Skip to main content

Carbon Footprint in Eroded Soils and Its Impact on Soil Health

  • Chapter
  • First Online:
Soil Health Restoration and Management

Abstract

Climate change, soil degradation, and losses in the biodiversity have led the soil to become one of the most vulnerable resources on the earth. The tremendous scientific advancement made until now has made possible through the protection, monitoring, and surveillance of soil resources at national and global levels. However protection and management of soil resources still have to face the complex challenges, which prevent the effective planning of policies in the sector and implementation, that vary generally from place to place. Though, there is still not sufficient support for the protection and sustainable management of the soil resources in the world. The soils contain appreciable amount of terrestrial carbon (c), which plays an essential role in its balance at global level through the regulation of dynamic, biogeochemical processes and exchange of greenhouse gases (GHGs) with the atmosphere. Soil organic carbon (SOC) stocks are estimated to be 1500 ± 230 Gt C in the first meter of land, almost twice the atmospheric 828 Gt C as carbon dioxide (CO2). Burning of fossil fuels, the use of the earth and change of land cover (which includes agriculture), is the largest anthropogenic source of C in the atmosphere and within the agriculture systems, the land have a global source of GHGs. These processes and emissions are highly influenced by the use of land pattern, land use change, plant cover, and soil management. The SOC stocks in the upper layers of the soil (800 Gt C in 0–40) cm) are particularly sensitive and receptive to such changes in land use and management, which provides the chance to influence the amount of CO2 in the atmosphere. This can be attained by keeping existing soil C stocking soils with high soil organic C content or by soil C sequestration. The aim of this chapter is to produce the obtainable information of C stocks in various types of soils and agroclimatic zones. Soil erosion/soil degradation and main management operations and strategies influence C sequestration, and vast-scale policy interventions are needed in Indian environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CDIAC:

Carbon Dioxide Information Analysis Center

FAI:

Fertilizer Association of India

FAO:

Food and Agriculture Organization

GHGs:

Greenhouse Gases

ICRISAT:

International Crops Research Institute for the Semi-Arid Tropics

LIC:

Lithogenic Inorganic Carbon

Mha:

Million Hectares

MRT:

Mean Residence Time

NBSS LUP:

National Bureau of Soil Survey and Land Use Planning

OC:

Organic Carbon

POC:

Particulate Organic Matter

RMPs:

Recommended Management Practices

SAT:

Semiarid Tropics

SOC:

Soil Organic Carbon

SOM:

Soil Organic Matter

References

  • Adams JM, Post WM (1999) A preliminary estimate of changing calcrete C storage on land since the last glacial maximum. Glob Planet Chang 20:243–256

    Article  Google Scholar 

  • Agboadoh DMY (2011) Estimation and mapping of soil organic C stocks in croplands of the Bechem Forest District Ghana. MS thesis submitted to ITC

    Google Scholar 

  • Albaladejo J, Ortiz R, García-Franco N, Ruiz-Navarro A, Almagro M, García-Pintado J, Martínez-Mena M (2013) Land use and climate change impacts on soil organic C stocks in semi-arid Spain. J Soil Sediments 13:265–277

    Article  CAS  Google Scholar 

  • Alvarez R, Steinbach HS, Bono A (2011) An artificial neural network approach for predicting soil C budget in agroecosystem. Soil Sci Soc Am J 75:965–975

    Article  CAS  Google Scholar 

  • Amundson R (2001) The C budget in soils. Annu Rev Earth Planet Sci 29:535–562

    Article  CAS  Google Scholar 

  • Arrouays D, Grundy MG, Hartemink AE, Hempel JW, Heuvelink GB, Hong SY, Lagacherie P, Lelyk G, McBratney AB, McKenzie NJ, Mendonca-Santos ML (2014) Chapter three-Global Soil Map: toward a fine-resolution global grid of soil properties. Adv Agron 125:93–134

    Article  Google Scholar 

  • Ashoka P, Meena RS, Kumar S, Yadav GS, Layek J (2017) Green nanotechnology is a key for eco-friendly agriculture. J Clean Prod 142:4440–4441

    Google Scholar 

  • Attal M, Mudd SM, Hurst MD, Weinman B, Yoo K, Naylor M (2015) Impact of change in erosion rate and landscape steepness on hillslope and fluvial sediments grain size in the Feather River basin (sierra Nevada, California). Earth Surf Dyn 3:201–222

    Article  Google Scholar 

  • Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235

    Article  Google Scholar 

  • Banerjee SK, Chinnaman S, Jha MN (1991) Forest soils of north and Northeast Himalayas and constraints limiting their productivity’. In Biswas TD et al (eds) Soil-related constraints in crop production, Indian Society of Soil Science Bulletin 15, New Delhi, India, pp 164–176

    Google Scholar 

  • Banger K, Tian H, Tao B, Lu C, Ren W, Yang J (2015) Magnitude, spatiotemporal patterns, and controls for soil organic C stocks in India during 1901–2010. Soil Sci Soc Am J 79:864–875

    Article  CAS  Google Scholar 

  • Barman D, Sangar C, Mandal P, Bhattacharjee R, Nandita R (2013) Land degradation: its control, Management and environmental benefits of Management in Reference to agriculture and aquaculture. Environ Ecol 31:1095–1103

    Google Scholar 

  • Bastida F, Moreno JL, Hernández T, García C (2006) Microbiological degradation index of soils in a semiarid climate. Soil Biol Biochem 38:3463–3473

    Article  CAS  Google Scholar 

  • Batjes NH (1996) Total C and nitrogen in soils of world. Eur J Soil Sci 47:151–163

    Article  CAS  Google Scholar 

  • Batjes NH, Sombroek WG (1997) Possibilities for C sequestration in tropical and subtropical soils. Glob Chang Biol 3:161–173

    Article  Google Scholar 

  • Baumert S, Khamzina A, Vlek PLG (2016) Soil organic C sequestration in Jatropha curcas systems in Burkina Faso. Land Degrad Dev 27:1813–1819

    Article  Google Scholar 

  • Berhe A, Harte A, Harden J, Torn WMS (2007) The significance of erosion-induced terrestrial C sink. Bioscience 57:3374–3346

    Article  Google Scholar 

  • Berhe AA, Harden JW, Torn MS, Harte J (2008) Linking soil organic matter dynamics and erosion-induced terrestrial C sequestration at different landform positions. J Geophys Res 113:G04039

