Skip to main content

Recent Trends in Biogas Upgrading Technologies for Biomethane Production

  • Chapter
  • First Online:
Biofuel Production Technologies: Critical Analysis for Sustainability

Abstract

Biogas, an ultimate renewable energy, is of enormous demand currently, due to increased fuel price and its fluctuations with expansive pollution emission. Biogas is environmentally feasible and viable. Biomethane production is of high impact, and hence the present chapter is concentrated on various biogas upgradation technologies conjugated with carbon dioxide and hydrogen sulphide removal strategies. The upgrading methods such as absorption, adsorption, membrane separation, biological methods, cryogenic technology, hybrid methods, supersonic separation, industrial lung, in situ methane enrichment and chemical dehydrogenation are discussed. High methane purity with minimized methane loss is the key for an effective upgradation method. A comprehensive study of comparison between various biogas upgradation technologies is analysed, showcasing the advantages and disadvantages too. It is concluded that the recently innovated technologies have wide potential advantages than the conventional biogas upgrading technologies. Although innovated technologies are so far better, detailed analysis, research and development is required for acquiring a technology which is economically, environmentally, technologically, operationally and socially feasible and acceptable.

Authors “B. S. Dhanya” and “Dhruv Singh”contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agler MT, Wrenn BA, Zinder SH et al (2011) Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol 29:70–78

    Article  CAS  Google Scholar 

  • Agneessens LM, Ottosen LDM, Voigt NV et al (2017) In-situ biogas upgrading with pulse H2 additions: the relevance of methanogen adaption and inorganic carbon level. Bioresour Technol 233:256–263

    Article  CAS  Google Scholar 

  • Ahmed I, Yusof ZAM, Beg MDH (2010) Fabrication of polymer based mix matrix membrane-A short review. Int J Basic Appl Sci 10:14–19

    Google Scholar 

  • Al Mamun MR, Torii S (2015) Enhancement of production and upgradation of biogas using different techniques-a review. Int J Earth Sci Eng 8(2):877–892

    Google Scholar 

  • Andriani D, Arini W, Tinton DA et al (2014) A review on optimization production and upgrading biogas through CO2 removal using various techniques. Appl Biochem Biotechnol 172:1909–1928

    Article  CAS  Google Scholar 

  • Angelidaki I, Treua L, Tsapekosa P et al (2018) Biogas upgrading and utilization: Current status and perspectives. Biotechnol Adv 36(2):452–466

    Article  CAS  Google Scholar 

  • Augelletti R, Conti M, Annesini MC (2017) Pressure swing adsorption for biogas upgrading. A new process configuration for the separation of biomethane and carbon dioxide. J Clean Prod 140:1390–1398

    Article  CAS  Google Scholar 

  • Awe OW, Zhao Y, Nzihou A et al (2017) A review of biogas utilisation, purification and upgrading technologies. Waste Biomass Valoriz 8:267–283

    Article  CAS  Google Scholar 

  • Baker RW (2012) Membrane technology and applications, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  • Bassani I, Kougias PG, Treu L et al (2017) Optimization of hydrogen dispersion in thermophilic up-flow reactors for ex situ biogas upgrading. Bioresour Technol 234:310–319

    Article  CAS  Google Scholar 

  • Batstone DJ, Keller J, Angelidaki I et al (2002) The IWA anaerobic digestion model no 1 (ADM1). Water Sci Technol 45:65–73

    Article  CAS  Google Scholar 

  • Battino R, Clever HL (1966) The solubility of gases in liquids. Chem Rev 66:395–463

    Article  CAS  Google Scholar 

  • Bauer F, Hulteberg C, Persson T et al (2013a) Biogas upgrading – review of commercial technologies. SGC Rapp 270

    Google Scholar 

  • Bauer F, Persson T, Hulteberg C et al (2013b) Biogas upgrading– technology overview, comparison and perspectives for the future. Biofuels Bioprod Biorefin 7:499–511

    Article  CAS  Google Scholar 

  • Belaissaoui B, Le Moullec Y, Willson D et al (2012) Hybrid membrane cryogenic process for post-combustion CO2 capture. J Membr Sci 415:424–434

    Article  CAS  Google Scholar 

  • Belmabkhout Y, De Weireld G, Sayari A (2009) Amine-bearing mesoporous silica for CO2 and H2S removal from natural gas and biogas. Langmuir 25(23):13275–13278

