Skip to main content

Effect of Time on Aluminium Oxide FESEM Nanopore Images Using Fuzzy Inference System

  • Conference paper
  • First Online:
Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2018)

Abstract

The applications in nanotechnology require customized nanopore membrane. The structure and number of nanopore on the oxidized metal template rely upon the anodizing parameters used in the electro-chemical cell during the nanopore synthesis. The fundamental idea of this paper is to develop an automated system to quantify the effect of time on aluminum nanopore through advanced minuscule FESEM images. The test results foresee that, the increase in anodization time results in gradual increment in porosity and pore size estimating from 0.234% to 2.034% and 32 nm to 78 nm respectively and shrinking in nanopore wall thickness from 58 nm to 41 nm. The anticipated after effects of the following conceivable development of aluminum nanopore size and wall thickness are processed by applying factual investigation (statistical analysis) and building the principles of fuzzy inference system. The manual and test results are compared, analyzed and deciphered to exhibit the competence of the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Victor, V., et al.: Unveiling the hard anodization regime of aluminum: insight into the nanopore self-organization and growth mechanism. ACS Appl. Mater. Interfaces 7(51), 28682–28692 (2015)

    Article  Google Scholar 

  2. Santos, A., Macías, G., Ferre-Borrull, J., Pallare, S.J., Marsal, L.F.: Photoluminescent enzymatic sensor based on nanoporous anodic alumina. ACS Appl. Mater. Interfaces 4(7), 3584–3588 (2012)

    Article  Google Scholar 

  3. Kumeria, T., Rahman, M.M., Santos, A., Ferre-Borrull, J., Marsal, L.F., Losic, D.: Nanoporous anodic alumina rugate filters for sensing of ionic mercury: toward environmental point-of-analysis systems. ACS Appl. Mater. Interfaces 6(15), 12971–12978 (2014)

    Article  Google Scholar 

  4. Chen, Y., et al.: Biomimetic nanoporous anodic alumina distributed bragg reflectors in the form of films and microsized particles for sensing applications. ACS Appl. Mater. Interfaces 7(35), 19816–19824 (2015)

    Article  Google Scholar 

  5. Romero, V., et al.: Changes in morphology and ionic transport induced by ALD SiO2 coating of nanoporous alumina membranes. ACS Appl. Mater. Interfaces 5(9), 3556–3564 (2013)

    Article  Google Scholar 

  6. Law, C.S., Santos, A., Kumeria, T., Losic, D.: Engineered therapeutic-releasing nanoporous anodic alumina-aluminum wires with extended release of therapeutics. ACS Appl. Mater. Interfaces 7(6), 3846–3853 (2015)

    Article  Google Scholar 

  7. Vengatesh, P., Kulandainathan, M.A.: Hierarchically ordered self-lubricating superhydrophobic anodized aluminum surfaces with enhanced corrosion resistance. ACS Appl. Mater. Interfaces 7(5), 1516–1526 (2015)

    Article  Google Scholar 

  8. Munoz, R.M., Grauby, S., Rampnoux, J.M., Caballero-Calero, O., Martin-Gonzalez, M., Dilhaire, S.: Fabrication of Bi\(_2\)Te\(_3\) nanowire arrays and thermal conductivity measurement by 3\(\omega \)-scanning thermal microscopy. J. Appl. Phys. 113, 054308 (2013). https://doi.org/10.1063/1.4790363

    Article  Google Scholar 

  9. Bohnert, T., Vega, V., Michel, A.K., Prida, V.M., Nielsch, K.: Magneto-thermopower and magnetoresistance of single Co-Ni alloy nanowires. Appl. Phys. Lett. 103, 092407 (2013). https://doi.org/10.1063/1.4819949

    Article  Google Scholar 

  10. Dudem, B., Ko, Y.H., Leem, J.W., Lee, S.H., Yu, J.S.: Highly transparent and flexible triboelectric nanogenerators with sub-wavelength-architectured polydimethylsiloxane by a nanoporous anodic aluminum oxide template. ACS Appl. Mater. Interfaces 7(37), 20520–20529 (2015)

    Article  Google Scholar 

  11. Banerjee, P., Perez, I., Henn-Lecordier, L., Lee, S.B., Rubloff, G.W.: Nanotubular metal-insulator-metal capacitor arrays for energy storage. Nat. Nanotechnol. 4, 292–296 (2009)

    Article  Google Scholar 

  12. Liang, Y., et al.: Direct access to metal or metal oxide nanocrystals integrated with one-dimensional nanoporous carbons for electrochemical energy storage. Am. Chem. Soc. 132(42), 15030–15037 (2010)

    Article  Google Scholar 

  13. Min, H.L., et al.: Roll-to-roll anodization and etching of aluminum foils for high-throughput surface nanotexturing. Nano Lett. 11, 3425–3430 (2011)

    Article  Google Scholar 

  14. Shwetabh, S.: Microscopic image analysis of nanoparticles by edge detection using ant colony optimization. J. Comput. Eng. 11(3), 84–89 (2013)

    Google Scholar 

  15. Bannigidad, P., Vidyasagar, C.C.: Effect of time on anodized \(Al_{2}O_{3}\) nanopore FESEM images using digital image processing techniques: a study on computational chemistry. IJETTCS 4(3), 15–22 (2015). ISSN 2278–6856

    Google Scholar 

  16. Muneesawang, P., Sirisathitkul, C.: Size measurement of nanoparticle assembly using multilevel segmented TEM images. J. Nanomater. 16, 58 (2015)

    Google Scholar 

  17. De, S., Biswas, N., Sanyal, A., Ray, P., Datta, A.: Detecting subsurface circular objects from low contrast noisy images: applications in microscope image enhancement. World Acad. Sci. Eng. 67, 1317–1323 (2012)

    Google Scholar 

  18. Vidyasagar, C.C., Bannigidad, P., Muralidhara, H.B.: Influence of anodizing time on porosity of nanopore structures grown on flexible TLC aluminium films and analysis of images using MATLAB software. Adv. Mater. Lett. 7(1), 71–77 (2016)

    Article  Google Scholar 

  19. Hiremath, P.S., Bannigidad, P.: Digital microscopic bacterial cell growth analysis and cell division time determination for escherichia coli using fuzzy inference system. In: Thilagam, P.S., Pais, A.R., Chandrasekaran, K., Balakrishnan, N. (eds.) ADCONS 2011. LNCS, vol. 7135, pp. 207–215. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29280-4_23

    Chapter  Google Scholar 

  20. Belwalkar, A., Grasing, E., Van Geertruyden, W., Huang, Z., Misiolek, W.Z.: Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes. J. Memb. Sci. 319, 192–198 (2008)

    Article  Google Scholar 

  21. Santosh, K.C., Wendling, L., Antani, S., Thoma, G.R.: Overlaid arrow detection for labeling regions of interest in biomedical images. IEEE Intell. Syst. 31(3), 66–75 (2016)

    Article  Google Scholar 

  22. Santosh, K.C., Roy, P.P.: Arrow detection in biomedical images using sequential classifier. Int. J. Mach. Learn. Cybern. 9(6), 993–1006 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalaja Udoshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bannigidad, P., Udoshi, J., Vidyasagar, C.C. (2019). Effect of Time on Aluminium Oxide FESEM Nanopore Images Using Fuzzy Inference System. In: Santosh, K., Hegadi, R. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2018. Communications in Computer and Information Science, vol 1037. Springer, Singapore. https://doi.org/10.1007/978-981-13-9187-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9187-3_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9186-6

  • Online ISBN: 978-981-13-9187-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics