Skip to main content

Crosstalk Between Oxidative Stress and Mitochondrial Damage: Focus on Amyotrophic Lateral Sclerosis

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1158))

Abstract

Proteins oxidation by reactive species is implicated in the aetiology or progression of a panoply of disorders and diseases such as neurodegenerative disorders. It is becoming increasingly evident that redox imbalance in the brain mediates neurodegeneration. Free radicals, as reactive species of oxygen (ROS) but also reactive nitrogen species (RNS) and reactive sulfur species (RSS), are generated in vivo from several sources. Within the cell the mitochondria represent the main source of ROS and mitochondrial dysfunction is both the major contributor to oxidative stress (OS) as well its major consequence.

To date there are no doubts that a condition of OS added to other factors as mitochondrial damage in mtDNA or mitochondrial respiratory chain, may contribute to trigger or amplify mechanisms leading to neurodegenerative disorders.

In this chapter, we aim at illustrate the molecular interplay occurring between mitochondria and OS focusing on Amyotrophic Lateral Sclerosis, describing a phenotypic reprogramming mechanism of mitochondria in complex neurological disorder.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahtoniemi T, Jaronen M, Keksa-Goldsteine V, Goldsteins G, Koistinaho J (2008) Mutant SOD1 from spinal cord of G93A rats is destabilized and binds to inner mitochondrial membrane. Neurobiol Dis 32(3):479–485

    Article  CAS  PubMed  Google Scholar 

  2. Andersen PM (2000) Genetic factors in the early diagnosis of ALS. Amyotroph Lateral Scler Other Motor Neuron Disord 1(Suppl 1):S31–S42

    Article  CAS  PubMed  Google Scholar 

  3. Andrus PK, Fleck TJ, Gurney ME, Hall ED (1998) Protein oxidative damage in a transgenic mouse model of familial amyotrophic lateral sclerosis. J Neurochem 71(5):2041–2048

    Article  CAS  PubMed  Google Scholar 

  4. Banci L, Bertini I, Cantini F, Kozyreva T, Massagni C, Palumaa P, Rubino JT, Zovo K (2012) Human superoxide dismutase 1 (hSOD1) maturation through interaction with human copper chaperone for SOD1 (hCCS). Proc Natl Acad Sci 109(34):13555–13560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bannwarth S, Ait-El-Mkadem S, Chaussenot A, Genin EC, Lacas-Gervais S, Fragaki K, Berg-Alonso L, Kageyama Y, Serre V, Moore DG (2014) A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain 137(8):2329–2345

    Article  PubMed  PubMed Central  Google Scholar 

  6. Barber SC, Shaw PJ (2010) Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic Biol Med 48(5):629–641

    Article  CAS  PubMed  Google Scholar 

  7. Bartolome F, Wu H-C, Burchell VS, Preza E, Wray S, Mahoney CJ, Fox NC, Calvo A, Canosa A, Moglia C (2013) Pathogenic VCP mutations induce mitochondrial uncoupling and reduced ATP levels. Neuron 78(1):57–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Beckman JS, Chen J, Crow JP, Ye YZ (1994) Reactions of nitric oxide, superoxide and peroxynitrite with superoxide dismutase in neurodegeneration. Prog Brain Res., Elsevier 103:371–380

    Article  CAS  PubMed  Google Scholar 

  9. Bian K, Murad F (2003) Nitric oxide (NO) – biogeneration, regulation, and relevance to human diseases. Front Biosci 8:d264–d278

    Article  CAS  PubMed  Google Scholar 

  10. Bota DA, Davies KJ (2002) Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol 4(9):674

    Article  CAS  PubMed  Google Scholar 

  11. Bruening W, Roy J, Giasson B, Figlewicz DA, Mushynski WE, Durham HD (1999) Up-regulation of protein chaperones preserves viability of cells expressing toxic Cu/Zn-superoxide dismutase mutants associated with amyotrophic lateral sclerosis. J Neurochem 72(2):693–699

    Article  CAS  PubMed  Google Scholar 

  12. Butterfield DA, Hensley K, Cole P, Subramaniam R, Aksenov M, Aksenova M, Bummer PM, Haley BE, Carney JM (1997) Oxidatively induced structural alteration of glutamine synthetase assessed by analysis of spin label incorporation kinetics: relevance to Alzheimer’s disease. J Neurochem 68(6):2451–2457

    Article  CAS  PubMed  Google Scholar 

  13. Butterfield DA, Perluigi M (2017) Redox proteomics: a key tool for new insights into protein modification with relevance to disease. Mary Ann Liebert, New Rochelle

    Google Scholar 

  14. Butterfield DA, Perluigi M, Reed T, Muharib T, Hughes CP, Robinson RA, Sultana R (2012) Redox proteomics in selected neurodegenerative disorders: from its infancy to future applications. Antioxid Redox Signal 17(11):1610–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Calabrese L, Federici G, Rotilio G, Finazzi-Agrò A, Bannister WH, Bannister JV (1975) Labile sulfur in human superoxide dismutase. FEBS J 56(1):305–309

    CAS  Google Scholar 

  16. Carrì MT, Valle C, Bozzo F, Cozzolino M (2015) Oxidative stress and mitochondrial damage: importance in non-SOD1 ALS. Front Cell Neurosci 9:41

    PubMed  PubMed Central  Google Scholar 

  17. Cozzolino M, Ferri A, Teresa Carri M (2008) Amyotrophic lateral sclerosis: from current developments in the laboratory to clinical implications. Antioxid Redox Signal 10(3):405–444

    Article  CAS  PubMed  Google Scholar 

  18. Culotta VC, Klomp LW, Strain J, Casareno RLB, Krems B, Gitlin JD (1997) The copper chaperone for superoxide dismutase. J Biol Chem 272(38):23469–23472

    Article  CAS  PubMed  Google Scholar 

  19. Davies MJ (2016) Protein oxidation and peroxidation. Biochem J 473(7):805–825

    Article  CAS  PubMed  Google Scholar 

  20. Davoli A, Greco V, Spalloni A, Guatteo E, Neri C, Rizzo GR, Cordella A, Romigi A, Cortese C, Bernardini S (2015) Evidence of hydrogen sulfide involvement in amyotrophic lateral sclerosis. Ann Neurol 77(4):697–709

    Article  CAS  PubMed  Google Scholar 

  21. de Beus MD, Chung J, Colón W (2004) Modification of cysteine 111 in Cu/Zn superoxide dismutase results in altered spectroscopic and biophysical properties. Protein Sci 13(5):1347–1355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ferrante RJ, Browne SE, Shinobu LA, Bowling AC, Baik MJ, MacGarvey U, Kowall NW, Brown RH, Beal MF (1997) Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem 69(5):2064–2074

    Article  CAS  PubMed  Google Scholar 

  23. Fitzmaurice P, Shaw I, Kleiner H, Miller R, Monks T, Lau S, Mitchell J, Lynch P (1996) Evidence for DNA damage in amyotrophic lateral sclerosis. Muscle Nerve 19(6):797–798

    CAS  PubMed  Google Scholar 

  24. Fu M, Zhang W, Wu L, Yang G, Li H, Wang R (2012) Hydrogen sulfide (H2S) metabolism in mitochondria and its regulatory role in energy production. Proc Natl Acad Sci 109(8):2943–2948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gadoth N, Göbel HH (2011) Oxidative stress and free radical damage in neurology. Springer, New York

    Book  Google Scholar 

  26. Gerő D, Torregrossa R, Perry A, Waters A, Le-Trionnaire S, Whatmore JL, Wood M, Whiteman M (2016) The novel mitochondria-targeted hydrogen sulfide (H2S) donors AP123 and AP39 protect against hyperglycemic injury in microvascular endothelial cells in vitro. Pharmacol Res 113:186–198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Giles GI, Tasker KM, Jacob C (2001) Hypothesis: the role of reactive sulfur species in oxidative stress. Free Radic Biol Med 31(10):1279–1283

    Article  CAS  PubMed  Google Scholar 

  28. Greco V, Spalloni A, Corasolla Carregari V, Pieroni L, Persichilli S, Mercuri N, Urbani A, Longone P (2018) Proteomics and toxicity analysis of spinal-cord primary cultures upon hydrogen sulfide treatment. Antioxidants 7(7):87

    Article  PubMed Central  CAS  Google Scholar 

  29. Higgins CM, Jung C, Ding H, Xu Z (2002) Mutant Cu, Zn superoxide dismutase that causes motoneuron degeneration is present in mitochondria in the CNS. J Neurosci 22(6):RC215

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ihara Y, Nobukuni K, Takata H, Hayabara T (2005) Oxidative stress and metal content in blood and cerebrospinal fluid of amyotrophic lateral sclerosis patients with and without a Cu, Zn-superoxide dismutase mutation. Neurol Res 27(1):105–108

    Article  CAS  PubMed  Google Scholar 

  31. Ince P, Shaw P, Candy J, Mantle D, Tandon L, Ehmann W, Markesbery W (1994) Iron, selenium and glutathione peroxidase activity are elevated in sporadic motor neuron disease. Neurosci Lett 182(1):87–90

    Article  CAS  PubMed  Google Scholar 

  32. Islam MT (2017) Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res 39(1):73–82

    Article  CAS  PubMed  Google Scholar 

  33. Jaarsma D, Rognoni F, van Duijn W, Verspaget HW, Haasdijk ED, Holstege JC (2001) CuZn superoxide dismutase (SOD1) accumulates in vacuolated mitochondria in transgenic mice expressing amyotrophic lateral sclerosis-linked SOD1 mutations. Acta Neuropathol 102(4):293–305

    CAS  PubMed  Google Scholar 

  34. Karch CM, Prudencio M, Winkler DD, Hart PJ, Borchelt DR (2009) Role of mutant SOD1 disulfide oxidation and aggregation in the pathogenesis of familial ALS. Proc Natl Acad Sci 106(19):7774–7779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kawamata H, Manfredi G (2008) Different regulation of wild-type and mutant Cu, Zn superoxide dismutase localization in mammalian mitochondria. Hum Mol Genet 17(21):3303–3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Khalil B, Liévens J-C (2017) Mitochondrial quality control in amyotrophic lateral sclerosis: towards a common pathway? Neural Regen Res 12(7):1052

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, Burrell JR, Zoing MC (2011) Amyotrophic lateral sclerosis. Lancet 377(9769):942–955

    Article  CAS  PubMed  Google Scholar 

  38. Lehmer C, Schludi MH, Ransom L, Greiling J, Junghänel M, Exner N, Riemenschneider H, van der Zee J, Van Broeckhoven C, Weydt P (2018) A novel CHCHD10 mutation implicates a Mia40-dependent mitochondrial import deficit in ALS. EMBO Mol Med;10(6)

    Google Scholar 

  39. Leveugle B, Spik G, Perl DP, Bouras C, Fillit HM, Hof PR (1994) The iron-binding protein lactotransferrin is present in pathologic lesions in a variety of neurodegenerative disorders: a comparative immunohistochemical analysis. Brain Res 650(1):20–31

    Article  CAS  PubMed  Google Scholar 

  40. Libiad M, Yadav PK, Vitvitsky V, Martinov M, Banerjee R (2014) Organization of the human mitochondrial hydrogen sulfide oxidation pathway. J Biol Chem 289(45):30901–30910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liochev SI, Fridovich I (2000) Copper-and zinc-containing superoxide dismutase can act as a superoxide reductase and a superoxide oxidase. J Biol Chem 275(49):38482–38485

    Article  CAS  PubMed  Google Scholar 

  42. Liu Q, D’silva P, Walter W, Marszalek J, Craig EA (2003) Regulated cycling of mitochondrial Hsp70 at the protein import channel. Science 300(5616):139–141

    Article  CAS  PubMed  Google Scholar 

  43. Longen S, Richter F, Köhler Y, Wittig I, Beck K-F, Pfeilschifter J (2016) Quantitative persulfide site identification (qPerS-SID) reveals protein targets of H 2 S releasing donors in mammalian cells. Sci Rep 6:29808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Magrane J, Cortez C, Gan W-B, Manfredi G (2013) Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models. Hum Mol Genet 23(6):1413–1424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Magrané J, Hervias I, Henning MS, Damiano M, Kawamata H, Manfredi G (2009) Mutant SOD1 in neuronal mitochondria causes toxicity and mitochondrial dynamics abnormalities. Hum Mol Genet 18(23):4552–4564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Mishanina TV, Libiad M, Banerjee R (2015) Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. Nat Chem Biol 11(7):457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417(1):1–13