    Article  CAS  Google Scholar 

  • Chen XY, Vinh-Thang H, Ramirez AA (2015) Membrane gas separation technologies for biogas upgrading. RSC Adv 5:24399–24448

    Article  CAS  Google Scholar 

  • Chen B, Hayat T, Alsaedi A (2017) History of biogas production in China. In: Biogas systems in China. Springer, Berlin/Heidelberg, pp 1–15

    Chapter  Google Scholar 

  • Cheng S, Xing D, Call DF et al (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43:3953–3958

    Article  CAS  Google Scholar 

  • Collet P, Flottes E, Favre A et al (2017) Technoeconomic and life cycle assessment of methane production via biogas upgrading and power to gas technology. Appl Energy 192:282–295

    Article  CAS  Google Scholar 

  • Cozma P, Ghinea C, Mamaliga I et al (2013) Environmental impact assessment of high pressure water scrubbing biogas upgradation technology. Clean 41:917–927

    CAS  Google Scholar 

  • Deublein D, Steinhauser A (2010) Biogas from waste and renewable resources: an introduction, 2nd edn. Wiley, Weinheim

    Book  Google Scholar 

  • Friess K, Lanc M, Pilnacek K et al (2017) CO2/CH4 separation performance of ionic-liquid-based epoxy-amine ion gel membranes under mixed feed conditions relevant to biogas processing. J Membr Sci 528:64–71

    Article  CAS  Google Scholar 

  • Grande CA (2011) Biogas upgrading by pressure swing adsorption. In: dos Santos Bernardes MA (ed) Biofuel’s engineering process technology. InTech, Oslo, pp 65–84

    Google Scholar 

  • Guebitz GM, Bauer A, Bochmann G et al (2015) Biogas science and technology. Springer, Hannover

    Book  Google Scholar 

  • Horikawa MS, Rossi F, Gimenes ML et al (2004) Chemical absorption of H2S for biogas purification. Braz J Chem Eng 21(3):415–422

    Article  CAS  Google Scholar 

  • Huttunen S, Kivimaa P, Virkamaki V (2014) The need for policy coherence to trigger a transition to biogas production. Environ Innov Soc Transit 12:14–30

    Article  Google Scholar 

  • Hwang H, Yeon YJ, Lee S et al (2015) Electro-biocatalytic production of formate from carbon dioxide using an oxygenstable whole cell biocatalyst. Bioresour Technol 185:35–39

    Article  CAS  Google Scholar 

  • Jurgensen L, Ehimen EA, Born J et al (2014) Utilization of surplus electricity from wind power for dynamic biogas upgrading: northern Germany case study. Biomass Bioenergy 6:126–132

    Article  Google Scholar 

  • Kadam R, Panwar NL (2017) Recent advancement in biogas enrichment and its applications. Renew Sust Energy Rev 73:892–903

    Article  CAS  Google Scholar 

  • Kapdi SS, Vijay VK, Rajesh SK et al (2005) Biogas scrubbing, compression and storage: perspective and prospectus in Indian context. Renew Energy 30:1195–1202

    Article  CAS  Google Scholar 

  • Kapoor R, Subbarao PMV, Vijay VK et al (2017) Factors affecting methane loss from a water scrubbing based biogas upgrading system. Appl Energy 208:1379–1388

    Article  CAS  Google Scholar 

  • Kennes D, Abubackar HN, Diaz M et al (2016) Bioethanol production from biomass: carbohydrate vs syngas fermentation. J Chem Technol Biotechnol 91:304–317

    Article  CAS  Google Scholar 

  • Kougias PG, Kotsopoulos TA, Martzopoulos GG (2010) Anaerobic co-digestion of pig waste with olive mill waste water under various mixing conditions. Fresenius Environ Bull 19:1682–1686

    CAS  Google Scholar 

  • Kougias PG, Treu L, Benavente DP et al (2017) Ex situ biogas upgrading and enhancement in different reactor systems. Bioresour Technol 225:429–437

    Article  CAS  Google Scholar 

  • Latif H, Zeidan AA, Nielsen AT et al (2014) Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms. Curr Opin Biotechnol 27:79–87

    Article  CAS  Google Scholar 

  • Levdansky V, Izak P (2017) Membrane separation of gas mixtures under the influence of resonance radiation. Sep Purif Technol 173:93–98

    Article  CAS  Google Scholar 

  • Li JR, Sculley J, Zhou HC (2012) Metal-organic frameworks for separations. Chem Rev 112:869–932

    Article  CAS  Google Scholar 

  • Lima RM, Santos AH, Pereira CR et al (2018) Spatially distributed potential of landfill biogas production and electric power generation in Brazil. Waste Manag 74:323–334

    Article  Google Scholar 

  • Lin WC, Chen YP, Tseng CP (2013) Pilot-scale chemical–biological system for efficient H2S removal from biogas. Bioresour Technol 135:283–291

    Article  CAS  Google Scholar 

  • Lindberg A (2003) Development of in-situ methane enrichment as a method for upgrading biogas to vehicle fuel standard. Licentiate thesis, KTH, Chemical Engineering and Technology, Stockholm

    Google Scholar 

  • Liu J, Wei Y, Li P et al (2017) Selective H2S/CO2 Separation by metal organic frameworks based on chemical-physical adsorption. J Phys Chem C121(24):13249–13255

    Google Scholar 

  • Lovley DR, Nevin KP (2013) Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr Opin Biotechnol 24:385–390

    Article  CAS  Google Scholar 

  • Lu L, Ren ZJ (2016) Microbial electrolysis cells for waste biorefinery: a state of the art review. Bioresour Technol 215:254–264

    Article  CAS  Google Scholar 

  • Luo G, Angelidaki I (2012) Integrated biogas upgrading and hydrogen utilization in an anaerobic reactor containing enriched hydrogenotrophic methanogenic culture. Biotechnol Bioeng 109:2729–2736

    Article  CAS  Google Scholar 

  • Luo G, Angelidaki I (2013) Co-digestion of manure and whey for in situ biogas upgrading by the addition of H2: process performance and microbial insights. Appl Microbiol Biotechnol 97:1373–1381

    Article  CAS  Google Scholar 

  • Luo G, Wang W, Angelidaki I (2014) A new degassing membrane coupled upflow anaerobic sludge blanket (UASB) reactor to achieve in-situ biogas upgrading and recovery of dissolved CH4 from the anaerobic effluent. Appl Energy 132:536–542

    Article  CAS  Google Scholar 

  • Makaruk A, Miltner M, Harasek M (2010) Membrane biogas upgrading processes for the production of natural gas substitute. Sep Purif Technol 74:83–92

    Article  CAS  Google Scholar 

  • Mallada R, Menendez M (2008) Inorganic membranes: synthesis, characterization and applications: synthesis, characterization and applications. Membrane science and technology, vol 13, 2nd edn. Elsevier Science

    Google Scholar 

  • Martin ME, Richter H, Saha S et al (2016) Traits of selected Clostridium strains for syngas fermentation to ethanol. Biotechnol Bioeng 113:531–539

    Article  CAS  Google Scholar 

  • Mattiasson B (2005) Ekologisklunga for biogas upgrading. Nationellt Samverkans projekt Biogas iFordon

    Google Scholar 

  • Micoli L, Bagnasco G, Turco M (2014) H2S removal from biogas for fuelling MCFCs: new adsorbing materials. Int J of Hydrogen Energy 39(4):1783–1787

    Article  CAS  Google Scholar 

  • Moraes BS, Petersen SO, Zaiat M et al (2017) Reduction in greenhouse gas emissions from vinasse through anaerobic digestion. Appl Energy 189:21–30

    Article  CAS  Google Scholar 

  • Mulat DG, Mosbek F, Ward AJ et al (2017) Exogenous addition of H2 for an in situ biogas upgrading through biological reduction of carbon dioxide into methane. Waste Manag 68:146–156

    Article  CAS  Google Scholar 

  • Munoz R, Meier L, Diaz I et al (2015) A review on the state-of-the-art of physical/chemical and biological technologies for biogas upgrading. Rev Environ Sci Biotechnol 14:727–759

    Article  CAS  Google Scholar 

  • Nevin KP, Woodard TL, Franks AE et al (2010) Microbial electrosynthesis: feeding microbe’s electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio 1:e00103–e00110

    Article  CAS  Google Scholar 

  • Nordberg A, Edstrom M, Uusi-Pentilla M et al (2005) Process intern metananrikning. JTI rapport Kretslopp & Avfall 33

    Google Scholar 

  • Owusu PA, Banadda N (2017) Livestock waste-to-bioenergy generation potential in Uganda: a review. Environ Res Eng Manag 73:45–53