    Article  CAS  Google Scholar 

  • Berhe A, Arnold A, Stacy C, Lever E, McCorkle R, Araya ESN (2014) Soil erosion control son biogeochemical cycling of C and nitrogen. Nat Educ Knowl 5(2)

    Google Scholar 

  • Bhattacharyya T, Pal DK, Chandran P, Ray SK, Mandal C, Telpande B (2008) Soil C storage capacity as a tool to prioritize areas for C sequestration. Curr Sci 95:482–484

    CAS  Google Scholar 

  • Bhattacharyya R, Prakash V, Kundu S, Srivastava AK, Gupta HS (2009) Soil properties and their relationships with crop productivity after 30 years of different fertilization in the Indian Himalayas. Arch Agron Soil Sci 55(6):641–661

    Article  CAS  Google Scholar 

  • Bhumbla DR, Khare A (1984) Estimate of wastelands in India. Society for promotion of wastelands development. Allied, New Delhi, p 18

    Google Scholar 

  • Biswas TD, Narayanasamy G, Goswami NN, Sekhon GS, Sastry TG (1991) Soil- related constraints in crop production, Indian Society of Soil Science Bulletin vol. 15, New Delhi, India, 176pp

    Google Scholar 

  • Bond-Lamberty B, Thomson A (2010) Temperature-associated increases in the global soil respiration record. Nature 564:579–582

    Article  CAS  Google Scholar 

  • Borrelli P, Paustian K, Panagos P, Jones A, Schütt B, Lugato E (2016) Effect of good agricultural and environmental conditions on erosion and soil organic C balance: a national case study. Land Use Policy 50:408–421

    Article  Google Scholar 

  • Buragohain S, Sharma B, Nath JD, Gogaoi N, Meena RS, Lal R (2017) Impact of ten years of bio-fertilizer use on soil quality and rice yield on an inceptisol in Assam, India. Soil Res. https://doi.org/10.1071/SR17001

    Article  Google Scholar 

  • Chaplot V, Bernoux M, Walter C, Curmi P, Herpin U (2001) Soil C storage prediction in temperate hydromorphic soils using a morphologic index and digital elevation model. Soil Sci 166:48–60

    Article  CAS  Google Scholar 

  • Chaplot VP, Podwojewewski K, Phachomphon, Valentin C (2009) Soil erosion impact on soil organic C spatial variability on steep tropical slopes. Soil Sci Soc Am J 73(3):769–779

    Article  CAS  Google Scholar 

  • Chen C, Zhang J, Lu M, Qin C, Chen Y, Yang L, Huang Q, Wang J, Zhengu S, Shen Q (2016) Microbial communities of an arable soil treated for 8 years with organic and inorganic fertilizers. Biol Fertil Soils 52:455–467

    Article  CAS  Google Scholar 

  • Chhabra A, Palria S, Dadhwal VK (2003) Soil organic C pool in Indian forests. For Ecol Manag 173:187–199

    Article  Google Scholar 

  • Collins SL, Sinsabaugh RL, Crenshaw C, Green L, Porras-Alfaro A, Stursova M, Zeglin LH (2008) Pulse dynamics and microbial processes in arid land ecosystems. J Ecol 96:413–420

    Article  Google Scholar 

  • Dadhich RK, Meena RS (2014) Performance of Indian mustard (Brassica juncea L.) in response to foliar spray of thiourea and thioglycollic acid under different irrigation levels. Indian J Ecol 41(2):376–378

    Google Scholar 

  • Dadhich RK, Meena RS, Reager ML, Kansotia BC (2015) Response of bio-regulators to yield and quality of Indian mustard (Brassica juncea L. Czernj. and Cosson) under different irrigation environments. J Appl Nat Sci 7(1):52–57

    Article  CAS  Google Scholar 

  • Dadhwal VK, Nayak SRI (1993) A preliminary estimate of biogeochemical cycle of C for India. Sci Cult 59:9–13

    Google Scholar 

  • Dahlgren RA, Boettinger JL, Huntington GL, Amundson RG (1997) Soil development along an elevational transect in the western Sierra Nevada, California. Geoderma 78:207–236

    Article  Google Scholar 

  • Datta R, Baraniya D, Wang YF, Kelkar A, Moulick A, Meena RS, Yadav GS, Ceccherini MT, Formanek P (2017a) Multi-function role as nutrient and scavenger off reeradical in soil. Sustain MDPI 9:402. https://doi.org/10.3390/su9081402

    Article  CAS  Google Scholar 

  • Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena RS, Formanek P (2017b) Enzymatic degradation of lignin in soil: a review. Sustain MDPI 9:1163. https://doi.org/10.3390/su9071163, 1–18

    Article  CAS  Google Scholar 

  • Deng L, Shangguan ZP (2017) Afforestation drives soil C and nitrogen changes in China. Land Degrad Dev 28:151–165

    Article  Google Scholar 

  • Dhakal Y, Meena RS, De N, Verma SK, Singh A (2015) Growth, yield and nutrient content of mungbean (Vigna radiata L.) in response to INM in eastern Uttar Pradesh, India. Bangladesh J Bot 44(3):479–482

    Article  Google Scholar 

  • Dhakal Y, Meena RS, Kumar S (2016) Effect of INM on nodulation, yield, quality and available nutrient status in soil after harvest of green gram. Legum Res 39(4):590–594

    Google Scholar 

  • Díaz-hernández JL, Fernández EB, González JL (2003) Organic and inorganic C in soils pf semiarid regions: a case study from the Guadix–Baza basin (Southeast Spain). Geoderma 114:65–80

    Article  CAS  Google Scholar 

  • Dixon JL, Chadwick OA, Vitousek PM (2016) Climate-driven thresholds for chemical weathering in postglacial soils of New Zealand. J Geophys Res Earth Surf 121:1619–1634

    Article  CAS  Google Scholar 

  • Doetterl S, Stevens A, Six J, Merckx R, Van Oost K, Casanova Pinto M, Casanova-Katny A, Muñoz C, Boudin M, Zagal Venegas E, Boeckx P (2015) Soil C storage controlled by interactions between geochemistry and climate. Nat Geosci 8:780–783

    Article  CAS  Google Scholar 

  • Dorrepaal E, Toet S, van Logtestijn RSP, Swart E, van der Weg MJ, Callaghan TV, Aerts R (2007) C respiration from subsurface peat accelerated by climate warming in the subartic. Nature 460:616–619

    Article  CAS  Google Scholar 

  • Eswaran H, Van Den Berg E, Reich P (1993) Organic Cin soils of the world. Soil Sci Soc Am J 57:192–194

    Article  Google Scholar 

  • FAI (Fertilizer Association of India) (2011) Fertilizer statistics. Fertilizer Association of India, New Delhi

    Google Scholar 

  • Falloon P, Jones CD, Cerri CE, Al-Adamat R, Kamoni P, Bhattacharyya T, Easter M, Paustian K, Killian K, Coleman K, Milne E (2007) Climate change and its impact on soil and vegetation C storage in Kenya, Jordan, India and Brazil. Agric Ecosyst Environ 122:114–124

    Article  CAS  Google Scholar 

  • FAO (1994) Land degradation in South Asia: its severity, causes and effects upon the people. World soil resources reports 77. FAO, Rome, Italy

    Google Scholar 

  • FAO (2015) Status of the world’s soil resources. Main report. Food and Agriculture Organization of the United Nations (FAO), Rome, p 607

    Google Scholar 

  • Ferrari A, Hagedorn F, Niklaus PA (2016) Experimental soil warming and cooling alters the partitioning of recent assimilates: evidence from a 14C-labelling study at the alpine treeline. Oecologia 181:25–37

    Article  CAS  Google Scholar 

  • Folger P (2009) The C cycle: implications for climate change and congress. Congressional Research Service, 13

    Google Scholar 

  • Follain S, Minasny B, McBratney AB, Walter C (2006) Simulation of soil thickness evolution in a complex agricultural landscape at fine spatial and temporal scales. Geoderma 133:71–86

    Article  Google Scholar 

  • Fuchs M, Gál A, Michéli E (2010) Depth distribution of SOM stock in fine-textured soils of Hungary. Agrokém Talajt 59(1):93–98

    Article  CAS  Google Scholar 

  • Gebauer RLE, Ehleringer JR (2000) Water and nitrogen uptake patterns following moisture pulses in a cold desert community. Ecology 81:1415–1424

    Article  Google Scholar 

  • Gennadiyev AN, Zhidkin AP, Olson KR, Kachinskii VL (2010) Soil erosion under different land uses: assessment by the magnetic tracer method. Eurasian Soil Sci 43(9):1047–1054

    Article  Google Scholar 

  • Giardina CP, Litton CM, Crow SE, Asner GP (2014) Warming-related increases in soil CO2 efflux are explained by increased below-ground C flux. Nat Clim Chang 4:822–827

    Article  CAS  Google Scholar 

  • Goddard MA, Mikhailova EA, Post CJ, Schlautman MA (2007) AtmosphericMg2+ wet deposition within the continental United States and implications for soil inorganic C sequestration. Tellus 59B:50–56

    Article  CAS  Google Scholar 

  • Goebel MO, Bachmann J, Woche SK, Fischer WR (2005) Soil wettability, aggregate stability, and the decomposition of soil organic matter. Geoderma 128:80–93

    Article  CAS  Google Scholar 

  • Graham MH, Haynes RF, Meyer JH (2002) Soil organic matter content quality: effects of fertilizer applications, burning and trash retention on a long-term sugarcane experiment in South Africa. Soil Biol Biochem 34:93–102

    Article  CAS  Google Scholar 

  • Guo YY, Amundson R, Gong P, Yu Q (2006) Quantity and spatial variability of soil C in the conterminous United States. Soil Sci Soc Am J 70:590–600

    Article  CAS  Google Scholar 

  • Heimsath AM, Chappell J, Spooner NA, Questiaux DG (2002) Creeping soil. Geology 30:111–114

    Article  CAS  Google Scholar 

  • Hernández J, del Pino A, Vance ED, Califra A, Del Giorgio F, Martínez L, GonzálezBarrios P (2016) Eucalyptus and Pinus stand density effects on soil C sequestration. For Ecol Manag 368:28–38

    Article  Google Scholar 

  • Hu YL, Zeng DH, Ma XQ, Chang SX (2016) Root rather than leaf litter input drives soil C sequestration after afforestation on a marginal cropland. For Ecol Manag 362:38–45

    Article  Google Scholar 

  • ICAR (2010) (Indian Council of Agricultural Research): state of Indian agriculture, 2012–2013, a report of Department of Agriculture and Cooperation, New Delhi, 9

    Google Scholar 

  • ICRISAT (2010) ICRISAT report, International Crops Research Institute for the Semiarid Tropics. India: Patancheru; in the Red River Valley of North Dakota. J Environ Qual 22:305–310

    Google Scholar 

  • Jandl R, Lindner M, Vesterdal L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil C sequestration? Geoderma 137:253–268

    Article  CAS  Google Scholar 

  • Jenny H (1941) Factors of soil formation. McGraw-Hill, New York, p 281

    Google Scholar 

  • Karale RL, Seshagiri Rao KV, Gaikwad ST, Venkatratnam L (1991) Soil degradation in India. In Biswas TD et al (eds) Soil-related constraints in crop production, Indian Society Soil Science Bulletin 15, New Delhi, India, pp 1–13

    Google Scholar 

  • Kaupppi P, Sedjo R, Apps M, Cerri C, Fujimoro T, Janzen H (2001) Technological and economic potential of options to enhance, maintain and manage biological C reservoirs and geo-engineering. In: Metz B, Davidson O, Swart R, Pan J (eds) Climate change2001 – mitigation. Cambridge University Press, Cambridge, pp 301–343

    Google Scholar 

  • Kerényi A (1991) Talajerózió, térképezés, laboratóriumi és szabadföldi kísérletek. Akadémiai Kiadó, Budapest, p. 219 (In Hungarian)

    Google Scholar 

  • Kern JS, Johnson MG (1993) Conservation tillage impacts on national soil and atmospheric C levels. Soil Sci Soc Am J 57:200–210

    Article  Google Scholar 

  • Kinnell PIA (2001) Particle travel distances and bed and sediment compositions associated with rain-impacted flows. Earth Surf Process Landf 26:749–758

    Article  Google Scholar 

  • Kirkels FMSA, Cammeraat LH, Kuhn NJ (2014) The fate of soil organic C upon erosion, transport and deposition in agricultural landscapes – a review of different concepts. Geomorphology 226:94–105

    Article  Google Scholar 

  • Kleber M, Eusterhues K, Keiluweit M, Mikutta C, Mikutta R, Nico PS (2015) Mineral–organic associations: formation, properties, and relevance in soil environments. In: Advances in Agronomy. Elsevier, pp 1–140

    Google Scholar 

  • Koven CD, Ringeval B, Friedlinstein P, Ciais P, Cadule P, Khvorostyanov D, Krinner G, Tarnocai C (2011) Permafrost C-climate feedbacts accelerate global warming. Proc Natl Acad Sci USA 108:14769–14774

    Article  CAS  Google Scholar 

  • Kramer MG, Chadwick OA (2016) Controls on C storage and weathering in volcanic soils across a high-elevation climate gradient on Mauna Kea, Hawaii. Ecology 97:2384–2395

    Article  Google Scholar 

  • Kumar S, Kadono A, Lal R, Dick W (2012) Long-term no-till impacts on organic C and properties of two contrasting soils and corn yields in Ohio. Soil Sci Soc Am J 76(5):1798–1809

    Article  CAS  Google Scholar 

  • Kumar S, Meena RS, Pandey A, Seema (2017a) Soil acidity management and an economics response of lime and sulfur on sesame in an alley cropping system. Int J Curr Microbiol App Sci 6(3):2566–2573

    Article  CAS  Google Scholar 

  • Kumar S, Meena RS, Yadav GS, Pandey A (2017b) Response of sesame (Sesamum indicum L.) to Sulphur and lime application under soil acidity. Int J Plant Soil Sci 14(4):1–9

    Article  Google Scholar 

  • Kumar S, Meena RS, Bohra JS (2018) Interactive effect of sowing dates and nutrient sources on dry matter accumulation of Indian mustard (Brassica juncea L.). J Oilseed Brassica 9(1):72–76

    Google Scholar 

  • Laganière J, Angers DA, Paré D (2010) C accumulation in agricultural soils after afforestation: a meta-analysis. Glob Chang Biol 16:439–453

    Article  Google Scholar 

  • Lal R (1995) Global soil erosion by water and C dynamics. In: Lal R, Kimble J, Levine E, Stewart BA (eds) Soil management and greenhouse effect. Lewis Publishing, Boca Raton

    Google Scholar 

  • Lal R (2004) Soil Carbon sequestration to mitigate “C” sequestration. Geoderma 123:1–22

    Article  CAS  Google Scholar 

  • Lal R (2006) Enhancing crop yields in the developing countries through restoration of the soil organic C pool in agricultural lands. Land Degrad Dev 17:197–209

    Article  Google Scholar 

  • Lal R, Kimble JM, Follett RF, Cole CV (1998) The potential of U. S. cropland to sequester C and mitigate the greenhouse effect. Ann Arbor Press, Chelsea

    Google Scholar 

  • Lal R, Follett RF, Kimble J, Cole CV (1999) Managing US cropland to sequester C in soil. J Soil Water Conserv 54:374–381

    Google Scholar 

  • Lance JC, McIntyre SC, Naney J, Rousseva W (1986) Measuring sediment movement at low erosion. Prog Environ Sci 1:307–326

    Google Scholar 

  • Landi A, Mermut AR, Anderson DW (2003) Origin and rate of pedogenic Cate accumulation in Saskatchewan soils, Canada. Geoderma 117:143–156

    Article  CAS  Google Scholar 

  • Lavelle P (2000) Ecological challenges for soil science. Soil Sci 165:73–86

    Article  CAS  Google Scholar 

  • Lawrence CR, Harden JW, Xu X, Schulz MS, Trumbore SE (2015) Long-term controls on soil organic C with depth and time: a case study from the Cowlitz River Chrono sequence, WA USA. Geoderma 247:73–87

    Article  CAS  Google Scholar 

  • Liu W, Zhang Z, Wan S (2009) Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Glob Chang Biol 15:184–195

    Article  Google Scholar 

  • Long X, Ji J, Barrón V, Torrent J (2016) Climatic thresholds for pedogenic iron oxides under aerobic conditions: processes and their significance in paleoclimate reconstruction. Quat Sci Rev 150:264–277

    Article  Google Scholar 

  • Luizão RCC, Luizão FJ, Paiva RQ, Monteiro TF, Sousa LS, Kruijt B (2004) Variation of C and nitrogen cycling processes along a topographic gradient in a central Amazonian forest. Glob Chang Biol 10:592–600

    Article  Google Scholar 

  • Luo G, Ling N, Nannipieri P, Chen H, Raza W, Wang M, Guo S, Shen Q (2017) Long-term fertilization regimes affect the composition of the alkaline phosphor monoesterase encoding microbial community of a vertisol and its derivative soil fractions. Biol Fertil Soils 53:375–388

    Article  CAS  Google Scholar 

  • Maheswarappa HP, Nanjappa HV, Hegde MR (2011) Biddappa CC nutrient content and uptake by galangal (Kaempferia galanga L.) as influenced by agronomic practices as intercrop in coconut (Cocos nucifera L.) garden. J Spices Arom Crops 9:65–68

    Google Scholar 

  • Maji AK, Reddy GPO, Sarkar D (2010) Degraded and wastelands of India status and spatial distribution (Eds. Virmani SM, Prasad R, Pathak PS). ICAR, Pusa, New Delhi, p 155

    Google Scholar 

  • Mandal B (2011) The 29th professor JN Mukherjee-ISSS foundation lecture-soil organic C research in India – a way forward. J Indian Soc Soil Sci 59:S9

    Google Scholar 

  • Mandal B, Majumder B, Bandyopadhyay PK, Hazra GC, Gangopadhyay A, Samantaray RN, Mishra AK, Chaudhury J, Saha MN, Kundu S (2007) The potential of cropping systems and soil amendments for C sequestration in soils under long-term experiments in subtropical India. Glob Chang Biol 13:357–369

    Article  Google Scholar 

  • Mandal B, Majumder B, Adhya TK, Bandyopadhyay PK, Gangopadhyay A, Sarkar D, Kundu MC, Choudhury SG, Hazra GC, Kundu S, Samantaray RN, Misra AK (2008) Potential of double-cropped rice ecology to conserve organic C under subtropical climate. Glob Chang Biol 14:2139–2151

    Article  Google Scholar 

  • Mann LK (1986) Changes in soil C storage after cultivation. Soil Sci 142:279–288

    Article  CAS  Google Scholar 

  • Martin MP, Wattenbach M, Smith P, Meersmans J, Jolivet C, Boulonne L, Arrouays D (2011) Spatial distribution of soil organic C stocks in France. Biogeo Sci 8:1053–1065

    Article  CAS  Google Scholar 

  • Masiello CA, Chadwick OA, Southon J, Torn MS, Harden JW (2004) Weathering controls on mechanisms of C storage in grassland soils. Glob Biogeochem Cycles 18:GB4023

    Article  CAS  Google Scholar 

  • McCorkle EP, Berhe AA, Hunsaker CT, Johnson DW, McFarlane KJ, Fogel ML, Hart SC (2016) Tracing the source of soil organic matter eroded from temperate forest catchments using C and nitrogen isotopes. Chem Geol 445:172–184

    Article  CAS  Google Scholar 

  • MEA (Millennium Ecosystem Assessment) (2005) Ecosystems and human well-being: biodiversity synthesis. In: Millennium ecosystem assessment. World Resources Institute, Washington, DC

    Google Scholar 

  • Meena H, Meena RS (2017) Assessment of sowing environments and bio-regulators as adaptation choice for clusterbean productivity in response to current climatic scenario. Bangladesh J Bot 46(1):241–244

    Google Scholar 

  • Meena RS, Yadav RS (2014) Phonological performance of groundnut varieties under sowing environments in hyper arid zone of Rajasthan, India. J Appl Nat Sci 6(2):344–348

    Article  CAS  Google Scholar 

  • Meena RS, Yadav RS (2015) Yield and profitability of groundnut (Arachis hypogaea L) as influenced by sowing dates and nutrient levels with different varieties. Legum Res 38(6):791–797

    Google Scholar 

  • Meena RS, Yadav RS, Meena VS (2014) Response of groundnut (Arachis hypogaea L.) varieties to sowing dates and NP fertilizers under Western dry zone of India. Bangladesh J Bot 43(2):169–173

    Article  Google Scholar 

  • Meena RS, Dhakal Y, Bohra JS, Singh SP, Singh MK, Sanodiya P (2015a) Influence of bioinorganic combinations on yield, quality and economics of Mungbean. Am J Exp Agric 8(3):159–166

    CAS  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015b) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561

    Article  Google Scholar 

  • Meena RS, Meena VS, Meena SK, Verma JP (2015c) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553

    Article  Google Scholar 

  • Meena RS, Yadav RS, Meena H, Kumar S, Meena YK, Singh A (2015d) Towards the current need to enhance legume productivity and soil sustainability worldwide: a book review. J Clean Prod 104:513–515

    Article  Google Scholar 

  • Meena RS, Yadav RS, Reager ML, De N, Meena VS, Verma JP, Verma SK, Kansotia BC (2015e) Temperature use efficiency and yield of groundnut varieties in response to sowing dates and fertility levels in Western dry zone of India. Am J Exp Agric 7(3):170–177

    CAS  Google Scholar 

  • Meena H, Meena RS, Singh B, Kumar S (2016a) Response of bio-regulators to morphology and yield of clusterbean [Cyamopsis tetragonoloba (L.) Taub.] under different sowing environments. J Appl Nat Sci 8(2):715–718

    Article  CAS  Google Scholar 

  • Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Shiiag SK (2016b) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112:1258–1260

    Article  Google Scholar 

  • Meena RS, Gogaoi N, Kumar S (2017a) Alarming issues on agricultural crop production and environmental stresses. J Clean Prod 142:3357–3359

    Article  Google Scholar 

  • Meena RS, Kumar S, Pandey A (2017b) Response of sulfur and lime levels on productivity, nutrient content and uptake of sesame under guava (Psidium guajava L.) based Agri-horti system in an acidic soil of eastern Uttar Pradesh, India. J Crop Weed 13(2):222–227

    Google Scholar 

  • Meena RS, Meena PD, Yadav GS, Yadav SS (2017c) Phosphate solubilizing microorganisms, principles and application of microphos technology. J Clean Prod 145:157–158

    Article  Google Scholar 

  • Meena H, Meena RS, Lal R, Singh GS, Mitran T, Layek J, Patil SB, Kumar S, Verma T (2018a) Response of sowing dates and bio regulators on yield of clusterbean under current climate in alley cropping system in eastern U.P. Indian Legum Res 41(4):563–571

    Google Scholar 

  • Meena RS, Kumar V, Yadav GS, Mitran T (2018b) Response and interaction of Bradyrhizobium japonicum and Arbuscular mycorrhizal fungi in the soybean rhizosphere: a review. Plant Growth Regul 84:207–223

    Article  CAS  Google Scholar 

  • Mikhailova EA, Post CJ (2006) Effect of land use on soil inorganic C stocks in the Russian Chernozem. J Environ Qual 35:1384–1388

    Article  CAS  Google Scholar 

  • Minasny B, McBratney AB, Malone BP, Wheeler I (2013) Digital mapping of soil C. Adv Agron 118:1–47

    Article  Google Scholar 

  • MNRE (2009) Annual Report of the Ministry of New and Renewable Energy, Government of India, New Delhi, India

    Google Scholar 

  • MoA (1978) Indian agriculture in brief, 17th edn. Directorate of Economics and Statistics, Ministry of Agriculture, Department of Agriculture and Cooperation, Ministry of Agriculture and irrigation, Government of India, New Delhi, India

    Google Scholar 

  • MoA (1985) Indian agriculture in brief, 20th edn. Directorate of Economics and Statistics, Ministry of Agriculture, Department of Agriculture and Cooperation, Ministry of Agriculture, Government of India, New Delhi, India

    Google Scholar 

  • MoA (1994) Indian agriculture in brief 25th edn. Directorate of economics and statistics, Ministry of Agriculture, Department of Agriculture and Cooperation, Government of India, New Delhi, India

    Google Scholar 

  • Monger HC, Matrinez-Rios JJ (2000) Inorganic C sequestration in grazing lands. In: Follett RF, Kimble J, Lal R (eds) The potential of U. S. grazing lands to sequester C and mitigate the greenhouse effect. CRC/Lewis Publisher, Boca Raton, pp 87–118

    Google Scholar 

  • Montgomery DR, Dietrich WE (2002) Runoff generation in a steep, soil-mantled landscape. Water Resour Res 38:1168. https://doi.org/10.1029/2001WR000822

    Article  Google Scholar 

  • Müller-Nedebock D, Chaplot V (2015) Soil C losses by sheet erosion: a potentially critical contribution to the global C cycle. Earth Surf Process Landf 40:1803–1813

    Article  CAS  Google Scholar 

  • NAAS (2012) Management of crop residues in the context of conservation agriculture; policy paper no. 58. National Academy of Agricultural Sciences: New Delhi, India, p 12

    Google Scholar 

  • National Bureau of Soil Survey and Land Use Planning (NBSS&LUP) (1994) Global assessment of soil degradation (GLASOD) guidelines; NBSS&LUP, Nagpur, India

    Google Scholar 

  • National Bureau of Soil Survey and Land Use Planning (NBSS&LUP) (2005) Annual Report 2005, Nagpur

    Google Scholar 

  • National Bureau of Soil Survey& Land Use Planning (NBSS&LUP) (2004) Soil Map (1:1 Million Scale); NBSS&LUP: Nagpur, India

    Google Scholar 

  • NBSS&LUP: Nagpur, India, NCA. Report of the National Commission on Agriculture (1976) National Commission of Agriculture. Government of India, New Delhi, India, pp 427–472

    Google Scholar 

  • NRSA (2000) Waste land atlas of India. Government of India, Balanagar, Hyderabad, India

    Google Scholar 

  • NWDB (1985) Ministry of Environment and Forests, National Wasteland Development Board Guidelines for action. Government of India, New Delhi, India

    Google Scholar 

  • Oakes EGM, Hughes JC, Jewitt GPW, Lorentz SA, Chaplot V (2012) Controls on a scale explicit analysis of sheet erosion. Earth Surf Process Landf 37:847–854

    Article  Google Scholar 

  • Oertel C, Matschullat J, Zurba K, Zimmermann F, Erasmi S (2016) Greenhouse gas emissions from soils – a review. Chemie der Erde-Geochem 76:327–352

    Article  CAS  Google Scholar 

  • Olson KR, Gennadiyev AN, Zhidkin AP, Markelov MV (2011) Impact of land use change and soil erosion in Upper Mississippi River Valley on soil organic C retention and greenhouse gas emissions. Soil Sci 176:449–458

    Article  CAS  Google Scholar 

  • Olson KR, Gennadiyev AN, Zhidkin AP, Markelov MV (2012) Impact of land use change, slope and erosion on soil organic C retention and storage USA. Soil Sci 177:269–278

    Article  CAS  Google Scholar 

  • Olson KR, Gennadiye AN, Zhidkin AP, Markelov MV, Golosov VN, Lang JM (2013a) Magnetic tracer methods to determine cropland erosion rates. Catena 104:103–110. https://doi.org/10.1016/j.catena.2012.10.015

    Article  CAS  Google Scholar 

  • Olson KR, Gennadiyev AN, Kovach RG, Lang JM (2013b) The use of fly ash to determine the extent of sediment transport on nearly level western Illinois landscapes. Soil Sci 178:24–28

    Article  CAS  Google Scholar 

  • Olson KR, Al-Kaisi MM, Lal R, Lowery B (2014a) Examining the paired comparison method approach for determining soil organic C sequestration rates. J Soil Water Conser 69:193A–197A. https://doi.org/10.2489/jswc.69.6.193A

    Article  Google Scholar 

  • Olson KR, Al-Kaisi MM, Lal R, Lowery B (2014b) Experimental consideration, treatments, and methods in determining soil organic C sequestration rates. Soil Sci Soc Am J 78:348–360

    Article  CAS  Google Scholar 

  • Olson KR, Gennadiyev AN, Kovach RG, Schumacher TE (2014c) Comparison of prairie and eroded agricultural lands on soil organic C retention (South Dakota). Open J Soil Sci 4:136–149. https://doi.org/10.4236/ojss.2014.4417

    Article  Google Scholar 

  • Papiernik SK, Lindstrom MJ, Schumacher TE, Schumacher JA, Malo DD, Lobb DA (2007) Characterization of soil profiles in a landscape affected by long-term tillage. Soil Tillage Res 93:335–345

    Article  Google Scholar 

  • Pathak H, Byjesh K, Chakrabarti B, Aggarwal PK (2011) Potential and cost of C sequestration in Indian agriculture: estimates from long-term field experiments. Field Crop Res 120:102–111

    Article  Google Scholar 

  • Prasad RN, Biswas PP, Soil Resources of India (2000) 50 Years of natural resource management (Eds. Singh GB, Sharma BR). Indian Council of Agricultural Research, New Delhi, India

    Google Scholar 

  • Ram K, Meena RS (2014) Evaluation of pearl millet and mungbean intercropping systems in arid region of Rajasthan (India). Bangladesh J Bot 43(3):367–370

    Article  Google Scholar 

  • Rasmussen C (2006a) Distribution of soil organic and inorganic C pools by biome and soil taxa in Arizona. Soil Sci Soc Am J 70:256–265

    Article  CAS  Google Scholar 

  • Rasmussen C (2006b) Distribution of soil organic and inorganic C pools by biome and soil taxa in Arizona. Soil Sci Soc Am J 70:256–265

    Article  CAS  Google Scholar 

  • Riebe CS, Kirchner JW, Finkel RC (2004) Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes. Earth Planet Sci Lett 224:547–562

    Article  CAS  Google Scholar 

  • Riebe CS, Sklarm LS, Lukens CE, Shuster DL (2015) Climate and topography control the size and flux of sediment produced on steep mountain slopes. Proc Natl Acad Sci 112:15574–15579

    CAS  Google Scholar 

  • Robert M (2002) La séquestration du Ce dans le sol pour une meilleure gestion des terres. Rapport sur les ressources en sols du monde.Organisation des Nations Unies pour l’Alimentation et l’Agriculture, Rome, 76 pp.

    Google Scholar 

  • Rockstrom J, Karlberg L, Wani SP, Barron J, Hatibu N, Oweis T (2010) Managing water in rain-fed agriculture – the need for a paradigm shift. Agric Water Manag 97:543–550

    Article  Google Scholar 

  • Royal Commission on Agriculture in India Report (1928) Agricole Publishing Academy. New Delhi, India, pp 75–76

    Google Scholar 

  • Salemme R, Olson KR (2014) Land-use change effects on soil organic C and total soil nitrogen. Rates using Cesium-137. Soil Sci Soc Am J 50:1303–1309

    Google Scholar 

  • Sartori F, Lal R, Ebinger MH, Eaton JA (2007) Changes in soil C and nutrient pools along a chronosequence of poplar plantations in the Columbia Plateau, Oregon. USA Agric Ecosyst Environ 118:6–2

    Article  Google Scholar 

  • Scarpone C, Schmidt MG, Bulmer CE, Knudby A (2016) Modelling soil thickness in the critical zone for southern British Columbia. Geoderma 282:59–69

    Article  Google Scholar 

  • Scherr SJ, Yadav S (1996) Land degradation in the developing world: implications for food, agriculture and the environment to 2020. IFPRI, Foof. Agril. and the environment discussion paper 14, Washington, DC, p 36

    Google Scholar 

  • Schimel DS (1995) Terrestrial ecosystems and the C cycle. Glob Chang Biol 1:77–91

    Article  Google Scholar 

  • Sehgal J, Abrol IP (1994) Soil degradation in India. Status and the impact. Oxford IBH Publishing, New Delhi/Bombay/Calcutta, p 80

    Google Scholar 

  • Sharma KL, Vittal KPR, Srinivas K, Venkateswarlu B, Neelaveni K (1994) Prospects of organic farming in dryland agriculture. In: Singh HP, Ramakrishna YS, Sharma KL, Venkateswarlu B (eds) Fifty years of dryland agricultural research in India. Central Research Institute for Dryland Agriculture, Hyderabad

    Google Scholar 

  • Shen W, Reynolds JM, Hui D (2009) Responses of dryland soil respiration and soil C pool size to abrupt vs. gradual and individual vs. combined changes in soil temperature, precipitation, and atmospheric [CO2]: a simulation analysis. Glob Chang Biol 15:2274–2294

    Article  Google Scholar 

  • Shi ZH, Fang NF, Wu FZ, Wang L, Yue BJ, Wu G (2012) Soil erosion processes and sediment sorting associated with transport mechanisms on steep slopes. J Hydrol 454:123–130

    Article  Google Scholar 

  • Sihag SK, Singh MK, Meena RS, Naga S, Bahadur SR, Gaurav YRS (2015) Influences of spacing on growth and yield potential of dry direct seeded rice (Oryza sativa L) cultivars. Ecoscan 9(1–2):517–519

    Google Scholar 

  • Singh NT, Bandyopadhyay AK (1996) Chemical degradation leading to salt-affected soils and their management for agriculture and alternate uses. In Biswas TD, Narayanasamy G (eds) Soil management in relation to land degradation and environment. Indian Society Soil Science Bulletin 17, New Delhi, India, pp 89–101

    Google Scholar 

  • Singh SK, Singh AK, Sharma BK, Tarafdar JC (2007) C stock and organic C dynamics in soils of Rajasthan. Indian J Arid Environ 68:408–421

    Article  Google Scholar 

  • Sombroe WG, Nachtergaeke FO, Hebel A (1993) Amounts, dynamics and sequestrations of C in tropical and subtropical soils. Ambio 22:417–426

    Google Scholar 

  • Sreenivas K, Sujatha G, Sudhir K, Kiran DV, Fyzee MA, Ravisankar T, Dadhwal VK (2014) Spatial assessment of soil organic C density through random forests based imputation. J Indian Soc Remote Sens 42:577–587

    Article  Google Scholar 

  • Sreenivas K, Dadhwal VK, Kumar S, Harsha GS, Mitran T, Sujatha G, Ravisankar T (2016) Digital mapping of soil organic and inorganic C status in India. Geoderma 269:160–173

    Article  CAS  Google Scholar 

  • Srinivasarao CH, Venkateswarlu B, Dixit S, Kundu S, Gayatri Devi K (2011) Livelihood impacts of soil health improvement in backward and tribal districts of Andhra Pradesh. Central Research Institute for Dryland Agriculture, Hyderabad, p 119

    Google Scholar 

  • Srinivasarao CH, Deshpande AN, Venkateswarlu B, Lal R, Singh AK, Kundu S (2012a) Grain yield and C sequestration potential of post monsoon sorghum cultivation in Vertisols in the semi-arid tropics of Central India. Geoderma 176:90–97

    Article  CAS  Google Scholar 

  • Srinivasarao CH, Venkateswarlu B, Lal R, Singh AK, Kundu S, Vittal KPR (2012b) Soil C sequestration and agronomic productivity of an Alfisol for a groundnut based system in a semiarid environment in South India. Eur J Agron 43:40–48. https://doi.org/10.1016/j.eja.05.001

    Article  CAS  Google Scholar 

  • Srinivasarao CH, Venkateswarlu B, Lal R, Singh AK, Kundu S, Vittal KPR (2012c) Sustaining agronomic productivity and quality of a Vertisolic soil (vertisol) under soybeans and flower cropping system in semi-arid Central India. Can J Soil Sci 92:771–785

    Article  CAS  Google Scholar 

  • Srinivasarao CH, Venkateswarlu B, Singh AK, Vittal KPR, Kundu S, Gajanan GN (2012d) Yield sustainability and C sequestration potential of groundnut–fingermillet rotation in Alfisols under semi-arid tropical India. Int J Agric Sustain 10:1–15

    Article  Google Scholar 

  • Srinivasarao CH, Venkateswarlu B, Lal R, Singh AK, Vittal KPR, Kundu S (2012e) Long-term effects of soil fertility management on C sequestration in a rice–lentil cropping system of the Indo-Gangetic plains. Soil Sci Soc Am J 76:168–178

    Article  CAS  Google Scholar 

  • Srinivasarao CH, Venkateswarlu B, Singh AK, Vittal KPR, Kundu S, Gajanan GN (2012f) Critical C inputs to maintain soil organic C stocks under long term finger millet (Eleusine coracana (L.) Gaertn) cropping on Alfisols in semiarid tropical India. J Plant Nutr Soil Sci 175(5):681–688. https://doi.org/10.1002/jpln.201000429

    Article  CAS  Google Scholar 

  • Srinivasarao CH, Venkateswarlu B, Lal R, Singh AK, Kundu S, Jakkula VS (2013a) C sink capacity and agronomic productivity of soils of semiarid regions of India. In: Lal R, Stewart BA (eds) Principles of sustainable soil management in agroecosystems. Advance soil science. CRC Press, Boca Raton, p 568

    Google Scholar 

  • Srinivasarao CH, Venkateswarlu B, Lal R, Singh AK, Kundu S (2013b) Sustainable management of soils of dryland ecosystems of India for enhancing agronomic productivity and sequestering C. In: Sparks DL (ed) Advances in agronomy. Academic Press, Burlington, pp 253–329

    Google Scholar 

  • Stavi I, Lal R (2011) Variability of soil physical quality in un eroded, eroded, and depositional cropland sites. Geomorphology 125:85–91

    Article  Google Scholar 

  • Sundermeier A, Reeder R, Lal R (2005) Soil C sequestration–fundamentals. Soil C fact sheet. The Ohio State University Extension, Columbus

    Google Scholar 

  • Syers JK (1997) Managing soils for long-term productivity. Philos. Trans R Soc Lond Ser B Biol Sci 352:1011–1021

