Skip to main content

Bivariate Data and Calibration of Experimental Systems

  • Chapter
  • First Online:
  • 605 Accesses

Abstract

In this chapter, statistical methodology for bivariate data and calibration of experimental systems is developed. Experimental systems include analytical instruments useful in geochemistry. From the freely available BiDASys software, we can apply both the conventional ordinary least-squares linear regression (OLR) and the new uncertainty weighted least-squares linear regression (UWLR) models. BiDASys was used for achieving and comparing the OLR and UWLR models for the calibration of a high-performance liquid chromatography equipment for the determination of rare-earth elements. Equations are provided for both regressions. The advantages of the UWLR model over the OLR are clearly documented. This is followed by linearity tests, which are useful for deciding whether a linear or a curvilinear fit is more appropriate. ANOVA for the evaluation of fitting is finally presented and exemplified from citations of literature on new precise and accurate critical values for the F and t tests.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andaverde, J., Verma, S. P., & Santoyo, E. (2005). Uncertainty estimates of static formation temperatures in boreholes and evaluation of regression models. Geophysical Journal International, 160, 1112–1122.

    Article  Google Scholar 

  • Asuero, A. G., & González, G. (2007). Fitting straight lines with replicated observations by linear regression. III weighting data. Critical Reviews in Analytical Chemistry, 37, 143–172.

    Article  Google Scholar 

  • Baumann, K. (1997). Regression and calibration for analytical separation techniques. Part II: Validation, weighted and robust regression. Process Control and Quality, 10, 75–112.

    Google Scholar 

  • Bevington, P. R. (1969). Data reduction and error analysis for the physical sciences. New York: Mc-Graw Hill Book Company.

    Google Scholar 

  • Bevington, P. R., & Robinson, D. K. (2003). Data reduction and error analysis for the physical sciences. Boston: McGraw Hill.

    Google Scholar 

  • Cruz-Huicochea, R., & Verma, S. P. (2013). New critical values for F and their use in the ANOVA and Fisher’s F tests for evaluating geochemical reference material granite G-2 (U.S.A.) and igneous rocks from the Eastern Alkaline Province (Mexico). Journal of Iberian Geology, 39, 13–30.

    Article  Google Scholar 

  • Draper, N. R., & Smith, H. (1998). Applied regression analysis (3rd ed.). New York: John Wiley & Sons.

    Google Scholar 

  • Guevara, M., Verma, S. P., Velasco-Tapia, F., Lozano-Santa Cruz, R., & Girón, P. (2005). Comparison of linear regression models for quantitative geochemical analysis: an example using x-ray fluorescence spectrometry. Geostandards and Geoanalytical Research, 29, 271–284.

    Article  Google Scholar 

  • Hinich, M. J., & Talwar, P. P. (1975). A simple method for robust regression. Journal of the American Statistical Association, 70, 113–119.

    Article  Google Scholar 

  • Kataoka, Y. (1989). Standardless x-ray fluorescence spectrometry (Fundamental Parameter Method using Sensitivity Library). The Rigaku Journal, 7, 33–40.

    Google Scholar 

  • Mahon, K. L. (1996). The New “York” regression: application of an improved statistical method to geochemistry. International Geology Review, 38, 293–303.

    Article  Google Scholar 

  • Mashima, H. (2016). XRF analyses of major and trace elements in silicate rocks calibrated with synthetic standard samples. Natural Resource Environment and Humans, 6, 39–50.

    Google Scholar 

  • Meier, P. C., & Zünd, R. E. (1992). Statistical methods in analytical chemistry. New York: John Wiley & Sons Inc.

    Google Scholar 

  • Mendenhall, W., & Sincich, T. L. (1996). Second Course in Statistics, A: Regression Analysis. Upper Saddle River, New Jersey: Prentice Hall.

    Google Scholar 

  • Miller, J. M. (1991). Basic statistical methods for analytical chemistry. Part 2. Calibration and regression methods. A review. Analyst, 116, 3–14.

    Article  Google Scholar 

  • Miller, J. N., & Miller, J. C. (2005). Statistics and chemometrics for analytical chemistry (5th ed.). Essex CM20 2JE, England: Pearson Prentice Hall.

    Google Scholar 

  • Miller, J. N., & Miller, J. C. (2010). Statistics and chemometrics for analytical chemistry (6th ed.). Essex CM20 2JE, England: Pearson Prentice Hall.

    Google Scholar 

  • Mocak, J., Bond, A. M., Mitchell, S., & Scollary, G. (1997). A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: application to voltametric and stripping techniques. Pure & Applied Chemistry, 69, 297–328.

    Article  Google Scholar 

  • Otto, M. (1999). Chemometrics. Statistics and computer application in analytical chemistry. Weinheim: Wiley-VCH.

    Google Scholar 

  • Pearson, K. (1897). Mathematical contribution to the theory of evolution. - on a form of spurious correlation which may arise when indices are used in the measurement of organs. Proceedings of the Royal Society of London, 60, 489–502.

    Article  Google Scholar 

  • Potts, P. J. (1987). A handbook of silicate rock analysis. Glasgow: Blackie.

    Book  Google Scholar 

  • Rollinson, H. R. (1993). Using geochemical data: evaluation, presentation, interpretation. Essex: Longman Scientific Technical.

    Google Scholar 

  • Rosales Rivera, M. (2018). Desarrollo de herramientas estadísticas computacionales con nuevos valores críticos generados por simulación computacional. In: Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigación en Ciencias, pp. 105. Cuernavaca, Morelos, Mexico: Universidad Autónoma del Estado de Morelos.

    Google Scholar 

  • Rosales-Rivera, M., Díaz-González, L., & Verma, S. P. (2018). A new online computer program (BiDASys) for ordinary and uncertainty weighted least-squares linear regressions: case studies from food chemistry. Revista Mexicana de Ingeniería Química, 17, 507–522.

    Article  Google Scholar 

  • Rosales-Rivera, M., Díaz-González, L., & Verma, S. P. (2019). Evaluation of nine USGS reference materials for quality control through Univariate Data Analysis System, UDASys3. Arabian Journal of Geosciences, 12(2), 40. https://doi.org/10.1007/s12517-018-4220-0.

    Article  Google Scholar 

  • Rousseeuw, P. J., & Leroy, A. M. (1987). Robust regression and outlier detection. New York: John Wiley & Sons.

    Book  Google Scholar 

  • Ryan, T. P. (1997). Modern regression analysis. New York: Wiley.

    Google Scholar 

  • Santoyo, E., & Verma, S. P. (2003). Determination of lanthanides in synthetic standards by reversed-phase high-performance liquid chromatography with the aid of a weighted least-squares regression model: estimation of method sensitivities and detection limits. Journal of Chromatography A, 997, 171–182.

    Article  Google Scholar 

  • Sayago, A., & Asuero, A. G. (2004). Fitting straight lines with replicated observations by linear regression: Part II. testing for homogeneity of variances. Critical Reviews in Analytical Chemistry, 34, 133–146.

    Article  Google Scholar 

  • Sayago, A., Boccio, M., & Asuero, A. G. (2004). Fitting straight lines with replicated observations by linear regression: the least squares postulates. Critical Reviews in Analytical Chemistry, 34, 39–50.

    Article  Google Scholar 

  • Taylor, J. K. (1990). Statistical techniques for data analysis. Michigan, USA: Lewis Publishers Inc.

    Google Scholar 

  • Tellinghuisen, J. (2007). Weighted least-squares in calibration: what difference does it make? Analyst, 132, 536–543.

    Article  Google Scholar 

  • Verma, S. P. (1991). Usefulness of liquid chromatography for determination of thirteen rare-earth elements in rocks and minerals. Lanthanide and Actinide Research, 3, 237–257.

    Google Scholar 

  • Verma, S. P. (2005). Estadística básica para el manejo de datos experimentales: aplicación en la Geoquímica (Geoquimiometría). México, D.F.: UNAM.

    Google Scholar 

  • Verma, S. P. (2012). Geochemometrics. Revista Mexicana de Ciencias Geológicas, 29, 276–298.

    Google Scholar 

  • Verma, S. P. (2016). Análisis estadístico de datos composicionales. CDMX: Universidad Nacional Autónoma de México.

    Google Scholar 

  • Verma, S. P., & Cruz-Huicochea, R. (2013). Alternative approach for precise and accurate Student´s t critical values and application in geosciences. Journal of Iberian Geology, 39, 31–56.

    Google Scholar 

  • Verma, S. P., & Santoyo, E. (2005). Is odd-even effect reflected in detection limits? Accreditation and Quality Assurance, 10, 144–148.

    Article  Google Scholar 

  • Verma, S. P., Verma, S. K., Rivera-Gómez, M. A., Torres-Sánchez, D., Díaz-González, L., Amezcua-Valdez, A., Rivera-Escoto, B. A., Rosales-Rivera, M., Armstrong-Altrin, J. S., López-Loera, H., Velasco-Tapia, F. & Pandarinath, K. (2018). Statistically coherent calibration of X-ray fluorescence spectrometry for major elements in rocks and minerals. Journal of Spectroscopy, 2018, Article ID 5837214, 13p, https://doi.org/10.1155/2018/5837214.

    Article  Google Scholar 

  • Verma, S. P., Rosales-Rivera, M., Rivera-Gómez, M. A. & Verma, S. K. (2019). Comparison of matrix-effect corrections for ordinary and uncertainty weighted linear regressions and determination of major element mean concentrations and total uncertainties of 62 international geochemical reference materials from wavelength-dispersive X-ray fluorescence spectrometry. In: Colloquium Spectroscopicum Internationale XLI (CSI XLI) and I Latin-American Meeting on Laser Induced Breakdown Spectroscopy (I LAMLIBS). Mexico City.

    Google Scholar 

  • Zorn, M. E., Gibbons, R. D., & Sonzogni, W. C. (1997). Weighted least-squares approach to calculating limits of detection and quantification by modeling variability as a function of concentration. Analytical Chemistry, 69, 3069–3075.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surendra P. Verma .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, S.P. (2020). Bivariate Data and Calibration of Experimental Systems. In: Road from Geochemistry to Geochemometrics. Springer, Singapore. https://doi.org/10.1007/978-981-13-9278-8_9

Download citation

Publish with us

Policies and ethics