    Article  Google Scholar 

  • Ozekmekci M, Salkic G, Fellah MF (2015) Use of zeolites for the removal of H2S: a mini-review. Fuel Process Technol 139:49–60

    Article  CAS  Google Scholar 

  • Park A, Kim YM, Kim JF et al (2017) Biogas upgrading using membrane contactor process: pressure-cascaded stripping configuration. Sep Purif Technol 183:358–365

    Article  CAS  Google Scholar 

  • Patterson T, Esteves S, Dinsdale R et al (2011) An evaluation of the policy and techno-economic factors affecting the potential for biogas upgradation for transport fuel use in the UK. Energ Policy 39:1806–1816

    Article  Google Scholar 

  • Persson M (2003) Evaluation of upgrading techniques for biogas. Rep SGC 142

    Google Scholar 

  • Petersson A, Wellinger A (2009) Biogas upgrading technologies–developments and innovations. IEA Bioenergy 20:1–19

    Google Scholar 

  • Pinghai S, Dal-Cin M, Kumar A et al (2012) Design and economics of a hybrid membrane–temperature swing adsorption process for upgrading biogas. J Membr Sci 413:17–28

    Google Scholar 

  • Pipatmanomai S, Kaewluan S, Vitidsant T (2009) Economic assessment of biogas-to-electricity generation system with H2S removal by activated carbon in small pig farm. Appl Energy 86(5):669–674

    Article  CAS  Google Scholar 

  • Porpatham E, Ramesh A, Nagalingam B (2018) Experimental studies on the effects of enhancing the concentration of oxygen in the inducted charge of a biogas fuelled spark ignition engine. Energy 142:303–312

    Article  CAS  Google Scholar 

  • Report (2012) Biogas to biomethane technology review. Vienna University of Technology Austria, pp 1–15

    Google Scholar 

  • Ryckebosch E, Drouillon M, Vervaeren H (2011) Techniques for transformation of biogas to biomethane. Biomass Bioenergy 35:1633–1645

    Article  CAS  Google Scholar 

  • Sadhukhan J, Lloyd JR, Scott K et al (2016) A critical review of integration analysis of microbial electrosynthesis (MES) systems with waste biorefineries for the production of biofuel and chemical from reuse of CO2. Renew Sust Energ Rev 56:116–132

    Article  CAS  Google Scholar 

  • Sahota S, Shah G, Ghosh P et al (2018) Review of trends in biogas upgradation technologies and future perspectives. Bioresour Technol Rep 1:79–88

    Article  Google Scholar 

  • Schiel-Bengelsdorf B, Durre P (2012) Pathway engineering and synthetic biology using acetogens. FEBS Lett 586:2191–2198

    Article  CAS  Google Scholar 

  • Scholwin F, Held J, Kaltschmitt M et al (2013) Biomethane from anaerobic processes. In: Renewable energy systems. Springer, New York, pp 656–664

    Chapter  Google Scholar 

  • Scholz M, Melin T, Wessling M (2013) Transforming biogas into biomethane using membrane technology. Renew Sust Energ Rev 17:199–212

    Article  CAS  Google Scholar 

  • Siefers A, Wang N, Sindt A et al (2010) A novel and cost-effective hydrogen sulfide removal technology using tire derived rubber particles. Proc Water Environ Fed 12:4597–4622

    Article  Google Scholar 

  • Singhal S, Agarwal S, Arora S et al (2017) Upgrading techniques for transformation of biogas to bio-CNG: a review. Int J Energy Res 41(12):1657–1669

    Article  Google Scholar 

  • Song C, Liu Q, Ji N et al (2017) Reducing the energy consumption of membrane-cryogenic hybrid CO2 capture by process optimization. Energy 124:29–39

    Article  CAS  Google Scholar 

  • Soreanu G, Beland M, Falletta P et al (2008) Laboratory pilot scale study for H2S removal from biogas in an anoxic biotrickling filter. Water Sci Technol 57(2):201–207

    Article  CAS  Google Scholar 

  • Stams AJM, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577

    Article  CAS  Google Scholar 

  • Sun Q, Li H, Yan J et al (2015) Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renew Sust Energ Rev 51:521–532

    Article  CAS  Google Scholar 

  • Thran D, Billig E, Persson T et al (2014) Biomethane—status and factors affecting market development and trade. IEA Task 40 and Task 37 Joint Study

