Skip to main content

An Automatic Scene Recognition Using TD-Learning for Mobile Robot Localization in an Outdoor Environment

  • Chapter
  • First Online:
Machine Learning-based Natural Scene Recognition for Mobile Robot Localization in An Unknown Environment

Abstract

Navigation is an important ability of mobile robots. Localization in an environment is the very first step to achieve it. In this chapter, based on the extensive research already conducted for known indoor environments, we are going to utilize a natural landmark-based localization strategy for mobile robot working in an outdoor unknown environment. Particularly, we are going to pursue a real-time scene recognition scheme so as to use objects segmented in it as the natural landmarks and to explore the suitability of configure representation for automatic scene recognition in robot navigation. Experiments designed to infer semantic prediction of a scene from different configurations of its stimuli using TD-learning are conducted and the results demonstrate the effectiveness of the proposed location learning method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Busch, M. A., Skubic, M., Keller, J. M., & Stone, E. E. (2007). A robot in a water maze: Learning a spatial memory task. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (pp. 1727–1732).

    Google Scholar 

  • Civera, J., Grasa, O., Davison, A., & Montiel, J. (2010). 1-point RANSAC for EKF filtering: Application to real-time structure from motion and visual odometry. Journal of Field Robot, 27(5), 609–631.

    Article  Google Scholar 

  • Conn, K., & Peters II, R. A. (2007). Reinforcement learning with a supervisor for a mobile robot in a real-world environment. In Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA) (pp. 73–78).

    Google Scholar 

  • Deisenroth, M. P., & Rasmussen, C. E. (2011). PILCO: A model-based and data-efficient approach to policy search. In Proceedings of the 28th International Conference on Machine Learning (ICML) (pp. 465–472).

    Google Scholar 

  • Dellaert, F., Burgard, W., Fox, D., et al. (1999). Monte Carlo localization for mobile robots. In Proceedings of the IEEE/RSJ International Conference on Robotics and Automation (ICRA) (pp. 1322–1328).

    Google Scholar 

  • Duan, Y., Cui, B., & Yang, H. (2008). Robot navigation based on fuzzy RL algorithm. In International Symposium on Neural Networks (ISNN). Advances in Neural Networks. ISNN 2008 Lecture Notes in Computer Science (Vol. 5263, pp. 391–399).

    Google Scholar 

  • Dusek, J., & Eichenbaum, H. (1998). The hippocampus and transverse patterning guided by olfactory cues. Behavioral Neuroscience, 112(4), 762–771.

    Article  Google Scholar 

  • Fox, D. (1998). Markov localization: A probabilistic framework for mobile robot localization and navigation. Bonn, Germany: University of Bonn.

    MATH  Google Scholar 

  • Guivant, J., & Nebot, E. (2001). Optimization of simultaneous localization and map building algorithm for real time implementation. IEEE Transactions on Robotics and Automation, 17(3), 242–257.

    Article  Google Scholar 

  • Hester, T., Quinlan, M., & Stone, P. (2012). RTMBA: A real-time model-based reinforcement learning architecture for robot control. In Proceedings of IEEE International Conference on Robotics and Automation (ICRA) (pp. 85–90).

    Google Scholar 

  • Hornung, A., Bennewitz, M., & Strasdat, H. (2010). Efficient vision-based navigation: Learning about the influence of motion blur. Autonomous Robots, 29(2), 137–149.

    Article  Google Scholar 

  • Jensfelt, P., & Christensen, H. I. (2001). Active global localization for a mobile robot using multiple hypothesis tracking. IEEE Transactions on Robotics and Automation, 17(2), 748–760.

    Article  Google Scholar 

  • Juang, C. F., & Hsu, C. H. (2009). Reinforcement ant optimized fuzzy controller for mobile-robot wall-following control. IEEE Transactions on Industrial Electronics, 56(10), 3931–3940.

    Article  Google Scholar 

  • Kober, J., Bagnell, J. A., & Peters, J. (2013). Reinforcement learning in robotics—A survey. The International Journal of Robotics Research, 32(11), 1238–1274.

    Article  Google Scholar 

  • Kollar, T., & Roy, N. (2008). Trajectory optimization using reinforcement learning for map exploration. International Journal of Robotics Research, 27(2), 175–197.

    Article  Google Scholar 

  • Lowe, D. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.

    Article  Google Scholar 

  • Michels, J., Saxena, A., & Ng, A. Y. (2005). High speed obstacle avoidance using monocular vision and reinforcement learning. In Proceedings of the 22 International Conference on Machine Learning (ICML) (pp. 593–600).

