Skip to main content

Combination of Drugs: An Effective Approach for Enhancing the Efficacy of Antibiotics to Combat Drug Resistance

  • Chapter
  • First Online:

Abstract

Currently available antibiotics have been effective in treating infectious diseases; however, the development of resistance to these drugs has led to the emergence of new and the re-emergence of old, infectious diseases. Therefore, newer antibiotic approaches with mechanistic differences are needed to combat antimicrobial resistance. Combining antibiotics is an encouraging strategy for increasing treatment efficacy and for controlling resistance evolution. This approach may include the combination of one antibiotic with another antibiotic and the development of adjuvants that either directly target resistance mechanisms, like inhibition of β-lactamase enzymes, or indirectly target resistance by interrupting the bacterial signaling pathways, such as two-component systems. Other natural products, like essential oils, plant extracts, and nanoparticles, can also be combined synergistically with antibiotics. The aim of this chapter is to highlight the strategy of treating infections with arrays of drugs rather than discrete drugs. We have addressed here three categories of approaches being used in combination therapy: the inhibition of targets in different pathways, the inhibition of distinct nodes in the same pathway, and the inhibition of the same target in different ways. Here, we have described the most recent developments toward combination therapies for the treatment of infectious diseases caused by multidrug-resistant bacteria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adikwu, M., Jackson, C., & Esimone, C. (2010). Evaluation of in vitro antimicrobial effect of combinations of erythromycin and Euphorbia hirta leaf extract against Staphylococcus aureus. Research in Pharmaceutical Biotechnology, 2, 22–24.

    Google Scholar 

  • Adwan, G., Abu-Shanab, B., & Adwan, K. (2010). Antibacterial activities of some plant extracts alone and in combination with different antimicrobials against multidrug-resistant Pseudomonas aeruginosa strains. Asian Pacific Journal of Tropical Medicine, 1, 266–269.

    Article  Google Scholar 

  • Aggarwal, V. K., Higuera, C., Deirmengian, G., et al. (2013). Swab cultures are not as effective as tissue cultures for diagnosis of periprosthetic joint infection. Clinical Orthopaedics, 471, 3196–3203.

    Article  Google Scholar 

  • Ahmed, Z., Khan, S. S., Khan, M., et al. (2009). Synergistic effect of Salvadora persica extracts, tetracycline and penicillin against Staphylococcus aureus. African Journal of Basic and Applied Sciences, 2, 25–29.

    Google Scholar 

  • Ahmed, Z., Khan, S. S., & Khan, M. (2013). In vitro trials of some antimicrobial combinations against Staphylococcus aureus and Pseudomonas aeruginosa. Saudi Journal of Biological Sciences, 20, 79–83.

    Article  CAS  PubMed  Google Scholar 

  • Allahverdiyev, A. M., Kon, K. V., Abamor, E. S., et al. (2011). Coping with antibiotic resistance: Combining nanoparticles with antibiotics and other antimicrobial agents. Expert Review of Anti-Infective Therapy, 9, 1035–1052.

    Article  CAS  PubMed  Google Scholar 

  • Ball, P. (2007). The clinical development and launch of amoxicillin/ clavulanate for the treatment of a range of community-acquired infections. International Journal of Antimicrobial Agents, 30(Suppl. 2), S113–S117.

    Article  CAS  PubMed  Google Scholar 

  • Barekzi, N. A., Felts, A. G., Poelstra, K. A., et al. (2002). Locally delivered polyclonal antibodies potentiate intravenous antibiotic efficacy against gram negative infections. Pharmaceutical Research, 19, 1801–1807.

    Article  CAS  PubMed  Google Scholar 

  • Bollenbach, T. (2015). Antimicrobial interactions: Mechanisms and implications for drug discovery and resistance evolution. Current Opinion in Microbiology, 27, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Bollenbach, T., Quan, S., Chait, R., et al. (2009). Non-optimal microbial response to antibiotics underlies suppressive drug interactions. Cell, 139, 707–718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaloupka, K., Malam, Y., & Seifalian, A. M. (2010). Nanosilver as a new generation of nanoproduct in biomedical applications. Trends in Biotechnology, 28, 580–588.

    Article  CAS  PubMed  Google Scholar 

  • Chamundeeswari, M., Sobhana, S. S., Jacob, J. P., et al. (2010). Preparation, characterization and evaluation of a biopolymeric gold nanocomposite with antimicrobial activity. Biotechnology and Applied Biochemistry, 55, 29–35.

