Skip to main content

Abstract

Thermophilic fungi inhabit a great variety of ecosystems such as soils, composts and several others. They have also been isolated from non-thermogenic environments. Both morphological and molecular approaches have been employed in identifying them. These fungi degrade a large number of lignocellulosic and other biomasses by producing a wide range of varied hydrolases. Hydrolytic enzymes of thermophilic fungi exhibit unusual properties, for example, thermostability, tolerance to organic solvents, long shelf life and others required for applications in different industrial processes. These moulds play a key role in composting, thus in mushroom production. Various antimicrobials and secondary metabolites are well known to be produced by these organisms, besides being useful in generating nanoparticles. They are also used as single cell protein and in waste treatment and bioremediation. The centre of attention in this chapter is the diversity of thermophilic fungi and their potential utility in sustainable development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahirwar S, Soni H, Prajapati BP, KangO N (2017) Isolation and screening of thermophilic and thermotolerant fungi for production of hemicellulases from heated environments. Int J Fungal Biol 8(3):125–134

    CAS  Google Scholar 

  • Alexandrov VY (1977). Cells, molecules and temperature (translated from the Russian by Bernstam VA). Springer, Berlin.

    Google Scholar 

  • Allen PJ, Emerson R (1949) Guayule rubber, microbiological improvement by shrub retting. Ind Eng Chem 41:346–365

    Article  CAS  Google Scholar 

  • Alvarez-Zuniga MT, Santiago-Hernandez A, Rodriguez-Mendoza J, Campos JE, Pavon-Orozco P, Trejo-Estrada S, Hidalgo-Lara ME (2017) Taxonomic identification of the thermotolerant and fast-growing fungus Lichtheimia ramosa H71D and biochemical characterization of the thermophilic xylanase LrXynA. AMB Express 7:194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Amlacher S, Sarges P, Flemming D (2011) Insight into structure and assembly of the nuclear pore complex by utilizing the genome of a eukaryotic thermophile. Cell 146:277–289

    Article  CAS  PubMed  Google Scholar 

  • Apinis AE (1963) Occurrence of thermophilousmicrofungi in certain alluvial soils near Nottingham. Nova Hedgw 5:57–78

    Google Scholar 

  • Apinis AE, Pugh GJF (1967) Thermophilous fungi of birds’ nests. Mycopathol Mycol Appl 33:1–9

    Article  Google Scholar 

  • Awao T, Mitsugi K (1973) Notes on thermophilic fungi of Japan. Trans Mycol Soc Japan 14:145–160

    Google Scholar 

  • Bala A, Singh B (2016) Cost-effective production of biotechnologically important hydrolytic enzymes by Sporotrichum thermophile. Bioprocess Biosyst Eng 39:181–191

    Article  CAS  PubMed  Google Scholar 

  • Bala A, Singh B (2017) Concomitant production of cellulase and xylanase by thermophilic mould Sporotrichum thermophile in solid state fermentation and their applicability in bread making. World J Microbiol Biotechnol 33:109

    Article  CAS  PubMed  Google Scholar 

  • Barnes TG, Eggins HOW, Smith EL (1972) Preliminary stages in the development of a process of the microbial upgrading of waste paper. Int Biodeterior Bull 8:112–116

    Google Scholar 

  • Barns SM, Delwiche CF, Palmer JD (1996) Perspectives on archaeal diversity, thermophily, and monophyly from environmental rRNA sequences. Proc Natl Acad Sci U S A 93:9188–9193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bengtsson L, Johansson B, Hackett TJ (1995) Studies on the biosorption of uranium by Talaromycesemersonii CBS 814.70 biomass. Appl Microbiol Biotechnol 42:807–811

    Article  CAS  PubMed  Google Scholar 

  • Berka RM, IV& G, Otillar R (2011) Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat Biotechnol 29:922–929

    Article  CAS  PubMed  Google Scholar 

  • Blochl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C. Extremophiles 1:14–21

    Article  CAS  PubMed  Google Scholar 

  • Bódai V, Peredi R, Bálint J (2003) Novel hydrolases from thermophilic filamentous fungi for enantiomerically and enantiotopically selective biotransformations. Adv Synth Catal 345:811–818

    Article  CAS  Google Scholar 

  • Brock TD (1995) The road to Yellowstone—and beyond. Annu Rev Microbiol 49:1–28

    Article  CAS  PubMed  Google Scholar 

  • Brock TD, Fred EB (1982) Biology of microorganisms. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Brown BS, Mills J, Hulse JM (1974) Chemical and biological degradation of waste plastics. Nature 250:161–163

    Article  CAS  PubMed  Google Scholar 

  • Chahal DS, Moo-Young M, Vlach D (1981) Effect of physical and physicochemical pretreatments of wood for SCP production withChaetomium cellulolyticum. Biotechnol Bioeng 23:2417–2420

    Article  Google Scholar 

  • Champman ES, Evans E, Jacobelli MC, Logan AA (1975) The cellulolytic and amylolytic activity of Papulaspora thermophila. Mycologia 67:608–615

    Article  Google Scholar 

  • Chang Y, Hudson HJ (1967) Fungi of wheat straw compost I. Ecological studies. Trans Br Mycol Soc 50:649–666

    Article  Google Scholar 

  • Christakopoulos P, Katapodis P, Kalogeris E (2003) Antimicrobial activity of acidic xylo-oligosaccharides produced by family 10 and 11 endoxylanases. Int J Biol Macromol 31:171–175

    Article  CAS  PubMed  Google Scholar 

  • Christensen CM (1957) Deterioration of stored grains by fungi. Bot Rev 23:108–134

    Article  Google Scholar 

  • Chu YS, Niu XM, Wang YL (2010) Isolation of putative biosynthetic intermediates of prenylated indole alkaloids from a thermophilic fungus Talaromyces thermophilus. Org Lett 12:4356–4359

    Article  CAS  PubMed  Google Scholar 

  • Clarke JH, Hill ST, Niles EV, Howard MAR (1969) Ecology of microflora of moist barley, barley in sealed silos on farms. Pest Infest Res 1966:14–16

    Google Scholar 

  • Cooney DG, Emerson R (1964) Thermophilic fungi. an account of their biology, activities and classification. W. H. Freeman & Co, San Francisco, Calif

    Google Scholar 

  • Córdova RS, Baratti J, Nungaray J, Loera O (2003) Identification of mexican thermophilic and thermotolerant fungal isolates. Micol Appl Int 15(2):37–44

    Google Scholar 

  • Crisan EV (1959) The isolation and identifi cation of thermophilic fungi. Mycologia 63:1171–1198

    Google Scholar 

  • Crisan EV (1969) The proteins of thermophilic fungi. In: Grunckel JE (ed) Current topics in plant science. Academic Press, New York/London, pp 32–33

    Google Scholar 

  • Czikkely M, Bálint Á (2016) Study of the degradation patterns of thermophilic fungi from special digested wastewater sludge samples. J Agric Environ Sci 3(2). https://doi.org/10.18380/SZIE.COLUM.2016.3.2.47

  • Davis ND, Wagener RE, Morgan-Jones G, Diener UL (1975) Toxigenic thermophilic and thermotolerant fungi. Appl Micobiol 29:455–457

    CAS  Google Scholar 

  • dos Santos E, Piovan T, Roberto IC et al (2003) Kinetics of the solid state fermentation of sugarcane bagasse by Thermoascus aurantiacus for the production of xylanase. Biotechnol Lett 25:13–16

    Article  PubMed  Google Scholar 

  • Eggins HOW, Mills J (1971) Talaromyces emersonii—a possible biodeteriogen. Int Biodet Bull 7:105–108

    Google Scholar 

  • Ellis DH (1980a) Thermophilic fungi isolated from a heated aquatic habitat. Mycologia 72:1030–1033

    Article  Google Scholar 

  • Ellis DH (1980b) Thermophilous fungi isolated from some Antarctic and Sub-Antarctic soils. Mycologia 72:1033–1036

    Article  Google Scholar 

  • Evans HC (1971a) Thermophilous fungi of coal spoil tips. II. Occurrence, distribution and temperature relationships. Trans Br Mycol Soc 57:255–266

    Article  Google Scholar 

  • Evans HC (1971b) Thermophilic fungi of coal spoil tips I. Taxonomy. Trans Br Mycol Soc 57:241–254

    Article  Google Scholar 

  • Evans HC (1972) Thermophilic fungi of coal spoil tips II. Occurrence and temperature relations. Trans Br MycolSoc 57:255–266

    Article  Google Scholar 

  • Fergus CL (1964) Thermophilic and thermotolerant molds in mushroom compost during peak heating. Mycologia 56:267–284