    Google Scholar 

  • Mikolajczyk, K., & Schmid, C. (2005). A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10), 1615–1630.

    Article  Google Scholar 

  • Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., & Sayd, P. (2009). Generic and real-time structure from motion using local bundle adjustment. Image and Vision Computing, 27(8), 1178–1193.

    Article  Google Scholar 

  • Murray, J. J., Cox, C., Lendaris, G. G., et al. (2002). Adaptive dynamic programming. IEEE Transactions on Systems of Man and Cybernetics—Part C: Applications and Reviews, 32(2), 140–153.

    Article  Google Scholar 

  • Nadel, L., & Willner, J. (1980). Context and conditioning: A place for space. Physiology & Behavior, 8, 218–228.

    Google Scholar 

  • Quintia, P., Iglesias, R., Rodriguez, M. A., Regueiro, C. V., & Valdes, F. (2012). Learning in real robots from environment interaction. Journal of Physical Agents, 6(1), 43–51.

    Google Scholar 

  • Rosten, E., & Drummond, T. (2006). Machine learning for high-speed corner detection. In Proceedings of European Conference on Computer Vision, Lecture Notes Computer Science (Vol. 3951, pp. 430–443).

    Google Scholar 

  • Rudy, J.W., & O’Reilly, R.C. (2001). Conjunctive representations, the hippocampus, and contextual fear conditioning. Cognitive, Affective, & Behavioral Neuroscience, 1(1), 66–82.

    Google Scholar 

  • Se, S., Lowe, D., & Little, J. (2001). Vision-based mobile robot localization and mapping using scale-invariant features. Proceedings IEEE International Conference on Robotics and Automation, 2, 2051–2058.

    Google Scholar 

  • Seymour, B., O’Doherty, J. P., et al. (2004). Temporal difference models describe higher-order learning in humans. Nature, 429(10), 664–667.

    Article  Google Scholar 

  • Smith, R., Self, M., & Cheesman, P. (1990). Estimating uncertain spatial relationships in robotics. In Autonomous Robot Vehicles (pp. 167–193). New York, USA: Springer-Verlag.

    Google Scholar 

  • Sutherland, R. J., & Rudy, J. W. (1989). Configural association theory: The role of the hippocampal formation in learning, memory, and amnesia. Psychology, 17, 129–144.

    Google Scholar 

  • Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge: MIT Press.

    MATH  Google Scholar 

  • Tardif, J., Pavlidis, Y., & Daniilidis, K. (2008). Monocular visual odometry in urban environments using an omnidirectional camera. In Proceedings of International Conference on Intelligent Robots and Systems (pp. 2531–2538).

    Google Scholar 

  • Thrun, S., Burgard, W., & Fox, D. (1998). A probabilistic approach to concurrent mapping and localization for mobile robots. Machine Learning, 31(1), 29–53.

    Article  Google Scholar 

  • Wang, X., Tugcu, M., Hunter, J. E., & Wilkes, D. M. (2009). Exploration of configure representation in landmark learning using working memory toolkit. Pattern Recognition Letters, 66–79.

    Google Scholar 

  • Wang, X, Chang, C., & Wang, X. L. (2017). A fast incremental spectral clustering algorithm for image segmentation. In Proceedings of the 2017 International Conference on Computational Science and Computational Intelligence (pp. 15–27), Las Vegas, December.

    Google Scholar 

  • Wehner, R. (1992). Arthropods. Animal Homing (ed. Papi, F.). Chapman and Hall, London, pp 45–144.

    Google Scholar 

  • Williams, H., Browne, W. N., & Carnegie, D. A. (2017). Learned action SLAM: Sharing SLAM through learned path planning information between heterogeneous robotic platforms. Applied Soft Computing, 313–326.

    Google Scholar 

  • Wolf, J., Burgard, W., & Burkhardt, H. (2005). Robust vision-based localization by combining an image retrieval system with Monte Carlo localization. IEEE Transactions on Robotics, 21(2), 208–216.

    Article  Google Scholar 

  • Xin, X. (2006). A sparse kernel-based least-squares temporal difference algorithm for reinforcement learning. In Proceedings of the 2006 International Conference on Natural Computation, Lecture Notes in Computer Science (Vol. 4221, pp. 47–56).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochun Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Xi'an Jiaotong University Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, X., Wang, X., Wilkes, D.M. (2020). An Automatic Scene Recognition Using TD-Learning for Mobile Robot Localization in an Outdoor Environment. In: Machine Learning-based Natural Scene Recognition for Mobile Robot Localization in An Unknown Environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-9217-7_15

Download citation

Publish with us

Policies and ethics