Skip to main content

Linking Microbial Genomics to Renewable Energy Production and Global Carbon Management

  • Chapter
  • First Online:
  • 527 Accesses

Abstract

The diminishing concentration of available fossil fuels and increasing global demand of energy have obligated the need for the production of alternate fuels to current petroleum-based fuels. Microbes have the potential to render renewable and sustainable energy sources that are carbon-neutral to counter the elevated concentration of greenhouse gases in the substantial climate changes. Various advancements in sequencing technologies have enabled the study of the microbial diversity and interpreting the variations within the entire genome of organisms and concluding the most feasible pathway of substrate utilization in a comparatively cheaper and faster way. To completely exploit the biofuel-producing potential of these microbes, various genomes have been sequenced and are now available for study. Computational approaches like functional genomics, genome-scale metabolic engineering, and flux balance analysis can be used to improve the H2-producing efficiencies of microbes. Many microorganisms like Enterobacter sp. IIT-BT 08 are reported to have a high rate of H2 production, and its draft genome was generated at DOE Joint Genome Institute (JGI) using Illumina data. The C. perfringens strain JJC was sequenced using the Illumina MiSeq benchtop sequencer which uses a vast variety of carbohydrates producing acetate, butyrate, lactate, ethanol, H2, and carbon dioxide and has various industrial applications. Access to multiple microalgal genome sequences now provides opportunities for application of “omic” approaches to decipher algal lipid metabolism and identify gene targets for the development of potentially engineered strains with optimized lipid content from which biofuel can be produced.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA, Domíguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22(9):477–485

    Article  CAS  PubMed  Google Scholar 

  • Aro EM (2016) From first generation biofuels to advanced solar biofuels. Ambio 45:24–31

    Article  CAS  Google Scholar 

  • Bakonyi P, Nemestóthy N, Simon V, Bélafi-Bakó K (2014) Review on the start-up experiences of continuous fermentative hydrogen producing bioreactors. Renew Sust Energ Rev 40:806–813

    Article  CAS  Google Scholar 

  • Bao G, Wang R, Zhu Y, Dong H, Mao S, Zhang Y, Chen Z, Li Y, Ma Y (2011) Complete genome sequence of Clostridium acetobutylicum DSM 1731, a solvent-producing strain with multireplicon genome architecture. J Bacteriol 193(18):5007–5008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. ISME J 2:805

    Article  CAS  PubMed  Google Scholar 

  • Beer LL, Boyd ES, Peters JW, Posewitz MC (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol 20(3):264–271

    Article  CAS  PubMed  Google Scholar 

  • Boden R, Cunliffe M, Scanlan J, Moussard H, Kits KD, Klotz MG, Jetten MSM, Vuilleumier S, Han J, Peters L, Mikhailova N, Teshima H, Tapia R, Kyrpides N, Ivanova N, Pagani I, Cheng J-F, Goodwin L, Han C, Hauser L, Land ML, Lapidus A, Lucas S, Pitluck S, Woyke T, Stein L, Murrell JC (2011) Complete genome sequence of the aerobic marine methanotroph Methylomonas methanica MC09. J Bacteriol 193:7001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown SD, Begemann MB, Mormile MR, Wall JD, Han CS, Goodwin LA, Pitluck S, Land ML, Hauser LJ, Elias DA (2011) Complete genome sequence of the haloalkaliphilic, hydrogen-producing bacterium Halanaerobium hydrogeniformans. J Bacteriol 193:3682–3683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burk MJ (2010) Sustainable production of industrial chemicals from sugars. Int Sugar J 112:30–35

    CAS  Google Scholar 

  • Canadell JG, Le Quéré C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G (2007) Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc Natl Acad Sci 104:18866–18870

    Article  PubMed  PubMed Central  Google Scholar 

  • Carere CR, Rydzak T, Verbeke TJ, Cicek N, Levin DB, Sparling R (2012) Linking genome content to biofuel production yields: a meta-analysis of major catabolic pathways among select H2 and ethanol-producing bacteria. BMC Microbiol 12:295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Vrije T, Mars AE, Budde MA, Lai MH, Dijkema C, de Waard P, Claassen PA (2007) Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus. Appl Microbiol Biotechnol 74:1358–1367

