutrients, temperature stress, light stress, and biotic stresses can affect allelopathy and also influence it. Herbicide application in agricultural fields causes changes in plant’s allelopathic interactions as well. Already, allelopathy has become a suitable tool for the transgenic plant production with desirable traits via biotechnology techniques, which promise the production of resistant cultivars to a variety of stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

abscisic acid

C4H:

cinnamate-4-hydroxylase

COMT:

caffeic acid O-methyltransferases

CTK:

cytokinin

F5H:

ferulic acid 5-hydroxylase

IAA:

indoleacetic acid

MDA:

malondialdehyde

PAL:

phenylalanine ammonia lyase

PDMS:

polydimethylsiloxane

QTL:

quantitative trait locus

RAPD:

random amplification of polymorphic DNA

ROS:

reactive oxygen species

STME:

silicone tube micro-extraction

References

  • Abenavoli MR, Sorgona A, Sidari M, Badiani M, Fuggi A (2003) Coumarin inhibits the growth of carrot (Daucus carota L. cv. Saint Valery) cells in suspension culture. J Plant Physiol 160:227–237

    Article  CAS  PubMed  Google Scholar 

  • Abenavoli MR, Lupini A, Oliva S, Sorgona A (2010) Allelochemical effects on net nitrate uptake and plasma membrane H+-ATPase activity in maize seedlings. Biol Plant 54:149–153

    Article  CAS  Google Scholar 

  • Abrahim D, Francischini AC, Pergo EM, Kelmer-Bracht AM, Ishii-Iwamoto EL (2003a) Effects of alpha-pinene on the mitochondrial respiration of maize seedlings. Plant Physiol Biochem 41:985–991

    Article  CAS  Google Scholar 

  • Abrahim D, Takahashi L, Kelmer-Bracht AM, Ishii-Iwamoto EL (2003b) Effects of phenolic acids and monoterpenes on the mitochondrial respiration of soybean hypocotyl axes. Allelopath J 11:21–30

    Google Scholar 

  • Achigan-Dako AG, Sogbohossou OED, Maundu P (2014) Current knowledge on Amaranthus spp.: research avenues for improved nutritional value and yield in leafy amaranthus in sub-Saharan Africa. Euphytica Springer Press 197:1–15

    Google Scholar 

  • Ahrabi F, Enteshari S, Moradshahi A (2011) Allelopathic potential of Para-hydroxybenzoic acid and coumarin on canola: talaieh cultivar. J Med Plant Res 5:5104–5109

    CAS  Google Scholar 

  • Albuquerque MB, Santos RC, Lima LM, Melo Filho PDA, Nogueira RJMC, Câmara CAG et al (2010) Allelopathy, an alternative tool to improve cropping systems. Rev Agron Sust Dev 31:379–395

    Article  Google Scholar 

  • Anaya AL (1999) Allelopathy as a tool in the management of biotic resources in agroecosystems. Crit Rev Plant Sci 18:697–739

    Article  CAS  Google Scholar 

  • Andrew IKS, Storkey J, Sparkes DL (2015) A review of the potential for competitive cereal cultivars as a tool in integrated weed management. Weed Res 55:239–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baerson SR, Sanchez-Moreiras A, Pedrol-Bonjoch N, Schulz M, Kagan IA, Agarwal AK et al (2005) Detoxification and transcriptome response in Arabidopsis seedlings exposed to the allelochemical benzoxazolin-2(3H)-one. J Biol Chem 280:21867–21881

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301:1377–1380

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils-a review. Food Chem Toxicol 46:446–475

    Article  CAS  PubMed  Google Scholar 

  • Barazani O, Friedman J (1999) Allelopathic bacteria and their impact on higher plants. Crit Rev Plant Sci 18:741–755

    Article  CAS  Google Scholar 

  • Barros de Morais CS, Silva Dos Santos LA, Vieira Rossetto CA (2014) Oil radish development agronomic affected by sunflower plants reduces. Biosci J 30:117–128

    Google Scholar 

  • Barto EK, Cipollini D (2009) Half-lives and field soil concentrations of Alliaria petiolata secondary metabolites. Chemosphere 76:71–75

    Article  PubMed  CAS  Google Scholar 

  • Batish DR, Singh HP, Kaur S, Kohli RK, Yadav SS (2008) Caffeic acid affects early growth, and morphogenetic response of hypocotyls cuttings of mung bean (Phaseolus aureus). J Plant Physiol 165:297–305

    Article  CAS  PubMed  Google Scholar 

  • Belz RG (2007) Allelopathy in crop/weed interactions–an update. Pest Manag Sci 63:308–326

    Article  CAS  PubMed  Google Scholar 

  • Bergmark CL, Jackson WA, Volk RJ, Blum U (1992) Differential inhibition by ferulic acid of nitrate and ammonium uptake in Zea mays L. Plant Physiol 98:639–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertholdsson NO (2004) Variation in allelopathic activity over 100 years of barley selection and breeding. Weed Res 44:78–86

    Article  Google Scholar 

  • Bertholdsson NO (2010) Breeding spring wheat for improved allelopathic potential. Weed Res 50:49–57

    Article  Google Scholar 

  • Bhadoria P (2011) Allelopathy: a natural way towards weed management. Am J Exp Agric 1:7–20

    Google Scholar 

  • Bhowmik PC, Doll JD (1982) Corn and soybean response to allelopathic effects of weed and crop residues. Agron J 74:601–606

    Article  Google Scholar 

  • Borella J, Martinazzo EG, Aumonde TZ, Do Amarante L, De Moraes DM, Villela FA (2014) Performance of radish seeds and seedlings under action of aqueous extract of leaves of Trema micrantha (Ulmaceae). Biosci J 30:108–116

    Google Scholar 

  • Bradow JM, Connick JWJ (1987) Allelochemicals from palmer amaranth, Amaranthus palmeri S. Wats. J Chem Ecol 13:185–202

    Article  CAS  PubMed  Google Scholar 

  • Burgos NR, Talbert RE, Kim KS, Kuk YI (2004) Growth inhibition and root ultrastructure of cucumber seedlings exposed to allelochemicals from rye (Secale cereale). J Chem Ecol 30:671–689

    Article  CAS  PubMed  Google Scholar 

  • Cai SL, Mu XQ (2012) Allelopathic potential of aqueous leaf extracts of Datura stramonium L. on seed germination, seedling growth and root anatomy of Glycine max (L.) Merrill. Allelopath J 30:235–245

    Google Scholar 

  • Chadwick M, Trewin H, Gawthrop F, Wagstaff C (2013) Sesquiterpenoids lactones: benefits to plants and people. Int J Mol Sci 14:12780–12805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaimovitsh D, Abu-Abied M, Belausov E, Rubin B, Dudai N, Sadot E (2010) Microtubules are an intracellular target of the plant terpene citral. Plant J 61:399–408

    Article  CAS  PubMed  Google Scholar 

  • Chaimovitsh D, Rogovoy Stelmakh O, Altshuler O, Belausov E, Abu-Abied M, Rubin B et al (2012) The relative effect of citral on mitotic microtubules in wheat roots and BY2 cells. Plant Biol 14:354–364

    Article  CAS  PubMed  Google Scholar 

  • Cheema ZA, Khaliq A (2000) Use of sorghum allelopathic properties to control weeds in irrigated wheat in a semi arid region of Punjab. Agric Ecosyst Environ 79:105–112

    Article  Google Scholar 

  • Cheema ZA, Khaliq A, Saeed S (2004) Weed control in maize (Zea mays L.) through sorghum allelopathy. J Sustain Agric 23:73–86

    Article  Google Scholar 

  • Cheema Z, Farooq M, Khaliq A (2013) Application of allelopathy in crop production: success story from Pakistan. In: Cheema ZA, Farooq M, Wahid A (eds) Allelopathy. Springer-Verlag Press, Berlin/Heidelberg, pp 113–143

    Chapter  Google Scholar 

  • Cheng TS (2012) The toxic effects of diethylphthalate on the activity of glutamine synthetase in greater duck weed (Spirodela polyrhiza L.). Aquat Toxicol 124–125:171–178

    Article  PubMed  CAS  Google Scholar 

  • Cheng ZH, Wang CH, Xiao XM, Khan MA (2011) Allelopathic effects of decomposing garlic stalk on some vegetable crops. Afr J Biotechnol 10:15514–15520

    Google Scholar 

  • Chou CH (1999) Roles of allelopathy in plant biodiversity and sustainable agriculture. Crit Rev Plant Sci 18:609–636

    Article  Google Scholar 

  • Cruz Ortega R, Anaya AL, Ramos L (1988) Effects of allelopathic compounds of corn pollen on respiration and cell division of watermelon. J Chem Ecol 14:71–86

    Article  CAS  PubMed  Google Scholar 

  • Dayan FE, Howell J, Weidenhamer JD (2009) Dynamic root exudation of sorgoleone and its in planta mechanism of action. J Exp Bot 60:2107–2117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dehghani F, Yahyaabadi S, Ranjbar M (2014) Allelopathic potential of petal, leaf and seed extracts of sunflower different ecotypes on Zea mays. Int J Biosci 5:136–144

    Article  Google Scholar 

  • Demuner AJ, Barbosa LCA, Chinelatto LS, Reis C, Silva AA (2005) Sorption and persistence of sorgoleone in red-yellow latosol. Q Nova 28:451–455

    Article  CAS  Google Scholar 

  • Dhima KV, Vasilakoglou IB, Eleftherohorinos IG, Lithourgidis AS (2006) Allelopathic potential of winter cereals and their cover crop mulch effect on grass weed suppression and corn development. Crop Sci 46:345–352

    Article  Google Scholar 

  • Dietz M, Machill S, Hoffmann HC, Schmidtke K (2013) Inhibitory effects of plantago lanceolata L. on soil N mineralization. Plant Soil 368:445–458

    Article  CAS  Google Scholar 

  • Ding J, Sun Y, Xiao CL, Shi K, Zhou YH, Yu JQ (2007) Physiological basis of different allelopathic reactions of cucumber and figleaf gourd plants to cinnamic acid. J Exp Bot 58:3765–3773

    Article  CAS  PubMed  Google Scholar 

  • dos Santos WD, Ferrarese M, de Lourdes L, Ferrarese-Filho O (2008) Ferulic acid: an allelochemical troublemaker. Funct Plant Sci Biotechnol 2:47–55

    Google Scholar 

  • Dudai N, Poljakoff-Mayber A, Mayer AM, Putievsky E, Lerner HR (1999) Essential oils as allelochemicals and their potential use as bioherbicides. J Chem Ecol 25:1079–1089

    Article  CAS  Google Scholar 

  • Duke SO, Scheffler BE, Dayan FE (2001) Strategies for using transgenes to produce allelopathic crops. Weed Technol 15:826–834

    Article  CAS  Google Scholar 

  • Einhellig FA (1995) Allelopathy-current status and future goals. In: Inderjit A, Dakshini KMM, Einhellig FA (eds) Allelopathy: organisms, processes, and applications. American Chemical Society Press, Washington, DC, pp 1–24

    Google Scholar 

  • Einhellig FA (1996) Interactions involving allelopathy in cropping system. Agron J 69:13–23

    Google Scholar 

  • Fang C, Zhuang Y, Xu T, Li Y, Li Y, Lin W (2013) Changes in rice allelopathy and rhizosphere microflora by inhibiting rice phenylalanine ammonia-lyase gene expression. J Chem Ecol 39:204–212

    Article  CAS  PubMed  Google Scholar 

  • Fang C, Li Y, Li C, Li B, Ren Y, Zheng H et al (2015) Identification and comparative analysis of microRNAs in barnyardgrass (Echinochloa crusgalli) in response to rice allelopathy. Plant Cell Environ 38:1368–1381

    Article  CAS  PubMed  Google Scholar 

  • Farhoudi R, Lee DJ (2013) Allelopathic effects of barley extract (Hordeum vulgare) on sucrose synthase activity, lipid peroxidation and antioxidant enzymatic activities of Hordeum spontoneum and Avena ludoviciana. Plant Nat Sci Indian B 83:447–452

    Google Scholar 

  • Farhoudi R, Zangane HS, Saeedipour S (2012) Allelopathical effect of barley [Hordeum vulgare (L.) cv. Karon] on germination and lipid peroxidation of wild mustard seedling. Res Crop 13:467–471

    Google Scholar 

  • Farooq M, Jabran K, Cheema ZA, Wahid A, Siddique KH (2011) The role of allelopathy in agricultural pest management. Pest Manag Sci 67:493–506

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Bajwa AA, Cheema SA, Cheema ZA (2013) Application of allelopathy in crop production. Int J Agric Biol 15:1367–1378

    Google Scholar 

  • Fernandez C, Santonja M, Gros R, Monnier Y, Chomel M, Baldy V et al (2013) Allelochemicals of Pinus halepensis as drivers of biodiversity in Mediterranean open mosaic habitats during the colonization stage of secondary succession. J Chem Ecol 39:298–311

    Article  CAS  PubMed  Google Scholar 

  • Field B, Jordan F, Osbourn A (2006) First encounters–deployment of defence-related natural products by plants. New Phytol 172:193–207

    Article  CAS  PubMed  Google Scholar 

  • Fragasso M, Iannucci A, Papa R (2013) Durum wheat and allelopathy: toward wheat breeding for natural weed management. Front Plant Sci 4:375

    Article  PubMed  PubMed Central  Google Scholar 

  • Gealy DR, Yan W (2012) Weed suppression potential of ‘Rondo’ and other Indica rice germplasm lines. Weed Technol 26:517–524

    Article  Google Scholar 

  • Geng GD, Zhang SQ, Cheng ZH (2009) Effects of different allelochemicals on mineral elements absorption of tomato root. China Veget 4:48–51

    Google Scholar 

  • Gimsing AL, Baelum J, Dayan FE, Locke MA, Sejero LH, Jacobsen CS (2009) Mineralization of the allelochemical sorgoleone in soil. Chemosphere 76:1041–1047

    Article  CAS  PubMed  Google Scholar 

  • Gioria M, Osborne BA (2014) Resource competition in plant invasions: emerging patterns and research needs. Front Plant Sci 5:501

    Article  PubMed  PubMed Central  Google Scholar 

  • Gniazdowska A, Bogatek R (2005) Allelopathic interactions between plants. Multi site action of allelochemicals. Acta Physiol Plant 27:395–407

    Article  CAS  Google Scholar 

  • Gniazdowska A, Krasuska U, Andrzejczak O, Soltys D (2015) Allelopathic compounds as oxidative stress agents: yes or no. In: Gupta KJ, Igamberdiev AU (eds) Reactive oxygen and nitrogen species signaling and communication in plants. Licensee Springer Press, New York

    Google Scholar 

  • Golisz A, Sugano M, Fujii Y (2008) Microarray expression profiling of Arabidopsis thaliana L. in response to allelochemicals identified in buckwheat. J Exp Bot 59:3099–3109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golisz A, Sugano M, Hiradate S, Fujii Y (2011) Microarray analysis of Arabidopsis plants in response to allelochemical L-DOPA. Planta 233:231–240

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez VM, Kazimir J, Nimbal C, Weston LA, Cheniae GM (1997) Inhibition of a photosystem II electron transfer reaction by the natural product sorgoleone. J Agric Food Chem 45:1415–1421

    Article  CAS  Google Scholar 

  • Grana E, Sotelo T, Diaz-Tielas C, Araniti F, Krasuska U, Bogatek R et al (2013) Citral induces auxin and ethylene-mediated malformations and arrests cell division in Arabidopsis thaliana roots. J Chem Ecol 39:271–282

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, Wang P, Kong CH (2009) Urease, invertase, dehydrogenase and polyphenoloxidase activities in paddy soil influenced by allelopathic rice variety. Eur J Soil Biol 45:436–441

    Article  CAS  Google Scholar 

  • Guillon M (2003) Herbicidal composition comprising an allelopathic substance and method of use thereof. European patent No 1110456. Nogueres, France: European Patent Office

    Google Scholar 

  • Haddadchi GR, Gerivani Z (2009) Effects of phenolic extracts of canola (Brassica napuse L.) on germination and physiological responses of soybean (Glycin max L.) seedlings. Int J Plant Prod 3:63–74

    Google Scholar 

  • Haddadchi GR, Massoodi Khorasani F (2006) Allelopathic effects of aqueous extracts of Sinapis arvensison growth and related physiological and biochemical responses of Brassica napus. J Sci (Univ Tehran) 32:23–28

    CAS  Google Scholar 

  • Haider G, Cheema ZA, Farooq M, Wahid A (2015) Performance and nitrogen use of wheat cultivars in response to application of allelopathic crop residues and 3, 4-dimethylpyrazole phosphate. Int J Agric Biol 17:261–270

    CAS  Google Scholar 

  • Hallak AMG, Davide LC, Souza IF (1999) Effects of sorghum (Sorghum bicolor L.) root exudates on the cell cycle of the bean plant (Phaseolus vulgaris L.) root. Genet Mol Biol 22:95–99

    Article  Google Scholar 

  • Han X, Cheng ZH, Meng HW, Yang XL, Ahmad I (2013) Allelopathic effect of decomposed garlic (Allium Sativum L.) stalk on lettuce (L. Sativa Var. Crispa L.). Pak J Bot 45:225–233

    Google Scholar 

  • Harper JL (1964) The individual in the population. J Ecol 52(Suppl):149–158

    Article  Google Scholar 

  • Harun MAYA, Robinson RW, Johnson J, Uddin MN (2014) Allelopathic potential of Chrysanthemoides monilifera subsp. Monilifera (boneseed): a novel weapon in the invasion processes. S Afr J Bot 93:157–166

    Article  Google Scholar 

  • He HB, Wang HB, Fang CX, Lin ZH, Yu ZM, Lin WX (2012a) Separation of allelopathy from resource competition using rice/barnyardgrass mixed-cultures. PLoS One 7:37201

    Article  CAS  Google Scholar 

  • He H, Wang H, Fang C, Wu H, Guo X, Liu C et al (2012b) Barnyard grass stress up regulates the biosynthesis of phenolic compounds in allelopathic rice. J Plant Physiol 169:1747–1753

    Article  CAS  PubMed  Google Scholar 

  • Hejl AM, Koster KL (2004a) The allelochemical sorgoleone inhibits root H+-ATPase and water uptake. J Chem Ecol 30:2181–2191

    Article  CAS  Google Scholar 

  • Hejl AM, Koster KL (2004b) Juglone disrupts root plasma membrane H+-ATPase activity and impairs water uptake, root respiration, and growth in soybean (Glycine max) and corn (Zea mays). J Chem Ecol 30:453–471

    Article  CAS  PubMed  Google Scholar 

  • Huang LF, Song LX, Xia XJ, Mao WH, Shi K, Zhou YH et al (2013) Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture. J Chem Ecol 39:232–242

    Article  CAS  PubMed  Google Scholar 

  • Iannucci A, Fragasso M, Platani C, Papa R (2013) Plant growth and phenolic compounds in the rhizosphere soil of wild oat (Avena fatua L.). Front Plant Sci 4:509

    Article  PubMed  PubMed Central  Google Scholar 

  • Ihsan MZ, Khaliq A, Mahmood A, Naeem M, El-Nakhlawy F, Alghabari F (2015) Field evaluation of allelopathic plant extracts alongside herbicides on weed management indices and weed-crop regression analysis in maize. Weed Biol Manag 15:78–86

    Article  CAS  Google Scholar 

  • Inderjit Callaway RM, Vivanco JM (2006) Can plant biochemistry contribute to understanding of invasion ecology? Trends Plant Sci 11:574–580

    Article  PubMed  CAS  Google Scholar 

  • Inderjit del Moral R (1997) Is separating resource competition from allelopathy realistic? Bot Rev 63:221–230

    Article  Google Scholar 

  • Inderjit DMM, Einhellig FA (1993) Allelopathy: organism, processes and applications. Am Chem Soc 123:7518–7533

    Google Scholar 

  • Inderjit Nilsen ET (2003) Bioassays and field studies for allelopathy in terrestrial plants: progress and problems. Crit Rev Plant Sci 22:221–238

    Article  Google Scholar 

  • Inderjit Wardle DA, Karban R, Callaway RM (2011) The ecosystem and evolutionary contexts of allelopathy. Trends Ecol Evol 26:655–662

    Article  PubMed  Google Scholar 

  • Iqbal J, Cheema ZA, An M (2007) Intercropping of field crops in cotton for the management of purple nutsedge (Cyperus rotundus L.). Plant Soil 300:163–171

    Article  CAS  Google Scholar 

  • Jabran K, Mahajan G, Sardana V, Chauhan BS (2015) Allelopathy for weed control in agricultural systems. Crop Prot 72:57–65

    Article  Google Scholar 

  • John J, Shirmila J, Sarada S, Anu S (2010) Role of allelopathy in vegetables crops production. Allelopath J 25:275–311

    Google Scholar 

  • Kato-Noguchi H, Ota K, Kujime H, Ogawa M (2013) Effects of momilactone on the protein expression in Arabidopsis germination. Weed Biol Manag 13:19–23

    Article  CAS  Google Scholar 

  • Kaur H, Inderjit Kaushik S (2005) Cellular evidence of allelopathic interference of benzoic acid to mustard (Brassica juncea L.) seedling growth. Plant Physiol Biochem 43:77–81

    Article  CAS  PubMed  Google Scholar 

  • Kekec G, Mutlu S, Alpsoy L, Sakcali MS, Atici O (2013) Genotoxic effects of catmint (Nepeta meyeri Benth.) essential oils on some weed and crop plants. Toxicol Ind Health 29:504–513

    Article  CAS  PubMed  Google Scholar 

  • Khalaj MA, Amiri M, Azimi MH (2013) Allelopathy: physiological and sustainable agriculture important aspects. Int J Agron Plant Prod 4:950–962

    Google Scholar 

  • Khan AL, Hussain J, Hamayun M, Kang SM, Kim HY, Watanabe KN, Lee IN (2010) Allelochemical, eudesmane-type sesquiterpenoids from Inula falconeri. Molecules 15:1554–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MA, Cheng ZH, Xiao XM, Khan AR, Ahmed SS (2011) Ultrastructural studies of the inhibition effect against Phytophthora capsici of root exudates collected from two garlic cultivars along with their qualitative analysis. Crop Prot 30:1149–1155

    Article  Google Scholar 

  • Khanh TD, Chung MI, Xuan TD, Tawata S (2005) The exploitation of crop allelopathy in sustainable agricultural production. J Agron Crop Sci 191:172–184

    Article  Google Scholar 

  • Kohli RK, Singh HP, Batish DR (2001) Allelopathy in agroecosystems. Food Products Press, New York

    Google Scholar 

  • Kong CH, Hu F (2001) Allelopathy and its application. Chinese Agricultural Press, Beijing

    Google Scholar 

  • Kong CH, Wang P, Gu Y, Xu XH, Wang ML (2008) Fate and impact on microorganisms of rice allelochemicals in paddy soil. J Agric Food Chem 56:5043–5049

    Article  CAS  PubMed  Google Scholar 

  • Kong CH, Chen XH, Hu F, Zhang SZ (2011) Breeding of commercially acceptable allelopathic rice cultivars in China. Pest Manag Sci 67:1100–1106

    CAS  PubMed  Google Scholar 

  • Kremer RJ (2006) The role of allelopathic bacteria in weed management. In: Inderjit X, Mukerji KG (eds) Allelochemicals: biological control of plant pathogens and diseases. Springer Netherlands Press, Dordrecht, pp 143–155

    Chapter  Google Scholar 

  • Leao PN, Engene N, Antunes A, Gerwick WH, Vasconcelos V (2012) The chemical ecology of cyanobacteria. Nat Prod Rep 29:372–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leslie AW (2005) History and current trends in the use of allelopathy for weed management. Hortic Technol 14:149–154

    Google Scholar 

  • Leslie CA, Romani RJ (1988) Inhibition of ethylene biosynthesis by salicylic acid. Plant Physiol 88:833–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li ST, Zhou JM, Wang HY, Chen XQ (2002) Research surveys of allelopathy in plants. Chin J Eco-Agric 10:72–74

    CAS  Google Scholar 

  • Li ZH, Wang Q, Ruan X, Pan CD, Jiang DA (2010) Phenolics and plant allelopathy. Molecules 15:8933–8952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YP, Feng YL, Chen YJ, Tian YH (2015) Soil microbes alleviate allelopathy of invasive plants. Sci Bull 60:1083–1091

    Article  Google Scholar 

  • Liebman M, Dyck E (1993) Crop-rotation and intercropping strategies for weed management. Ecol Appl 3:92–122

    Article  PubMed  Google Scholar 

  • Lin WX (2010) Effect of self-allelopathy on AOS of Casuarina equisetifolia forst seedling. Fujian J Agric Sci 25:108–113

    CAS  Google Scholar 

  • Lin WX, Kim KU, Shin DH (2000) Rice allelopathic potential and its modes of action on barnyard grass (Echinochloa crusgalli). Allelopath J 7:215–224

    Google Scholar 

  • Lin WX, He HQ, Guo YC, Liang YY, Chen FY (2001) Rice allelopathy and its physiobiochemical characteristics. Chin J Appl Ecol 12:871–875

    CAS  Google Scholar 

  • Liu XF, Hu XJ (2001) Effects of allelochemical ferulic acid on endogenous hormone level of wheat seedling. Chin J Eco-Agric 9:96–98

    Google Scholar 

  • Liu DL, Lovett JV (1993) Biologically active secondary metabolites of barley. II. Phytotoxicity of barley allelochemicals. J Chem Ecol 19:2231–2244

    Article  CAS  PubMed  Google Scholar 

  • Lv WG, Zhang CL, Yuan F, Peng Y (2002) Mechanism of allelochemicals inhibiting continuous cropping cucumber growth. Sci Agric Sin 35:106–109

    Google Scholar 

  • Ma YQ (2005) Allelopathic studies of common wheat (Triticum aestivum L.). Weed Biol Manag 5:93–104

    Article  CAS  Google Scholar 

  • Macias FA, Marin D, Oliveros-Bastidas A, Varela RM, Simonet AM, Carrera C et al (2003) Allelopathy as a new strategy for sustainable ecosystems development. Biol Sci Space 17:18–23

    Article  PubMed  Google Scholar 

  • Macias FA, Oliveros-Bastidas A, Marin D, Castellano D, Simonet AM, Molinillo JM (2004) Degradation studies on benzoxazinoids. Soil degradation dynamics of 2,4-dihydroxy-7-methoxy-(2H)-1,4-benzoxazin-3(4H)-one (DIMBOA) and its degradation products, phytotoxic allelochemicals from gramineae. J Agric Food Chem 52:6402–6413

    Article  CAS  PubMed  Google Scholar 

  • Macias FA, Marin D, Oliveros-Bastidas A, Castellano D, Simonet AM, Molinillo JM (2005a) Structure-activity relationships (SAR) studies of benzoxazinones, their degradation products and analogues. Phytotoxicity on standard target species (STS). J Agric Food Chem 53:538–548

    Article  CAS  PubMed  Google Scholar 

  • Macias FA, Oliveros-Bastidas A, Marin D, Castellano D, Simonet AM, Molinillo JM (2005b) Degradation studies on benzoxazinoids. Soil degradation dynamics of (2R)-2-O-beta-D-glucopyranosyl-4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one (DIBOA-Glc) and its degradation products, phytotoxic allelochemicals from Gramineae. J Agric Food Chem 53:554–561

    Article  CAS  PubMed  Google Scholar 

  • Mahmood A, Cheema ZA, Mushtaq MN, Farooq M (2013) Maize-sorghum intercropping systems for purple nutsedge management. Arch Agron Soil Sci 59:1279–1288

    Article  Google Scholar 

  • Mahmoud SS, Croteau RB (2002) Strategies for transgenic manipulation of monoterpene biosynthesis in plants. Trends Plant Sci 7:366–373