    Article  Google Scholar 

  • Fergus CL, Amelung RM (1971) The heat resistance of some thermophilic fungi in mushroom compost. Mycologia 63:675–679

    Article  Google Scholar 

  • Fergus CL, Sinden JW (1969) A new thermophilic fungus in mushroom compost, Thielavia thermophila sp. nov. Can J Bot 47:1635

    Article  Google Scholar 

  • Flanningan B (1974) Distribution of seed-borne microorganisms in naked barley and wheat before harvest. Trans Br Mycol Soc 62:51–58

    Article  Google Scholar 

  • Friedman EI, Galum M (1974) In: Brown GW (ed) Desert biology, vol 2. Academic Press, London, pp 165–212

    Chapter  Google Scholar 

  • Fujii T, Koike H, Sawayama S (2015) Draft genome sequence of Talaromyces cellulolyticus strain Y-94, a source of lignocellulosic biomass-degrading enzymes. Genome Announc 3:e00014–e00015

    PubMed  PubMed Central  Google Scholar 

  • Ghotara SK, Chadha BS, Bandhan AK, Saini HS, Bhat MK (2006) Identification and characterization of diverse xylanases from thermiphilic and thermotolerant fungi. BioResour 1(1):18–33

    Google Scholar 

  • Gibson JD, Khanal BP, Zubarev ER (2007) Paclitaxel-functionalized gold nanoparticles. J Am Chem Soc 29(37):11653–11661

    Article  CAS  Google Scholar 

  • Gomes I, Saha RK, Mohiuddin G, Hoq MM (1992) Isolation and characterization of a cellulase-free pectinolytic and hemicellulolytic thermophilic fungus. World J Microbiol Biotectnol 8:589–592

    Article  CAS  Google Scholar 

  • Gomes J, Gomes I, Kreiner W, Esterbauer H, Sinner M, Steiner W (1993) Production of high level of cellulase-free and thermostable xylanase by a wild strain of Thermomyces lanuginosus using beechwood xylan. J Biotechnol 30(3):283–297

    Article  CAS  Google Scholar 

  • Grajek W (1987) Production of D-xylanases by thermophilic fungi using different methods of culture. Biotechnol Lett 9:353–356

    Article  CAS  Google Scholar 

  • Grishkan I (2018) Thermotolerant mycobiota of Israeli soils. J Basic Microbiol 58:30–40

    Article  CAS  PubMed  Google Scholar 

  • Guo JP, Tan JL, Wang YL (2011) Isolation of talathermophilins from the thermophilic fungus Talaromyces thermophilus YM3-4. J Nat Prod 74:2278–2281

    Article  CAS  PubMed  Google Scholar 

  • Guo JP, Zhu CY, Zhang CP (2012) Thermolides, potent nematocidal PKS-NRPS hybrid metabolites from thermophilic fungus Talaromyces thermophilus. J Am Chem Soc 134:20306–20309

    Article  CAS  PubMed  Google Scholar 

  • Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953

    Article  PubMed  CAS  Google Scholar 

  • Hassouni H, Smaili-Alaoui IM, Gaime-Perraud I, Augur C, Roussos S (2006) Effect of culture media and fermentation parameters on phytase production by the thermophilic fungus Myceliophthora thermophila in solid state fermentation. Mycol Apli Int 18:29–36

    Google Scholar 

  • Hawksworth DL, Crous PW, Redhead SA (2011) The Amsterdam declaration on fungal nomenclature. IMA Fungus 2(1):105–112. https://doi.org/10.5598/imafungus.2011.02.01.14

    Article  PubMed  PubMed Central  Google Scholar 

  • Hibbett DS, Taylor JW (2013) Fungal systematics: is a new age of enlightenment at hand? Nat Rev Microbiol 11(2):129–133. https://doi.org/10.1038/nrmicro2963

    Article  CAS  PubMed  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547. https://doi.org/10.1016/j.mycres.2007.03.004

    Article  PubMed  Google Scholar 

  • Houbraken J, Samson RA (2011) Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Stud Mycol 70:1–51. https://doi.org/10.3114/sim.2011.70.01

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houbraken J, Spierenburg H, Frisvad JC (2012) Rasamsonia, a new genus comprising thermotolerant and thermophilic Talaromyces and Geosmithia species. Antonie Van Leeuwenhoek 101:403–421. https://doi.org/10.1007/s10482-011-9647-1

    Article  CAS  PubMed  Google Scholar 

  • Houbraken J, de Vries RP, Samson RA (2014) Modern taxonomy of biotechnologically important Aspergillus and Penicillium species. Adv Appl Microbiol 86:199–249. https://doi.org/10.1016/B978-0-12-800262-9.00004-4

    Article  PubMed  Google Scholar 

  • Hughes WT, Crosier JW (1973) Thermophilic fungi in the microflora of man and environmental air. Mycopathol Mycol Appl 49:147–152

    Article  CAS  PubMed  Google Scholar 

  • Hunter AC, Mills PW, Dedi C (2008) Predominant allylic hydroxylation at carbons 6 and 7 of 4 and 5-ene functionalized steroids by the thermophilic fungus Rhizomucor tauricus IMI23312. J Steroid Biochem Mol Biol 108:155–163

    Article  CAS  PubMed  Google Scholar 

  • Hunter AC, Watts KR, Dedi C (2009) An unusual ring-a opening and other reactions in steroid transformation by the thermophilic fungus Myceliophthora thermophila. J Steroid Biochem Mol Biol 116:171–177

    Article  PubMed  CAS  Google Scholar 

  • Hwu JR, Yu SL, Thainashmuthu J, Ming-Hua H, Fong-Yu C, Chen-Sheng Y, Wu-Chou S, Dar-Bin S (2009) Targeted paclitaxel by conjugation to iron oxide and gold nanoparticles. J Am Chem Soc 131:66–68

    Article  CAS  PubMed  Google Scholar 

  • Jaitly AK, Rai JN (1982) Thermophilic and thermotolerant fungi from mangrove swamps. Mycologia 74:1021–1022

    Article  Google Scholar 

  • Javed MM, Ikram-ul-Haq MI, Latif F (2011) Distribution of cellulolytic-thermophilic fungi on various substrates and geographic locations in Pakistan. Pak J Bot 43(5):2621–2625

    Google Scholar 

  • Johri BN, Thakre RP (1975) Soil amendments and enrichment media in the ecology of thermophilic fungi. Ind Natl Sci Acad 41:564–570

    Google Scholar 

  • Johri BN, Satyanarayana T, Olsen J (1999) Thermophilic moulds in biotechnology. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Kalogeris E, Christakopoulos P, Kekos D (1998) Studies on the solid state production of thermostable endoxylanases from Thermoascus aurantiacus, characterization of two isozymes. J Biotechnol 60:155–163

    Article  CAS  Google Scholar 

  • Kalogeris E, Christakopoulos P, Katapodis P et al (2003) Production and characterization of cellulolytic enzymes from the thermophilic fungus Thermoascus aurantiacus under solid state cultivation of agricultural wastes. Process Biochem 38:1099–1104

    Article  CAS  Google Scholar 

  • Kamra P, Satyanarayana T (2004) Xylanase production by the thermophilic mold Humicola lanuginosa in solid-state fermentation. Appl Biochem Biotechnol 119:145–157

    Article  CAS  PubMed  Google Scholar 

  • Katapodis P, Vrsanská M, Kekos D (2003) Biochemical and catalytic properties of an endoxylanase purified from the culture filtrate of Sporotrichum thermophile. Carbohydr Res 338:1881–1890

    Article  CAS  PubMed  Google Scholar 

  • Kaur G, Satyanarayana T (2004) Production of extracellular pectinolytic, cellulolytic and xylanolytic enzymes by a thermophilic mould Sporotrichum thermophile Apinis in solid state fermentation. Indian J Biotechnol 3:552–557

    CAS  Google Scholar 

  • Kaur G, Kumar S, Satyanarayana T (2004) Production, characterization and application of a thermostable polygalacturonase of a thermophilic mould Sporotrichum thermophile Apinis. Bioresour Technol 94:239–243

    Article  CAS  PubMed  Google Scholar 

  • Khan SA, Ahmad A (2013) Fungus mediated synthesis of biomedically important cerium oxide nanoparticles. Mater Res Bull 48(10):4134–4138

    Article  CAS  Google Scholar 

  • Khan SA, Gambhir S, Ahmad A (2014) Extracellular biosynthesis of gadolinium oxide (Gd2O3) nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol. Beilstein J Nanotechnol 5:249–257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Korniłłowicz-Kowalska T, Kitowski I (2013) Aspergillus fumigatus and other thermophilic fungi in nests of wetland birds. Mycopathologia 175:43–56

    Article  PubMed  Google Scholar 

  • Kumar S, Satyanarayana T (2003) Purification and kinetics of a raw starch-hydrolyzing, thermostable, and neutral glucoamylase of the thermophilic mold Thermomucor indicae-seudaticae. Biotechnol Prog 19:936–944

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Satyanarayana T (2007) Optimization of culture variables for improving glucoamylase production by alginate-entrapped Thermomucor indicae-seudaticae using statistical methods. Bioresour Technol 98(6):1252–1259

    Article  CAS  PubMed  Google Scholar 

  • Kumar SS, Sujatha E, Pabba SK (2014) Optimization and characterization of thermostable endo and exocellulases by Humicola sp.SKESMBKU03. Int J Wollega Univ 3(4):107–115. https://doi.org/10.4314/star.v3i4.16

    Article  CAS  Google Scholar 

  • Kumari A, Satyanarayana T, Singh B (2015) Mixed substrate fermentation for enhanced phytase production by thermophilic mould Sporotrichum thermophile and its application in beneficiation of poultry feed. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-015-1868-8

    Article  PubMed  CAS  Google Scholar 

  • Le Goff O, Bru-Adan V, Bacheley H, Godon JJ, Wéry N (2010) The microbial signature of aerosols produced during the thermophilic phase of composting. J Appl Microbiol 108(1):325–340. https://doi.org/10.1111/j.1365-2672.2009.04427.x

    Article  PubMed  Google Scholar 

  • Lee H, Lee YM, Jang Y, Lee S, Lee H, Ahn BJ, Gyu-Hyeok K, Jae-Jin K (2014) Isolation and analysis of the enzymatic properties of thermophilic fungi from compost. Mycobiology 42(2):181–184

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma LJ, Ibrahim AS, Skory C, Grabherr MG, Burger G, Butler M, Elias M, Idnurm A, Lang BF, Sone T, Abe A, Calvo SE, Corrochano LM, Engels R, Fu J, Hansberg W, Kim JM, Kodira CD, Koehrsen MJ, Liu B, Miranda-Saavedra D, O’Leary S, Ortiz-Castellanos L, Poulter R, Rodriguez-Romero J, Ruiz-Herrera J, Shen YQ, Zeng Q, Galagan J, Birren BW, Cuomo CA, Wickes BL (2009) Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication. PLoS Genet 5:e1000549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mahajan MK, Johri BN, Gupta RK (1986) Influence of desiccation stress in a xerophilic thermophile Humicola sp. Curr Sci 55:928–930

    Google Scholar 

  • Maheshwari R, Kamalam PT, Balasubrahamanyam PL (1985) The biogeography of thermophilic fungi. Curr Sci 56:151–155

    Google Scholar 

  • Maheshwari R, Balasubramanyam PV, Palanivelu P (1988) Distinctive behaviour of invertase in a thermophilic fungus, Thermomyceslanuginosus. Arch Microbiol 134:255–260

    Article  Google Scholar 

  • Maheshwari R, Bharadwaj G, Bhat MB (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malik KA, Eggins HOW (1972) Some studies on the effect of pH on the ecology of cellulolytic thermophilic fungi using a perfusion technique. Biologia 18:277–279

    Google Scholar 

  • Matsuo M, Yasui T (1985) Properties of xylanase of Malbranchea pulchella var. sulfurea no. 48. Agric Biol Chem 49:839–841

    CAS  Google Scholar 

  • Matsuo M, Yasui T, Kobayashi T (1977) Purification and some properties of β-xylosidase from Malbranchea pulchella var. sulfurea no. 48. Agric Biol Chem 41:1593–1599

    CAS  Google Scholar 

  • McClendon SD, Batth T, Petzold CJ (2012) Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions. Biotechnol Biofuels 5:54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mchunu NP, Permaul K, Abdul RAY (2013) Xylanase superproducer: genome sequence of a compost-loving thermophilic fungus, Thermomyces lanuginosus strain SSBP. Genome Announc 1:e00388–e00313

    Article  PubMed  PubMed Central  Google Scholar 

  • Mc Neill J, Barrie FR, Buck WR, Demoulin V, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Marhold K, Prado J, van Reine Prud’homme WF, Smith GE, Wiersema JH, Turland NJ (eds) (2012) International code of nomenclature for algae, fungi, and plants (Melbourne Code) adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011 [Regnum Vegetabile no. 154.]. A.R.G. Ganter Verlag, Ruggell

    Google Scholar 

  • Mehrotra B, Basu M (1975) Survey of microorganism associated with cereal grains and other milling fractions in India, Pt. I, imported wheat. Int Biodeter Bull 11:56–63

    Google Scholar 

  • Mene S, Naz S (2016) Isolation and identification of thermophillic fungi from storage rice products. Int J Sci Res 5(11):336–338

    Google Scholar 

  • Meyer RD, Armstrong D (1970) Mucormycosis-changing status. Critical Rev Clinical Lab Sci 4:421–451

    Article  Google Scholar 

  • Miehe H (1907) Die Selbsterhitzung des Heus. In: Eine biologische Studie. Gustav Fischer Verlag, Jena

    Google Scholar 

  • Miller HM, Sullivan PA, Shepherd MG (1974) Intracellular protein breakdown in thermophilic and mesophilic fungi. Biochem J 144:209–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills J, Eggins HOW (1974) The biodeterioration of pasticisers by thermophilic fungi. Int Biodeterior Bull 10:39–44

    Google Scholar 

  • Molnár Z, Bódai V, George S, Balázs E, Zsolt F, György S, Tamás V, Zoltán K, Tóth-Szeles E, Rózsa S, István L (2018) Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci Rep 8:3943

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moretti MMS, Daniela A, Bocchini-Martins DSR, André R, Lara DS, Gomes E (2012) Selection of thermophilic and thermotolerant fungi for the production of cellulases and xylanases under solid-state fermentation. Braz J Microbiol 43:1062–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan-Jones (1974) Notes on hypomycetes V. A new thermophilic species of Acremonium. Can J Bot 52:429–431

    Article  Google Scholar 

  • Morgenstern I, Powlowski J, Ishmael N, Darmond C, Marqueteau S, Moisan M, Quenneville G, Tsang A (2012) A molecular phylogeny of thermophilic fungi. Fungal Biol 116(4):489–502. https://doi.org/10.1016/j.funbio.2012.01.010

    Article  CAS  PubMed  Google Scholar 

  • Moubasher AH, Hafez SII, Aboelfattah HM, Moharrarh AM (1982) Fungi of wheat and broad bean straw composts 2, Thermophilic fungi. Mycopathologia 84:61–72

    Google Scholar 

  • Mouchacca J (1997) Thermophilic fungi: biodiversity and taxonomic status. Cryptogam Mycol 18:19–69

    Google Scholar 

  • Mouchacca J (2000) Thermophilic fungi and applied research: A synopsis of name changes and synonymies. World J Microbiol Biotechnol 16:881–888

    Article  Google Scholar 

  • Mulings SL, Chesters CGC (1970) Ecology of fungi associated with moist stored barley grains. Ann Appl Biol 65:277–284

    Article  Google Scholar 

  • Nageswara RJS, Cherayil JD (1979) Minor nucleotides in the ribosomal RNA of Thermomyces lanuginosus. Curr Sci 48:983–987

    Google Scholar 

  • Noack K (1920) Der Betriebstoffwechsel der thermophilen. Pilze Jahrb Wiss Bot 59:593–648

    Google Scholar 

  • Oliveira TB, Gomes E, Andre R (2014) Thermophilic fungi in the new age of fungal taxonomy. Extremophiles. https://doi.org/10.1007/s00792-014-0707-0

    Article  PubMed  Google Scholar 

  • Oriente A, Tramontina R, de Andrades D, Henn C, Silva JLC, RCG S˜a, Maller A, de Lourdes MT, Polizeli M, Kadowaki MK (2015) Characterization of a novel Aspergillus niger beta-glucosidase tolerant to saccharification of lignocellulosic biomass products and fermentation inhibitors. Chem Pap 69(8):1050–1057

    Article  CAS  Google Scholar 

  • Pan WZ, Huang XW, Wei KB (2010) Diversity of thermophilic fungi in Tengchong Rehai National Park revealed by ITS nucleotide sequence analyses. J Microbiol 48:146–152

    Article  CAS  PubMed  Google Scholar 

  • Pereira JC, Marques NP, Rodrigues A, Oliveira TB, Boscolo M, da Silva R, Gomes E, Martins DAB (2015) Thermophilic fungi as new sources for production of cellulases and xylanases with potential use in sugarcane bagasse saccharification. J Appl Microbiol 118:928–939

    Article  CAS  Google Scholar 

  • Powell AJ, Parchert KJ, Bustamante JM, Ricken JB, Hutchinson MI, Natvig DO (2012) Thermophilic fungi in an aridland ecosystem. Mycologia 104(4):813–825. https://doi.org/10.3852/11-298

    Article  PubMed  Google Scholar 

  • Prabhu KA, Maheshwari R (1999) Biochemical properties of xylanases from a thermophilic fungus, Melanocarpus albomyces, and their action on plant cell walls. J Biosci 24:461–470

    Article  CAS  Google Scholar 

  • Prasad ARS, Maheshwari R (1978) Growth and trehalase activity in the thermophilic fungus Thermomyces lanuginosus. Proc Indian Acad Sci 87B(Exp. Biol. -4):231–241

    Google Scholar 

  • Prasad GS, Girisham S, Reddy SM (2011) Potential of thermophilic fungus Rhizomucor pusillus NRRL 28626 in biotransformation of antihelmintic drug albendazole. Appl Biochem Biotechnol 165:1120–1128

    Article  PubMed  CAS  Google Scholar 

  • Rajasekaran AK, Maheshwari R (1993) Thermophilic fungi: an assessment of their potential for growth in soil. J Biosci 18:345–354

    Article  Google Scholar 

  • Rawat S, Agarwal PK, Chaudhary DK, Johri BN (2005) Microbial diversity and community dynamics of mushroom compost ecosystem. In: Satyanarayana T, Johri BN (eds) Microbial diversity: current perspectives and applications. I.K. International Pvt. Ltd., New Delhi, pp 181–206

    Google Scholar 

  • Rosenberg SL (1975) Temperature and pH optima for 21 species of thermophilic and thermotolerant fungi. Can J Microbiol 21:1535–1540

    Article  CAS  PubMed  Google Scholar 

  • Sadaf A, Khare SK (2014) Production of Sporotrichum thermophile xylanase by solid state fermentation utilizing deoiled Jatropha curcas seed cake and its application in xylooligosachharide synthesis. Bioresour Technol 153:126–130

    Article  CAS  PubMed  Google Scholar 

  • Salar RK (2018) Thermophilic fungi basic concepts and biotechnological applications. CRC press/Taylor and Francis group, Boco Raton/London/NewYork

    Book  Google Scholar 

  • Salar RK, Aneja KR (2006) Thermophilous fungi from temperate soils of Northern India. J Agric Technol 2:49–58

    Google Scholar 

  • Salar RK, Aneja KR (2007) Thermophilic fungi: taxonomy and biogeography. J Agri Technol 3:77–107

    Google Scholar 

  • Sandhu DK, Singh S (1981) Distribution of thermophilous microfungi in forest soils of Darjeeling (Eastern Himalayas). Mycopathologia 74:79–81

    Article  Google Scholar 

  • Saroj P, Manasa P, Narasimhulu K (2018) Characterization of thermophilic fungi producing extracellular lignocellulolytic enzymes for lignocellulosic hydrolysis under solid-state fermentation. Bioresour Bioprocess 5:31. https://doi.org/10.1186/s40643-018-0216-6

    Article  Google Scholar 

  • Satyanarayana T, Chavant L (1987) Bioconversion and binding of sterols by thermophilic moulds. Folia Microbiol (Praha) 32:354–359

    Article  CAS  Google Scholar 

  • Satyanarayana T, Johri BN (1984) Thermophilic fungi of paddy straw compost: growth, nutrition and temperature relationships. J Indian Bot Soc 63:164–170

    Google Scholar 

  • Satyanarayana T, Johri BN, Saksena SB (1977) Seasonal variation in mycoflora of nesting materials of birds with special reference to thermophilic fungi. Trans Br Mycol Soc 62:307–309

    Article  Google Scholar 

  • Satyanarayana T, Johri BN, Klein J (1992) Biotechnological potential of thermophilicfungi. In: Arora DK, Elander RP, Mukerji KG (eds) Handbook of applied mycology. Marcel Dekker, New York, pp 729–761

    Google Scholar 

  • Seifert KA, Samson RA, Boekhout T, Louis-Seize G (1997) Remersonia, a new genus for Stilbella thermophila, a thermophilic mould from compost. Can J Bot 75(7):1158–1165. https://doi.org/10.1139/b97-828

    Article  Google Scholar 

  • Seymour RS, Bradford DF (1992) Temperature regulation in the incubation mounds of the Australian brush-turkey. Condor 94:134–150