    Article  CAS  PubMed  Google Scholar 

  • Desiniotis A, Kouvelis VN, Davenport K, Bruce D, Detter C, Tapia R, Han C, Goodwin LA, Woyke T, Kyrpides NC, Typas MA, Pappas KM (2012) Complete genome sequence of the ethanol-producing Zymomonas mobilis subsp. mobilis centrotype ATCC 29191. J Bacteriol 194(21):5966–5967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubey S (2005) Microbial ecology of methane emission in rice Agroecosystem: a review. Appl Ecol Environ Res 3:1–27

    Article  Google Scholar 

  • Dutaur L, Verchot LV (2007) A global inventory of the soil CH4 sink. Glob Biogeochem Cy 21

    Google Scholar 

  • Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder S, Mackenzie FT, Moore B III, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W (2000) The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System. Science 290:291–296

    Article  CAS  PubMed  Google Scholar 

  • Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  PubMed  Google Scholar 

  • Georgianna DR, Mayfield SP (2012) Exploiting diversity and synthetic biology for the production of algal biofuels. Nature

    Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto K, Yoshizawa AC, Okuda S, Kuma K, Goto S, Kanehisa M (2008) The repertoire of desaturases and elongases reveals fatty acid variations in 56 eukaryotic genomes. J Lipid Res 49(1):183–191

    Article  CAS  PubMed  Google Scholar 

  • He Z, Xu M, Deng Y, Kang S, Kellogg L, Wu L, Van Nostrand JD, Hobbie SE, Reich PB, Zhou J (2010) Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. Ecol Lett 13(5):564–575

    Article  PubMed  Google Scholar 

  • Kalia VC, Lal S, Ghai R, Mandal M, Chauhan A (2003) Mining genomic databases to identify novel hydrogen producers. Trends Biotechnol 21:152–156

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38(Database issue):D355–D360

    Article  CAS  PubMed  Google Scholar 

  • Kataeva IA, Yang SJ, Dam P, Poole FL 2nd, Yin Y, Zhou F, Chou W-C, Xu Y, Goodwin L, Sims DR, Detter JC, Hauser LJ, Westpheling J, Adams MW (2009) Genome sequence of the anaerobic, thermophilic, and cellulolytic bacterium “Anaerocellum thermophilum” DSM 6725. J Bacteriol 191(11):3760–3761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufmann F, Lovley DR (2001) Isolation and characterization of a soluble NADPH-dependent Fe(III) reductase from Geobacter sulfurreducens. J Bacteriol 183:4468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna N, Ghosh AK, Huntemann M, Deshpande S, Han J, Chen A, Kyrpides N, Mavrommatis K, Szeto E, Markowitz V, Ivanova N, Pagani I, Pati A, Pitluck S, Nolan M, Woyke T, Teshima H, Chertkov O, Daligault H, Davenport K, Gu W, Munk C, Zhang X, Bruce D, Detter C, Xu Y, Quintana B, Reitenga K, Kunde Y, Green L, Erkkila T, Han C, Brambilla E-M, Lang E, Klenk H-P, Goodwin L, Chain P, Das D (2013) Complete genome sequence of Enterobacter sp. IIT-BT 08: A potential microbial strain for high rate hydrogen production. Stand Genomic Sci 9:359–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim BH, Kim HJ, Hyun MS, Park DH (1999) Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechnol 9:127–131

    Google Scholar 

  • Kimble JM, Lal R, Follett RF (2002) Agricultural practices and policies for carbon sequestration in soil. CRC Press, Boca Raton

    Google Scholar 

  • King GM (2011) Enhancing soil carbon storage for carbon remediation: potential contributions and constraints by microbes. Trends Microbiol 19:75–84

    Article  CAS  PubMed  Google Scholar 

  • Knothe G (2009) Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ Sci 2:759–766