    Article  CAS  PubMed  Google Scholar 

  • Maighany F (2003) Allelopathy: from concept to application. Partoe vaghee Iran, Tehran

    Google Scholar 

  • Mallik AU (2003) Conifer regeneration problems in boreal and temperate forests with ericaceous understory: role of disturbance, seedbed limitation, and keystone species change. Crit Rev Plant Sci 22:341–366

    Article  Google Scholar 

  • Maqbool N, Wahid A, Farooq M, Cheema ZA, Siddique KHM (2013) Allelopathy and abiotic stress interaction in crop plants. In: Cheema ZA, Farooq M, Wahid A (eds) Allelopathy. Springer Berlin Heidelberg, Berlin, pp 451–468

    Chapter  Google Scholar 

  • Meazza G, Scheffler BE, Tellez MR, Rimando AM, Romagni JG, Duke SO et al (2002) The inhibitory activity of natural products on plant p-hydroxyphenylpyruvate dioxygenase. Phytochemistry 60:281–288

    Article  CAS  PubMed  Google Scholar 

  • Menges RM (1988) Allelopathic effects of palmer amaranth (Amaranthus palmeri) on seedling growth. Weed Sci Soc Am 36:325–328

    Article  Google Scholar 

  • Mishra S, Nautiyal CS (2012) Reducing the allelopathic effect of Parthenium hysterophorus L. on wheat (Triticum aestivum L.) by Pseudomonas putida. Plant Growth Regul 66:155–165

    Article  CAS  Google Scholar 

  • Mishra S, Mishra A, Chauhan PS, Mishra SK, Kumari M, Niranjan A et al (2012) Pseudomonas putida NBRIC19 dihydrolipoamide succinyl transferase (SucB) gene controls degradation of toxic allelochemicals produced by Parthenium hysterophorus. J Appl Microbiol 112:793–808

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Upadhyay RS, Nautiyal CS (2013) Unravelling the beneficial role of microbial contributors in reducing the allelopathic effects of weeds. Appl Microbiol Biotechnol 97:5659–5668

    Article  CAS  PubMed  Google Scholar 

  • Mohney BK, Matz T, LaMoreaux J, Wilcox DS, Gimsing AL, Mayer P, Weidenhamer JD (2009) In situ silicone tube microextraction: a new method for undisturbed sampling of root-exuded thiophenes from marigold (Tagetes erecta L.) in soil. J Chem Ecol 35:1279–1287

    Article  CAS  PubMed  Google Scholar 

  • Molisch H (1937) Der einfluss Einer Pflanze Auf Die Andere-allelopathie. Fischer, Jena

    Google Scholar 

  • Narwal SS (2000) Weed management in rice: wheat rotation by allelopathy. Crit Rev Plant Sci 19:249–266

    Article  Google Scholar 

  • Nawaz A, Farooq M, Cheema SA, Cheema ZA (2014) Role of allelopathy in weed management. In: Chauhan BS, Mahajan G (eds) Recent advances in weed management. Springer-Verlag Press, New York, pp 39–62

    Google Scholar 

  • Nishida N, Tamotsu S, Nagata N, Saito C, Sakai A (2005) Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J Chem Ecol 31:1187–1203

    Article  CAS  PubMed  Google Scholar 

  • Odeyemi IS, Afolami SO, Adigun JA (2013) Plant parasitic nematode relative abundance and population suppression under Chromolaena odorata (Asteraceae) fallow. Int J Pest Manag 59:79–88

    Article  Google Scholar 

  • Pawlowski A, Kaltchuk-Santos E, Zini CA, Caramao EB, Soares GLG (2012) Essential oils of Schinus terebinthifolius and S. molle (Anacardiaceae): mitodepressive and aneugenic inducers in onion and lettuce root meristems. S Afr J Bot 80:96–103

    Article  CAS  Google Scholar 

  • Peng SL, Wen J, Guo QF (2004) Mechanism and active variety of allelochemicals. Acta Bot Sin 46:757–766

    Google Scholar 

  • Peterson CA, Betts H, Baldwin IT (2002) Methyl jasmonate as an allelopathic agent: sagebrush inhibits germination of a neighbouring tobacco, Nicotiana Attenuata. Chem Ecol 28:441–446

    Google Scholar 

  • Purvis W (2000) Lichens. Smithsonian Books, Washington, DC

    Google Scholar 

  • Rasmussen JA, Hejl AM, Einhellig FA, Thomas JA (1992) Sorgoleone from root exudate inhibits mitochondrial functions. J Chem Ecol 18:197–207

    Article  CAS  PubMed  Google Scholar 

  • Razavi SM (2011) Plant coumarins as allelopathy agents. Int J Biol Chem 5:86–90

    Article  CAS  Google Scholar 

  • Reeves DW, Price AJ, Patterson MG (2005) Evaluation of three winter cereals for weed control in conservation-tillage nontransgenic cotton. Weed Technol 19:731–736

    Article  Google Scholar 

  • Rice EL (1974) Allelopathy. Academic, New York

    Google Scholar 

  • Rice EL (1984) Allelopathy, 2nd edn. Academic, New York

    Google Scholar 

  • Sanchez-Moreiras AM, De La Pena TC, Reigosa MJ (2008) The natural compound benzoxazolin-2(3H)-one selectively retards cell cycle in lettuce root meristems. Phytochemistry 69:2172–2179

    Article  CAS  PubMed  Google Scholar 

  • Schulz M, Marocco A, Tabaglio V, Macias FA, Molinillo JM (2013) Benzoxazinoids in rye allelopathy from discovery to application in sustainable weed control and organic farming. J Chem Ecol 39:154–174

    Article  CAS  PubMed  Google Scholar 

  • Shao J, Wu Z, Yu G, Peng X, Li R (2009) Allelopathic mechanism of pyrogallol to Microcystis aeruginosa PCC7806 (Cyanobacteria): from views of gene expression and antioxidant system. Chemosphere 75:924–928

    Article  CAS  PubMed  Google Scholar 

  • Shao-Lin P, Jun W, Qin-Feng G (2004) Mechanism and active variety of allelochemicals. Acta Bot Sin 53:511–517

    Google Scholar 

  • Singh NB, Sunaina D (2014) Allelopathic stress produced by Bitter Gourd (Momordica charantia L.). J Stress Physiol Biochem 10:5–14

    Google Scholar 

  • Singh HP, Batish DR, Kohli RK (1999) Autotoxicity: concept, organisms, and ecological significance. Crit Rev Plant Sci 18:757–772

    Article  CAS  Google Scholar 

  • Singh HP, Daizy R, Batisha DR, Kohli RK (2001) Allelopathy in agroecosystems an overview. J Crop Prod 4:121–161

    Article  Google Scholar 

  • Singh HP, Batish DR, Kohli RK (2003) Allelopathic interactions and allelochemicals: new possibilities for sustainable weed management. Crit Rev Plant Sci 22:239–311

    Article  CAS  Google Scholar 

  • Sodaeizadeh H, Hosseini Z (2012) Allelopathy an environmentally friendly method for weed control. Int Conf Appl Life Sci 18:387–392

    Google Scholar 

  • Soltys D, Rudzinska-Langwald A, Gniazdowska A, Wisniewska A, Bogatek R (2012) Inhibition of tomato (Solanum lycopersicum L.) root growth by cyanamide is due to altered cell division, phytohormone balance and expansin gene expression. Planta 236:1629–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soltys D, Krasuska U, Bogatek R, Gniazdowska A (2013) Allelochemicals as bioherbicides—present and perspectives. In: Price AJ, Kelton JA (eds) Herbicides—current research and case studies in use. Licensee InTech Press, New York

    Google Scholar 

  • Stinson KA, Campbell SA, Powell JR, Wolfe BE, Callaway RM, Thelen GC et al (2006) Invasive plant suppresses the growth of native tree seedlings by disrupting below ground mutualisms. PLoS Biol 4:140

    Article  CAS  Google Scholar 

  • Sun XM, Lu ZY, Liu BY, Zhou QH, Zhang YY, Wu ZB (2014) Allelopathic effects of pyrogallic acid secreted by submerged macrophytes on Microcystis aeruginosa: role of ROS generation. Allelopath J 33:121–129

    Google Scholar 

  • Sunar S, Yildirim N, Aksakal O, Agar G (2013) Determination of the genotoxic effects of Convolvulus arvensis extracts on corn (Zea mays L.) seeds. Toxicol Ind Health 29:449–459

    Article  PubMed  Google Scholar 

  • Sunmonu TO, Van Staden J (2014) Phytotoxicity evaluation of six fast-growing tree species in South Africa. S Afr J Bot 90:101–106

    Article  CAS  Google Scholar 

  • Tabaglio V, Gavazzi C, Schulz M, Marocco A (2008) Alternative weed control using the allelopathic effect of natural benzoxazinoids from rye mulch. Agron Sustain Dev 28:397–401

    Article  CAS  Google Scholar 

  • Uddin MR, Park KW, Han SM, Pyon JY, Park SU (2012) Effects of sorgoleone allelochemical on chlorophyll fluorescence and growth inhibition in weeds. Allelopath J 30:61–70

    Google Scholar 

  • Uddin MR, Park SU, Dayan FE, Pyon JY (2014) Herbicidal activity of formulated sorgoleone, a natural product of sorghum root exudate. Pest Manag Sci 70:252–257

    Article  CAS  PubMed  Google Scholar 

  • Understrup AG, Ravnskov S, Hansen HC, Fomsgaard IS (2005) Biotransformation of 2-benzoxazolinone to 2-amino-(3H)-phenoxazin-3-one and 2-acetylamino-(3H)-phenoxazin-3-one in soil. J Chem Ecol 31:1205–1222

    Article  CAS  PubMed  Google Scholar 

  • Vidal RA, Bauman TT (1997) Fate of allelochemicals in the soil. Cienc Rural 27:351–357

    Article  Google Scholar 

  • Wang P, Kong CH, Hu F, Xu XH (2007) Allantoin involved in species interactions with rice and other organisms in paddy soil. Plant Soil 296:43–51

    Article  CAS  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. Ann Bot 111:1021–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weidenhamer JD (2005) Biomimetic measurement of allelochemical dynamics in the rhizosphere. J Chem Ecol 31:221–236

    Article  CAS  PubMed  Google Scholar 

  • Weidenhamer JD, Boes PD, Wilcox DS (2009) Solid-phase root zone extraction (SPRE): a new methodology for measurement of allelochemical dynamics in soil. Plant Soil 322:177–186

    Article  CAS  Google Scholar 

  • Weidenhamer JD, Mohney BK, Shihada N, Rupasinghe M (2014) Spatial and temporal dynamics of root exudation: how important is heterogeneity in allelopathic interactions? J Chem Ecol 40:940–952

    Article  CAS  PubMed  Google Scholar 

  • Weir TL, Park SW, Vivanco JM (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7:472–479

    Article  CAS  PubMed  Google Scholar 

  • Weston LA, Duke SO (2003) Weed and crop allelopathy. Crit Rev Plant Sci 22:367–389

    Article  CAS  Google Scholar 

  • Weston LA, Mathesius U (2013) Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy. J Chem Ecol 39:283–297

    Article  CAS  PubMed  Google Scholar 

  • Wezel A, Casagrande M, Celette F, Vian JF, Ferrer A, Peigne J (2014) Agroecological practices for sustainable agriculture. A review. Agron Sustain Dev 34:1–20