    Google Scholar 

  • Toledo-Cervantes A, Estrada JM, Lebrero R et al (2017) A comparative analysis of biogas upgrading technologies: photosynthetic vs physical/chemical processes. Algal Res 25:237–243

    Article  Google Scholar 

  • Tomas M, Fortuny M, Lao C et al (2009) Technical and economical study of a full-scale biotrickling filter for H2S removal from biogas. Water Pract Tech 4(2):1–545

    Article  Google Scholar 

  • Tuinier MJ, Van SintAnnaland M (2012) Biogas purification using cryogenic packed bed technology. Ind Eng Chem Res 51:5552–5558

    Article  CAS  Google Scholar 

  • Van Eerten-Jansen MCAA, Ter Heijne A, Buisman CJN et al (2012) Microbial electrolysis cells for production of methane from CO2: long-term performance and perspectives. Int J Energy Res 36:809–819

    Article  CAS  Google Scholar 

  • Verma P, Samanta SK (2016) Overview of biogas reforming technologies for hydrogen production: advantages and challenges. In: Proceedings of the first international conference on recent advances in bioenergy research. Springer, New Dehli, pp 227–243

    Chapter  Google Scholar 

  • Villano M, Aulenta F, Ciucci C et al (2010) Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour Technol 101:3085–3090

    Article  CAS  Google Scholar 

  • Vrbova V, Karel C (2017) Upgrading biogas to biomethane using membrane separation. Energy Fuel 31:9393–9401

    Article  CAS  Google Scholar 

  • Wang H, Ren ZJ (2013) A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol Adv 31:1796–1807

    Article  CAS  Google Scholar 

  • Xia A, Cheng J, Murphy JD (2016) Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel. Biotechnol Adv 34:451–472

    Article  CAS  Google Scholar 

  • Xu H, Wang K, Holmes DE (2014) Bioelectrochemical removal of carbon dioxide (CO2): an innovative method for biogas upgrading. Bioresour Technol 173:392–398

    Article  CAS  Google Scholar 

  • Yoo M, Sang-Jun H, Jung-Ho W (2013) Carbon dioxide capture capacity of sodium hydroxide aqueous solution. J Environ Manag 114:512–519

    Article  CAS  Google Scholar 

  • Zeppilli M, Lai A, Villano M et al (2016) Anion vs cation exchange membrane strongly affect mechanisms and yield of CO2 fixation in a microbial electrolysis cell. Chem Eng J 304:10–19

    Article  CAS  Google Scholar 

  • Zhang Y, Angelidaki I (2014) Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges. Water Res 56:11–25

    Article  CAS  Google Scholar 

  • Zhang S, Yaping L, Jianfeng T et al (2006) Operation appraisal and parameter optimization of imported skid-mounted natural gas dehydration unit. Nat Gas Ind 26:128–130

    CAS  Google Scholar 

  • Zhang Y, Sunarso J, Liu S et al (2013) Current status and development of membranes for CO2/CH4 separation: a review. Int J Greenh Gas Control 12:84–107

    Article  CAS  Google Scholar 

  • Zhao Q, Leonhardt E, MacConnell C et al (2010) Purification technologies for biogas generated by anaerobic digestion. Compressed Biomethane, CSANR Research report, pp 1–24

    Google Scholar 

  • Zhao H, Zhang Y, Zhao B et al (2012) Electrochemical reduction of carbon dioxide in an MFC-MEC system with a layer-by-layer self-assembly carbon nanotube/ cobalt phthalocyanine modified electrode. Environ Sci Technol 46:5198–5204

    Article  CAS  Google Scholar 

  • Zicari SM (2003) Removal of hydrogen sulfide from biogas using cow-manure compost. Doctoral dissertation, Cornell University

    Google Scholar 

  • Zulkefli NN, Masdar MS, Isahak WNRW et al (2019) Removal of hydrogen sulfide from a biogas mimic by using impregnated activated carbon adsorbent. PLoS One 14(2):e0211713

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhanya, B.S. et al. (2020). Recent Trends in Biogas Upgrading Technologies for Biomethane Production. In: Srivastava, N., Srivastava, M., Mishra, P., Gupta, V. (eds) Biofuel Production Technologies: Critical Analysis for Sustainability . Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-13-8637-4_9

Download citation

Publish with us

Policies and ethics