    Article  CAS  Google Scholar 

  • Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35(5):377–391

    Article  CAS  PubMed  Google Scholar 

  • Kumar G, Bakonyi P, Periyasamy S, Kim SH, Nemestóthy N, Bélafi-Bakó K (2015) Lignocellulose biohydrogen: Practical challenges and recent progress. Renew Sust Energ Rev 44:728–737

    Article  CAS  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    Article  CAS  PubMed  Google Scholar 

  • Larsen PE, Field D, Gilbert JA (2012) Predicting bacterial community assemblages using an artificial neural network approach. Nat Methods 9:621

    Article  CAS  PubMed  Google Scholar 

  • Li X, Huang S, Yu J, Wang Q, Wu S (2013) Improvement of hydrogen production of Chlamydomonas reinhardtii by co-cultivation with isolated bacteria. Int J Hydrog Energy 38:10779–10787

    Article  CAS  Google Scholar 

  • Liao JC, Mi L, Pontrelli S, Luo S (2016) Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat Rev Microbiol 14(5):288–304

    Article  CAS  PubMed  Google Scholar 

  • Logan BE (2004) Peer reviewed: extracting hydrogen and electricity from renewable resources. Environ Sci Technol 38:160A–167A

    Article  CAS  PubMed  Google Scholar 

  • Misra N, Panda PK, Parida BK (2013) Agrigenomics for microalgal biofuel production: an overview of various bioinformatics resources and recent studies to link OMICS to bioenergy and bioeconomy. OMICS 17(11):537–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay A, Redding AM, Rutherford BJ, Keasling JD (2008) Importance of systems biology in engineering microbes for biofuel production. Curr Opin Biotechnol 19(3):228–234

    Article  CAS  PubMed  Google Scholar 

  • Nielsen AT, Amandusson H, Bjorklund R, Dannetun H, Ejlertsson J, Ekedahl L-G, Lundström I, Svensson BH (2001) Hydrogen production from organic waste. Int J Hydrog Energy 26:547–550

    Article  CAS  Google Scholar 

  • O-Thong S, Khongkliang P, Mamimin C, Singkhala A, Prasertsan P, Birkeland NK (2017) Draft genome sequence of Thermoanaerobacterium sp. strain PSU-2 isolated from thermophilic hydrogen producing reactor. Genom Data 12:49–51

    Article  PubMed  PubMed Central  Google Scholar 

  • Ouhib-Jacobs O, Lindley ND, Schmitt P, Clavel T (2009) Fructose and glucose mediates enterotoxin production and anaerobic metabolism of Bacillus cereus ATCC14579(T). J Appl Microbiol 107(3):821–829

    Article  CAS  PubMed  Google Scholar 

  • Patil SA, Surakasi VP, Koul S, Ijmulwar S, Vivek A, Shouche YS, Kapadnis BP (2009) Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber. Bioresour Technol 100:5132–5139

    Article  CAS  PubMed  Google Scholar 

  • Pfaltzgraff LA, De bruyn M, Cooper EC, Budarin V, Clark JH (2013) Food waste biomass: a resource for high-value chemicals. Green Chem 15:307–314

    Article  CAS  Google Scholar 

  • Reuter JA, Spacek DV, Snyder MP (2015) High-throughput sequencing technologies. Mol Cell 58(4):586–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rismani-Yazdi H, Haznedaroglu BZ, Bibby K, Peccia J (2011) Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: Pathway description and gene discovery for production of next-generation biofuels. BMC Genomics 12:148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rittmann BE, Krajmalnik-Brown R, Halden RU (2008) Pre-genomic, genomic and post-genomic study of microbial communities involved in bioenergy. Nat Rev Microbiol 6:604

    Article  CAS  PubMed  Google Scholar 

  • Rivkin RB, Legendre L (2001) Biogenic carbon cycling in the upper ocean: effects of microbial respiration. Science 291(5512):2398–2400

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Moyá M, Gonzalez R (2010) Systems biology approaches for the microbial production of biofuels. Biofuels 1:291–310

    Article  Google Scholar 

  • Roh H, Ko H-J, Kim D, Choi DG, Park S, Kim S, Chang IS, Choi I-G (2011) Complete Genome Sequence of a Carbon Monoxide-Utilizing Acetogen, Eubacterium limosum KIST612. J Bacteriol 193:307–308