    Article  Google Scholar 

  • Willis RJ (2007) The history of allelopathy. Springer, Dordrecht

    Google Scholar 

  • Wink M, Latz-Bruning B (1995) Allelopathic properties of alkaloids and other natural-products-possible modes of action. In: Inderjit A, Dakshini KMM, Einhellig FA (eds) Allelopathy: organisms, processes, and applications. American Chemical Society Press, Washington, DC, pp 117–126

    Google Scholar 

  • Wortman SE, Drijber RA, Francis CA, Lindquist JL (2013) Arable weeds, cover crops, and tillage drive soil microbial community composition in organic cropping systems. Appl Soil Ecol 72:232–241

    Article  Google Scholar 

  • Wu FZ, Pan K, Ma FM, Wang XD (2004) Effects of cinnamic acid on photosynthesis and cell ultrastructure of cucumber seedlings. Acta Hortic Sin 31:183–188

    CAS  Google Scholar 

  • Wu Z, Yang L, Wang R, Zhang Y, Shang Q, Wang L et al (2015) In vitro study of the growth, development and pathogenicity responses of Fusarium oxysporum to phthalic acid, an autotoxin from Lanzhou lily. World J Microbiol Biotechnol 31:1227–1234

    Article  CAS  PubMed  Google Scholar 

  • Xiao-Jun Y, Hui-Xing S, Guang-Li L, Qi-Bing C (2013) Allelopathic effects of Paeonia decomposita on seed germination and protective enzymes activities of wheat. J Med Plant Res 7:1057–1062

    Google Scholar 

  • Xuan TD, Shinkichi T, Khanh TD, Min CI (2005) Biological control of weeds and plant pathogens in paddy rice by exploiting plant allelopathy: an overview. Crop Prot 24:197–206

    Article  Google Scholar 

  • Yang QH, Ye WH, Liao FL, Yin XJ (2005) Effects of allelochemicals on seed germination. Chin J Ecol 24:1459–1465

    Google Scholar 

  • Yang GQ, Wan FH, Liu WX, Guo JY (2008) Influence of two allelochemicals from Ageratina adenophora Sprengel on ABA, IAA, and ZR contents in roots of upland rice seedlings. Allelopath J 21:253–262

    Google Scholar 

  • Yildirim E, Guvenc I (2005) Intercropping based on cauliflower: more productive, profitable and highly sustainable. Eur J Agron 22:11–18

    Article  Google Scholar 

  • Yu JQ, Matsui Y (1997) Effects of root exudates of cucumber (Cucumis sativus) and allelochemicals on ion uptake by cucumber seedlings. J Chem Ecol 23:817–827

    Article  CAS  Google Scholar 

  • Yu JQ, Ye SF, Zhang MF, Hu WH (2003) Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. Biochem Syst Ecol 31:129–139

    Article  CAS  Google Scholar 

  • Yu JH, Zhang Y, Niu CX, Li JJ (2006) Effects of two kinds of allelochemicals on photosynthesis and chlorophyll fluorescence parameters of Solanum melongena L. seedlings. Chin J Appl Ecol 17:1629–1632

    CAS  Google Scholar 

  • Yuan GL, Ma RX, Liu XF, Sun SS (1998) Effect of allelochemicals on nitrogen absorption of wheat seeding. Chin J Eco-Agric 3:9–41

    CAS  Google Scholar 

  • Zeng R (2008) Allelopathy in Chinese ancient and modern agriculture. In: Zeng R, Mallik A, Luo S (eds) Allelopathy in sustainable agriculture and forestry. Springer New York Press, New York, pp 39–59

    Chapter  Google Scholar 

  • Zeng RS (2014) Allelopathy—the solution is indirect. J Chem Ecol 40:515–516

    Article  CAS  PubMed  Google Scholar 

  • Zeng RS, Luo SM, Shi YH, Shi MB, Tu CY (2001) Physiological and biochemical mechanism of allelopathy of secalonic acid F on higher plants. Agron J 93:72–79

    Article  CAS  Google Scholar 

  • Zeng RS, Mallik AZ, Luo SM (2008) Allelopathy in sustainable agriculture and forestry. Springer Press, New York

    Book  Google Scholar 

  • Zheng YL, Feng YL, Zhang LK, Callaway RM, Valiente-Banuet A, Luo DQ et al (2015) Integrating novel chemical weapons and evolutionarily increased competitive ability in success of a tropical invader. New Phytol 205:1350–1359

    Article  PubMed  Google Scholar 

  • Zhou K, Wang ZF, Hao FG, Guo WM (2010) Effects of aquatic extracts from different parts and rhizospheric soil of chrysanthemum on the rooting of stem cuttings of the same species. Acta Botan Boreali-Occiden Sin 76:762–768

    Google Scholar 

  • Zimdahl RL (1999) My view. Weed Sci 47:1

    Article  CAS  Google Scholar 

  • Zuo SP, Liu GB, Li M (2012a) Genetic basis of allelopathic potential of winter wheat based on the perspective of quantitative trait locus. Field Crop Res 135:67–73

    Article  Google Scholar 

  • Zuo SP, Ma YQ, Ye LT (2012b) In vitro assessment of allelopathic effects of wheat on potato. Allelopath J 30:1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Yahya Salehi-Lisar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bakhshayeshan-Agdam, H., Salehi-Lisar, S.Y. (2020). Agronomic Crops Response and Tolerance to Allelopathic Stress. In: Hasanuzzaman, M. (eds) Agronomic Crops. Springer, Singapore. https://doi.org/10.1007/978-981-15-0025-1_17

Download citation

Publish with us

Policies and ethics