    Article  Google Scholar 

  • Tandon HLS (2004) Fertilizers in Indian agriculture—from 20th to 21st century. FDCO, New Delhi, p 240

    Google Scholar 

  • Tendon HLS (1992) Assessment of soil nutrient depletion. In: Proceedings of the FADINAP regional seminar on fertilization and the environment, Chiangmai, Thailand, 7–11 September

    Google Scholar 

  • Thompson JA, Pena-Yewtukhiw EM, Grove JH (2006) Soil landscape modelling across a physiographic region: topographic patterns and model transportability. Geoderma 133:57–70

    Article  CAS  Google Scholar 

  • Troll D (1965) Seasonal climates of the earth. In: Rodenwaldt E, Jusatz H (eds) Page 28 inworld maps of climatology. Springer, Berlin

    Google Scholar 

  • Varma D, Meena RS, Kumar S (2017a) Response of mungbean to fertility and lime levels under soil acidity in an alley cropping system in Vindhyan Region, India. Int J Chem Stud 5(2):384–389

    Google Scholar 

  • Varma D, Meena RS, Kumar S, Kumar E (2017b) Response of mungbean to NPK and lime under the conditions of Vindhyan Region of Uttar Pradesh. Legum Res 40(3):542–545

    Google Scholar 

  • Velayutham M, Pal DK, Bhattacharyya T (2000) Organic C stock in soils of India. In: Lal R, Kimble JM, Stewarts BA (eds) Global climate change and tropical ecosystem. CRC Press, Boca Raton, pp 71–95

    Google Scholar 

  • Velmurugan A, Kumar S, Dadhwal VK, Gupta MK (2014) Soil organic status of Indian forests. Indian Forester 140:468–477

    CAS  Google Scholar 

  • Verma JP, Jaiswal DK, Meena VS, Meena RS (2015) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547

    Article  Google Scholar 

  • Verma JP, Meena VS, Kumar A, Meena RS (2015a) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health: a book review. J Clean Prod 107:793–794

    Article  Google Scholar 

  • Verma SK, Singh SB, Prasad SK, Meena RN, Meena RS (2015b) Influence of irrigation regimes and weed management practices on water use and nutrient uptake in wheat (Triticum aestivum L. Emend. Fiori and Paol.). Bangladesh J Bot 44(3):437–442

    Article  Google Scholar 

  • Vohra BB (1980) A policy for land and water, vol. 18. Department of Environment, Government of India: New Delhi, India, pp 64–70

    Google Scholar 

  • Wang Y, Fu B, Lü Y, Song C, Luan Y (2010) Local-scale spatial variability of soil organic C and its stock in the hilly area of the Loess Plateau, China. Quat Res 73:70–76

    Article  CAS  Google Scholar 

  • Wang X, Cammeraat ELH, Cerli C, Kalbitz K (2014) Soil aggregation and the stabilization of organic C as affected by erosion and deposition. Soil Biol Biochem 72:55–65

    Article  CAS  Google Scholar 

  • West PC, Gibbs HK, Chad M, Wagner J, Barford CC, Carpenter SR, Foley JA (2010) Trading C for food: global comparison of C stocks vs. crop yields on agricultural land. Proc Natl Acad Sci USA 107:19645–19648

    Article  CAS  Google Scholar 

  • Yadav JSP (1996) Extent, nature, intensity and causes of land degradation in India. In Biswas TD, Narayanasamy G (eds) Soil management in relation to land degradation and environment, Indian Society soil Science Bulletin 17, New Delhi, India, pp 1–26

    Google Scholar 

  • Yadav GS, Babu S, Meena RS, Debnath C, Saha P, Debbaram C, Datta M (2017a) Effects of godawariphosgold and single supper phosphate on groundnut (Arachis hypogaea) productivity, phosphorus uptake, phosphorus use efficiency and economics. Indian J Agri Sci 87(9):1165–1169

    CAS  Google Scholar 

  • Yadav GS, Lal R, Meena RS, Babu S, Das A, Bhomik SN, Datta M, Layak J, Saha P (2017b) Conservation tillage and nutrient management effects on productivity and soil carbon sequestration under double cropping of rice in North Eastern Region of India. Ecol Indic. http://www.sciencedirect.com/science/article/pii/S1470160X17305617

  • Yadav GS, Lal R, Meena RS, Datta M, Babu S, Das, Layek J, Saha P (2017c) Energy budgeting for designing sustainable and environmentally clean/safer cropping systems for rainfed rice fallow lands in India. J Clean Prod 158:29–37

    Article  Google Scholar 

  • Yadav GS, Das A, Lal R, Babu S, Meena RS, Saha P, Singh R, Datta M (2018a) Energy budget and carbon footprint in a no-till and mulch based rice–mustard cropping system. J Clean Prod 191:144–157

    Article  Google Scholar 

  • Yadav GS, Das A, Lal R, Babu S, Meena RS, Patil SB, Saha P, Datta M (2018b) Conservation tillage and mulching effects on the adaptive capacity of direct-seeded upland rice (Oryza sativa L.) to alleviate weed and moisture stresses in the North Eastern Himalayan Region of India. Arch Agron Soil Sci. https://doi.org/10.1080/03650340.2018.1423555

    Article  Google Scholar 

  • Yoo K, Amundson R, Heimsath AM, Dietrich WE (2006) Spatial patterns of soil organic C on hillslopes: integrating geomorphic processes and the biological C cycle. Geoderma 130:47–65

    Article  CAS  Google Scholar 

  • Young CJS, Liu JA, Schumacher TE, Schumacher TC, Kaspar GW, McCarty D, Napton, Jaynes DB (2014) Evaluation of a model framework to estimate soil and soil organic C redistribution by water and tillage using 137Cs in two US Midwest soils. Geoderma 232(234):437–448. https://doi.org/10.1016/j.geoderma.2014.05.019

    Article  CAS  Google Scholar 

  • Zapata-Rios X, McIntosh J, Rademacher L, Troch PA, Brooks PD, Rasmussen C, Chorover J (2015) Climatic and landscape controls on water transit times and silicate mineral weathering in the critical zone. Water Resour Res 51:6036–6051

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehraj U. Din Dar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dar, M.U.D., Bhat, S.A., Meena, R.S., Shah, A.I. (2020). Carbon Footprint in Eroded Soils and Its Impact on Soil Health. In: Meena, R. (eds) Soil Health Restoration and Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-8570-4_1

Download citation

Publish with us

Policies and ethics