    Article  CAS  PubMed  Google Scholar 

  48. Olson KR, Gao Y, Arif F, Arora K, Patel S, DeLeon ER, Sutton TR, Feelisch M, Cortese-Krott MM, Straub KD (2018) Metabolism of hydrogen sulfide (H2S) and production of reactive sulfur species (RSS) by superoxide dismutase. Redox Biol 15:74–85

    Article  CAS  PubMed  Google Scholar 

  49. Orsini M, Oliveira AB, Nascimento OJ, Reis CHM, Leite MAA, de Souza JA, Pupe C, de Souza OG, Bastos VH, de Freitas MR (2015) Amyotrophic lateral sclerosis: new perpectives and update. Neurol Int 7(2):5885

    PubMed  PubMed Central  Google Scholar 

  50. Pasinelli P, Belford ME, Lennon N, Bacskai BJ, Hyman BT, Trotti D, Brown RH Jr (2004) Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria. Neuron 43(1):19–30

    Article  CAS  PubMed  Google Scholar 

  51. Paul BD, Snyder SH (2017) Gasotransmitter hydrogen sulfide signaling in neuronal health and disease. Biochem Pharmacol 149:101–109

    Article  CAS  PubMed  Google Scholar 

  52. Pieragostino D, Del Boccio P, Di Ioia M, Pieroni L, Greco V, De Luca G, D’Aguanno S, Rossi C, Franciotta D, Centonze D (2013) Oxidative modifications of cerebral transthyretin are associated with multiple sclerosis. Proteomics 13(6):1002–1009

    Article  CAS  PubMed  Google Scholar 

  53. Raha S, Robinson BH (2000) Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 25(10):502–508

    Article  CAS  PubMed  Google Scholar 

  54. Rakhit R, Cunningham P, Furtos-Matei A, Dahan S, Qi X-F, Crow JP, Cashman NR, Kondejewski LH, Chakrabartty A (2002) Oxidation-induced misfolding and aggregation of superoxide dismutase and its implications for amyotrophic lateral sclerosis. J Biol Chem 277(49):47551–47556

    Article  CAS  PubMed  Google Scholar 

  55. Rowland LP, Shneider NA (2001) Amyotrophic lateral sclerosis. N Engl J Med 344(22):1688–1700

    Article  CAS  PubMed  Google Scholar 

  56. Sasaki S, Iwata M (2007) Mitochondrial alterations in the spinal cord of patients with sporadic amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 66(1):10–16

    Article  PubMed  Google Scholar 

  57. Sasaki S, Warita H, Murakami T, Shibata N, Komori T, Abe K, Kobayashi M, Iwata M (2005) Ultrastructural study of aggregates in the spinal cord of transgenic mice with a G93A mutant SOD1 gene. Acta Neuropathol 109(3):247–255

    Article  CAS  PubMed  Google Scholar 

  58. Sbodio JI, Snyder SH, Paul BD (2018) Redox mechanisms in neurodegeneration: from disease outcomes to therapeutic opportunities. Antioxid Redox Signal

    Google Scholar 

  59. Searcy DG, Whitehead JP, Maroney MJ (1995) Interaction of Cu, Zn superoxide dismutase with hydrogen sulfide. Arch Biochem Biophys 318(2):251–263

    Article  CAS  PubMed  Google Scholar 

  60. Shaw PJ, Ince PG, Falkous G, Mantle D (1995) Oxidative damage to protein in sporadic motor neuron disease spinal cord. Ann Neurol 38(4):691–695

    Article  CAS  PubMed  Google Scholar 

  61. Sheehan D, McDonagh B, Bárcena JA (2010) Redox proteomics. Expert Rev Proteomics 7(1):1–4

    Article  CAS  PubMed  Google Scholar 

  62. Shibata N, Nagai R, Uchida K, Horiuchi S, Yamada S, Hirano A, Kawaguchi M, Yamamoto T, Sasaki S, Kobayashi M (2001) Morphological evidence for lipid peroxidation and protein glycoxidation in spinal cords from sporadic amyotrophic lateral sclerosis patients. Brain Res 917(1):97–104

    Article  CAS  PubMed  Google Scholar 

  63. Smith EF, Shaw PJ, De Vos KJ (2017) The role of mitochondria in amyotrophic lateral sclerosis. Neurosci Lett Jun 30

    Google Scholar 

  64. Sturtz LA, Diekert K, Jensen LT, Lill R, Culotta VC (2001) A fraction of yeast cu, zn-superoxide dismutase and its metallochaperone, ccs, localize to the intermembrane space of mitochondria a physiological role for sod1 in guarding against mitochondrial oxidative damage. J Biol Chem 276(41):38084–38089

    CAS  PubMed  Google Scholar 

  65. Tafuri F, Ronchi D, Magri F, Comi GP, Corti S (2015) SOD1 misplacing and mitochondrial dysfunction in amyotrophic lateral sclerosis pathogenesis. Front Cell Neurosci 9:336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Tan W, Pasinelli P, Trotti D (2014) Role of mitochondria in mutant SOD1 linked amyotrophic lateral sclerosis. Biochim Biophys Acta (BBA)-Mol Basis Dis 1842(8):1295–1301

    Article  CAS  Google Scholar 

  67. Taylor JP, Hardy J, Fischbeck KH (2002) Toxic proteins in neurodegenerative disease. Science 296(5575):1991–1995

    Article  CAS  PubMed  Google Scholar 

  68. Vandiver MS, Snyder SH (2012) Hydrogen sulfide: a gasotransmitter of clinical relevance. J Mol Med 90(3):255–263

    Article  CAS  PubMed  Google Scholar 

  69. Vehviläinen P, Koistinaho J, Gundars G (2014) Mechanisms of mutant SOD1 induced mitochondrial toxicity in amyotrophic lateral sclerosis. Front Cell Neurosci 8:126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Velde CV, McDonald KK, Boukhedimi Y, McAlonis-Downes M, Lobsiger CS, Hadj SB, Zandona A, Julien J-P, Shah SB, Cleveland DW (2011) Misfolded SOD1 associated with motor neuron mitochondria alters mitochondrial shape and distribution prior to clinical onset. PLoS One 6(7):e22031

    Article  CAS  Google Scholar 

  71. Voos W (2013) Chaperone–protease networks in mitochondrial protein homeostasis. Biochim Biophys Acta (BBA)-Mol Cell Res 1833(2):388–399

    Article  CAS  Google Scholar 

  72. Wang J, Xu G, Borchelt DR (2002) High molecular weight complexes of mutant superoxide dismutase 1: age-dependent and tissue-specific accumulation. Neurobiol Dis 9(2):139–148

    Article  CAS  PubMed  Google Scholar 

  73. Wei Y-H, Lu C-Y, Wei C-Y, Ma Y-S, Lee H-C (2001) Oxidative stress in human aging and mitochondrial disease-consequences of defective mitochondrial respiration and impaired antioxidant enzyme system. Chin J Physiol 44(1):1–12

    CAS  PubMed  Google Scholar 

  74. Zetterström P, Stewart HG, Bergemalm D, Jonsson PA, Graffmo KS, Andersen PM, Brännström T, Oliveberg M, Marklund SL (2007) Soluble misfolded subfractions of mutant superoxide dismutase-1s are enriched in spinal cords throughout life in murine ALS models. Proc Natl Acad Sci 104(35):14157–14162

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Urbani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Greco, V., Longone, P., Spalloni, A., Pieroni, L., Urbani, A. (2019). Crosstalk Between Oxidative Stress and Mitochondrial Damage: Focus on Amyotrophic Lateral Sclerosis. In: Urbani, A., Babu, M. (eds) Mitochondria in Health and in Sickness. Advances in Experimental Medicine and Biology, vol 1158. Springer, Singapore. https://doi.org/10.1007/978-981-13-8367-0_5

Download citation

Publish with us

Policies and ethics