    Article  CAS  PubMed  Google Scholar 

  • Rydzak T, Levin DB, Cicek N, Sparling R (2009) Growth phase-dependant enzyme profile of pyruvate catabolism and end-product formation in Clostridium thermocellum ATCC 27405. J Biotechnol 140(3–4):169–175

    Article  CAS  PubMed  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49

    Article  CAS  PubMed  Google Scholar 

  • Shendure J, Ji HL (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    Article  CAS  PubMed  Google Scholar 

  • Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8:779–790

    Article  CAS  PubMed  Google Scholar 

  • Smith SR, Abbriano RM, Hildebrand M (2012) Comparative analysis of diatom genomes reveals substantial differences in the organization of carbon partitioning pathways. Algal Res 1:2–16

    Article  CAS  Google Scholar 

  • Stein LY, Bringel F, DiSpirito AA, Han S, Jetten MSM, Kalyuzhnaya MG, Kits KD, Klotz MG, Op den Camp HJM, Semrau JD, Vuilleumier S, Bruce DC, Cheng J-F, Davenport KW, Goodwin L, Han S, Hauser L, Lajus A, Land ML, Lapidus A, Lucas S, Médigue C, Pitluck S, Woyke T (2011) Genome sequence of the methanotrophic Alphaproteobacterium Methylocystis sp. Strain Rockwell (ATCC 49242). J Bacteriol 193:2668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strickland MS, Rousk J (2010) Considering fungal:bacterial dominance in soils – Methods, controls, and ecosystem implications. Soil Biol Biochem 42:1385–1395

    Article  CAS  Google Scholar 

  • Su H, Zhang T, Bao M, Jiang Y, Wang Y, Tan T (2014) Genome Sequence of a Promising Hydrogen-Producing Facultative Anaerobic Bacterium, Brevundimonas naejangsanensis Strain B1. LID - 10.1128/genomeA.00542-14 [doi] LID - e00542-14 [pii]. Genome, Announc

    Google Scholar 

  • Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25(4):455–501

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Suzuki T, Dohra H, Takigami S, Kako H, Soga A, Kamei I, Mori T, Kawagishi H, Hirai H (2016) Analysis of ethanol fermentation mechanism of ethanol-producing white-rot fungus Phlebia sp. MG-60 by RNA-seq. BMC Genomics 17(1):616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong YM, Juan JC, Gan HM, Austin CM (2014) Draft Genome Sequence of Clostridium perfringens Strain JJC, a Highly Efficient Hydrogen Producer Isolated from Landfill Leachate Sludge. Genome Announc 2:e00064–e00014

    PubMed  PubMed Central  Google Scholar 

  • Woodward FI, Bardgett RD, Raven JA, Hetherington AM (2009) Biological approaches to global environment change mitigation and remediation. Curr Biol 19:R615–R623

    Article  CAS  PubMed  Google Scholar 

  • Yadav S, Dubey SK (2018) Cellulose degradation potential of Paenibacillus lautus strain BHU3 and its whole genome sequence. Bioresour Technol 262:124–131

    Article  CAS  PubMed  Google Scholar 

  • Yu W-L, Ansari W, Schoepp NG, Hannon MJ, Mayfield SP, Burkart MD (2011) Modifications of the metabolic pathways of lipid and triacylglycerol production in microalgae. Microb Cell Factories 10:91

    Article  CAS  Google Scholar 

  • Zhao XQ, Zi LH, Bai FW, Lin HL, Hao XM, Yue GJ, Ho NWY (2012) Bioethanol from lignocellulosic biomass. Adv Biochem Eng Biotechnol 128:25–51

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yashpal Bhardwaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neha, Singh, A., Yadav, S., Bhardwaj, Y. (2019). Linking Microbial Genomics to Renewable Energy Production and Global Carbon Management. In: Tripathi, V., Kumar, P., Tripathi, P., Kishore, A. (eds) Microbial Genomics in Sustainable Agroecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-13-8739-5_14

Download citation

Publish with us

Policies and ethics