    Article  CAS  PubMed  Google Scholar 

  • Chao, S., Young, G., Oberg, C., et al. (2008). Inhibition of methicillin-resistant Staphylococcus aureus (MRSA) by essential oils. Flavour and Fragrance Journal, 23, 444–449.

    Article  CAS  Google Scholar 

  • Chen, F., Shi, Z., Neoh, K. G., et al. (2009). Antioxidant and antibacterial activities of eugenol and carvacrol-grafted chitosan nanoparticles. Biotechnology and Bioengineering, 104, 30–39.

    Article  CAS  PubMed  Google Scholar 

  • Drawz, S. M., Papp-Wallace, K. M., & Bonomo, R. A. (2014). New β-lactamase inhibitors: A therapeutic renaissance in an MDR world. Antimicrobial Agents and Chemotherapy, 58, 1835–1846.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ejim, L., Farha, M. A., Falconer, S. B., et al. (2011). Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nature Chemical Biology, 7, 348–350.

    Article  CAS  PubMed  Google Scholar 

  • Fair, R. J., & Tor, Y. (2014). Antibiotics and bacterial resistance in the 21st century. Perspectives in Medicinal Chemistry, 6, 25–64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fayaz, A. M., Balaji, K., Girilal, M., et al. (2009). Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomedicine, 6, 103–109.

    Article  PubMed  CAS  Google Scholar 

  • Fischbach, M. A. (2011). Combination therapies for combating antimicrobial resistance. Current Opinion in Microbiology, 14, 519–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghannad, M. S., & Mohammadi, A. (2012). Bacteriophage: Time to re-evaluate the potential of phage therapy as a promising agent to control multidrug-resistant bacteria. Iranian Journal of Basic Medical Sciences, 15, 693–701.

    CAS  Google Scholar 

  • Goldberg, D. E., Siliciano, R. F., & Jacobs, W. R., Jr. (2012). Outwitting evolution: Fighting drug resistant TB, malaria, and HIV. Cell, 148, 1271–1283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu, H., Ho, P. L., Tong, E., et al. (2003). Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Letters, 3, 1261–1263.

    Article  CAS  Google Scholar 

  • Hagihara, M., Crandon, J. L., & Nicolau, D. P. (2012). The efficacy and safety of antibiotic combination therapy for infections caused by gram-positive and gram negative organisms. Expert Opinion on Drug Safety, 11, 221–233.

    Article  CAS  PubMed  Google Scholar 

  • Hamoud, R., Zimmermann, S., Reichling, J., et al. (2014). Synergistic interactions in two drug and three-drug combinations (thymol, EDTA and vancomycin) against multi drug resistant bacteria including E. coli. Phytomedicine, 21, 443–447.

    Article  CAS  PubMed  Google Scholar 

  • Hasper, H. E., Kramer, N. E., Smith, J. L., et al. (2006). An alternative bactericidal mechanism of action for l antibiotic peptides that target lipid II. Science, 313, 1636–1637.

    Article  CAS  PubMed  Google Scholar 

  • Hegreness, M., Shoresh, N., Damian, D., et al. (2008). Accelerated evolution of resistance in multidrug environments. Proceedings of the National Academy of Sciences of the United States of America, 105, 13977–13981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemaiswarya, S., Kruthiventi, A. K., & Doble, M. (2008). Synergism between natural products and antibiotics against infectious diseases. Phytomedicine, 15, 639–652.

    Article  CAS  PubMed  Google Scholar 

  • Hoiby, N., Bjarnsholt, T., Givskov, M., et al. (2010). Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents, 35, 322–332.

    Article  PubMed  CAS  Google Scholar 

  • Hu, Y., Du, Y., Wang, X., et al. (2009). Self-aggregation of water-soluble chitosan and solubilization of thymol as an antimicrobial agent. Journal of Biomedical Materials Research. Part A, 90, 874–881.

    Article  PubMed  CAS  Google Scholar 

  • Kalan, L., & Wright, G. D. (2011). Antibiotic adjuvants: Multicomponent anti-infective strategies. Expert Reviews in Molecular Medicine, 13, e5.

    Article  PubMed  CAS  Google Scholar 

  • Kalle, A. M., & Rizvi, A. (2011). Inhibition of bacterial multidrug resistance by celecoxib, a cyclooxygenase-2 inhibitor. Antimicrobial Agents and Chemotherapy, 55, 439–442.

    Article  CAS  PubMed  Google Scholar 

  • Khameneh, B., Diab, R., Ghazvini, K., et al. (2016). Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microbial Pathogenesis, 95, 32–42.

    Article  CAS  PubMed  Google Scholar 

  • Khan, M. S. A., & Ahmad, I. (2011). Antifungal activity of essential oils and their synergy with fluconazole against drug resistant strains of Aspergillus fumigatus and Trichophyton rubrum. Applied Microbiology and Biotechnology, 90, 1083–1094.

    Article  CAS  PubMed  Google Scholar 

  • Khan, M. S. A., & Ahmad, I. (2013). In vitro antifungal activity of oil of Cymbopogon citratus and citral alone and in combination with fluconazole against azole-resistant strains of Aspergillus fumigatus and Trichophyton rubrum. Pharmacognosy Communications, 3, 29–34.

    CAS  Google Scholar 

  • Khan, M. S. A., Malik, A., & Ahmad, I. (2012). Anti-candidal activity of essential oils alone and in combination with amphotericin B and fluconazole against multi-drug resistant isolates of Candida albicans. Medical Mycology, 50, 33–42.

    Article  CAS  PubMed  Google Scholar 

  • Lazar, V., Singh, G. P., Spohn, R., et al. (2013). Bacterial evolution of antibiotic hypersensitivity. Molecular Systems Biology, 9, 700. https://doi.org/10.1038/msb.2013.57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lennox, J. L., DeJesus, E., Lazzarin, A., et al. (2009). Safety and efficacy of raltegravir-based versus efavirenz-based combination therapy in treatment-naive patients with HIV-1 infection: A multicentre, double-blind randomised controlled trial. Lancet, 374, 796–806.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, K. (2005). Persister cells and the riddle of biofilm survival. Biochemistry Biokhim, 70, 267–274.

    Article  CAS  Google Scholar 

  • Li, P., Li, J., Wu, C., et al. (2005). Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology, 16, 1912–1917.

    Article  CAS  Google Scholar 

  • Lomovskaya, O., Warren, M. S., Lee, A., et al. (2001). Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: Novel agents for combination therapy. Antimicrobial Agents and Chemotherapy, 45, 105–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marculescu, C. E., & Cantey, J. R. (2008). Polymicrobial prosthetic joint infections: Risk factors and outcome. Clinical Orthopaedics, 466, 1397–1404.

    Article  Google Scholar 

  • Markoishvili, K., Tsitlanadze, G., Katsarava, R., et al. (2002). A novel sustained-release matrix based on biodegradable poly(ester amide)s and impregnated with bacteriophages and an antibiotic shows promise in management of infected venous stasis ulcers and other poorly healing wounds. International Journal of Dermatology, 41, 453–458.

    Article  CAS  PubMed  Google Scholar 

  • McDonnell, G., & Russell, A. D. (1999). Antiseptics and disinfectants: Activity, action, and resistance. Clinical Microbiology Reviews, 12, 147–179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miguel, M. G. (2010). Antioxidant and anti-inflammatory activities of essential oils: A short review. Molecules, 15, 9252–9287.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitchison, D., & Davies, G. (2012). The chemotherapy of tuberculosis: Past, present and future. The International Journal of Tuberculosis and Lung Disease, 16, 724–732.

    Article  CAS  PubMed  Google Scholar 

  • Moran, E., Masters, S., Berendt, A. R., et al. (2007). Guiding empirical antibiotic therapy in orthopaedics: The microbiology of prosthetic joint infection managed by debridement, irrigation and prosthesis retention. The Journal of Infection, 55, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Muller, G., & Kramer, A. (2008). Biocompatibility index of antiseptic agents by parallel assessment of antimicrobial activity and cellular cytotoxicity. The Journal of Antimicrobial Chemotherapy, 61, 1281–1287.

    Article  PubMed  CAS  Google Scholar 

  • Navare, K. J., & Prabhune, A. (2013). A biosurfactant-sophorolipid acts in synergy with antibiotics to enhance their efficiency. BioMed Research International, 2013, 1–8. https://doi.org/10.1155/2013/512495.

    Article  CAS  Google Scholar 

  • Payne, D. J., Gwynn, M. N., Holmes, D. J., et al. (2007). Drugs for bad bugs: Confronting the challenges of antibacterial discovery. Nature Reviews. Drug Discovery, 6, 29–40.

    Article  CAS  PubMed  Google Scholar 

  • Pena-Miller, R., Laehnemann, D., Jansen, G., et al. (2013). When the most potent combination of antibiotics selects for the greatest bacterial load: The smile–frown transition. PLoS Biology, 11, e1001540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petty, N. K., Evans, T. J., Fineran, P. C., et al. (2007). Biotechnological exploitation of bacteriophage research. Trends in Biotechnology, 25, 7–15.

    Article  CAS  PubMed  Google Scholar 

  • Read, A. F., & Huijben, S. (2009). Evolutionary biology and the avoidance of antimicrobial resistance. Evolutionary Applications, 2, 40–51.

    Article  PubMed  PubMed Central  Google Scholar 

  • Richman, D. D. (2001). HIV chemotherapy. Nature, 410, 995–1001.

    Article  CAS  PubMed  Google Scholar 

  • Roemer, T., Schneider, T., & Pinho, M. G. (2013). Auxiliary factors: A chink in the armor of MRSA resistance to β-lactam antibiotics. Current Opinion in Microbiology, 16, 538–548.

    Article  CAS  PubMed  Google Scholar 

  • Roy, A. S., Parveen, A., Koppalkar, A. R., et al. (2010). Effect of nano-titanium dioxide with different antibiotics against methicillin-resistant Staphylococcus aureus. Journal of Biomaterials and Nanobiotechnology, 1, 37–41.

    Article  CAS  Google Scholar 

  • Sadlon, A. E., & Lamson, D. W. (2010). Immune-modifying and antimicrobial effects of eucalyptus oil and simple inhalation devices. Alternative Medicine Review, 15, 33–47.

    PubMed  Google Scholar 

  • Silva, N. C. C., & Fernandes, A., Jr. (2010). Biological properties of medicinal plants: A review of their antimicrobial activity. Journal of Venomous Animals and Toxins Including Tropical Diseases, 16, 402–413.

    Article  Google Scholar 

  • Smith, J. K., Moshref, A. R., Jennings, J. A., et al. (2013). Chitosan sponges for local synergistic infection therapy: A pilot study. Clinical Orthopaedics, 471, 3158–3164.

    Article  Google Scholar 

  • Souto de Oliveira, S. M., Falcao-Silva, V. S., Siqueira-Junior, J. P., et al. (2011). Modulation of drug resistance in Staphylococcus aureus by extract of mango (Mangifera indica) peel. Brazilian Journal of Pharmacognosy, 21, 190–193.

    Article  Google Scholar 

  • Tamma, P. D., Cosgrove, S. E., & Maragakis, L. L. (2012). Combination therapy for treatment of infections with gram-negative bacteria. Clinical Microbiology Reviews, 25, 450–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thati, V., Roy, A. S., Prasad, A. M. V. N., Shivannavar, C. T., et al. (2010). Nanostructured zinc oxide enhances the activity of antibiotics against Staphylococcus aureus. Journal of Bioscience and Technology, 1, 64–69.

    Google Scholar 

  • Toroglu, S. (2011). In-vitro antimicrobial activity and synergistic/antagonistic effect of interactions between antibiotics and some spice essential oils. Journal of Environmental Biology, 32, 23–29.

    PubMed  Google Scholar 

  • Walsh, C. (2000). Molecular mechanisms that confer antibacterial drug resistance. Nature, 406, 775–781.

    Article  CAS  PubMed  Google Scholar 

  • Wood, K., Nishida, S., Ed, S., et al. (2012). Mechanism-independent method for predicting response to multidrug combinations in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 109, 12254–12259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worthington, R. J., & Melander, C. (2013a). Combination approaches to combat multi drug resistant bacteria. Trends in Biotechnology, 31, 177–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worthington, R. J., & Melander, C. (2013b). Overcoming resistance to β-lactam antibiotics. The Journal of Organic Chemistry, 78, 4207–4213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, P., & Grainger, D. W. (2006). Drug/device combinations for local drug therapies and infection prophylaxis. Biomaterials, 27, 24500–22467.

    Google Scholar 

  • Yeh, P. J., Hegreness, M. J., Aiden, A. P., et al. (2009). Drug interactions and the evolution of antibiotic resistance. Nature Reviews. Microbiology, 7, 460–466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaman, S. B., Hussain, M. A., Nye, R., et al. (2017). A review on antibiotic resistance: Alarm bells are ringing. Cureus, 9, e1403.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

We acknowledge the Department of Scientific Research, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia, for financial support in completing this work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, M.S.A. (2019). Combination of Drugs: An Effective Approach for Enhancing the Efficacy of Antibiotics to Combat Drug Resistance. In: Ahmad, I., Ahmad, S., Rumbaugh, K. (eds) Antibacterial Drug Discovery to Combat MDR. Springer, Singapore. https://doi.org/10.1007/978-981-13-9871-1_19

Download citation

Publish with us

Policies and ethics