    Article  Google Scholar 

  • Shaik YB (2006) Inflammatory thermophilic fungi are used in biotechnology applications. European J Inflam 4(3):147–155

    Article  CAS  Google Scholar 

  • ShanthiPriya A, Girisham S, Shyam PG, Chandra SRD (2017) Biotransformation of diclofenac by thermophilic coprophilous fungus Scytalidium thermophilum isolated from sheep dung. Int J Curr Adv Res 6(7):4594–4597

    Google Scholar 

  • Sharma HSS (1989) Economic importance of thermophilous fungi. Appl Microbiol Biotechnol 31:1–10

    Google Scholar 

  • Sharma HA, Johri BN (1992) The role of thermophilic fungi in agriculture. Handb Appl Mycol 4:707–728

    Google Scholar 

  • Sharma M, Chadha BS, Kaur M (2008) Molecular characterization of multiple xylanase producing thermophilic/thermotolerant fungi isolated from composting materials. Lett Appl Microbiol 46:526–535

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Mahajan C, Bhatti MS, Chadha BS (2016) Profiling and production of hemicellulases by thermophilic fungus Malbranchea flava and the role of xylanases in improved bioconversion of pretreated lignocellulosics to ethanol. 3 Biotech 6:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh B (2007). Production, characterization and applications of extracellular phytase of the thermophilic mold Sporotrichum thermophile Apinis. PhD. Thesis, University of Delhi South Campus, New Delhi, India.

    Google Scholar 

  • Singh B (2016) Myceliophthora thermophila syn.: a thermophilic mould of biotechnological potential. Crit Rev Biotechnol 39:59–69

    Google Scholar 

  • Singh B, Satyanarayana T (2006) Phytase production by thermophilic mold Sporotrichum thermophile in solid-state fermentation and its application in dephytinization of sesame oil cake. Appl Biochem Biotechnol 133:239–250

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Satyanarayana T (2008) Phytase production by Sporotrichumthermophilein a cost-effective cane molasses medium in submerged fermentation and its application in bread. J Appl Microbiol 105:1858–1865

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Satyanarayana T (2009a) Characterization of a HAP-phytase from a thermophilic mould Sporotrichum thermophile. Bioresour Technol 100:2046–2051

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Satyanarayana T (2009b) Thermophilic moulds in environmental management. In: Mishra JK, Deshmukh SK (eds) Progress in mycological research. Vol I. Fungi from different environments. Environmental mycology. Science Publishers, New Hampshire, pp 352–375

    Google Scholar 

  • Singh B, Satyanarayana T (2014) Thermophilic fungi: their ecology and biocatalyst. Kavka 42:37–51

    Google Scholar 

  • Singh B, Satyanarayana T (2016) Ubiquitous occurrence of thermophilic fungi in various substrates. In: Fungi from different substrates. CRC Press, Boca Raton, pp 201–216

    Google Scholar 

  • Singh B, Pocas-Fonseca MJ, Johri BN, Satyanarayana T (2016) Thermophilic molds: biology and applications. Crit Rev Biotechnol 42:985–1006

    CAS  Google Scholar 

  • Singhania S, Satyanarayana T, Rajam MV (1991) Polyamines of thermophilic moulds: distribution and effect of polyamine biosynthesis inhibitors on growth. Mycol Res 95:915–917

    Article  CAS  Google Scholar 

  • Souza FHM, NNascimento CV, Rosa JC, Masui DC, Leone FA, Jorge JA, Furriel RPM (2010) Purification and biochemical characterization of a mycelial glucose- and xylose-stimulated β-glucosidase from the thermophilic fungus Humicola insolens. Process Biochem 45(2):272–278

    Article  CAS  Google Scholar 

  • Souza TP, Marques SC, Silveira d, Santos DM (2014) Analysis of thermophilic fungal populations during phase II of composting for the cultivation of Agaricus subrufescens. World J Microbiol Biotechnol 30:2419–2425

    Article  PubMed  Google Scholar 

  • Sreelatha B, ShyamPrasad G, Koteshwar V, Rao SG (2018) Microbial synthesis of mammalian metabolites of spironolactone by thermophilic fungus Thermomyces lanuginosus. Steroids 136:1–7

    Article  CAS  Google Scholar 

  • Straatsma G, Samson RA (1993) Taxonomy of Scytalidiumthermophilum, an important thermophilic fungus in mushroom compost. Mycol Res 97:321–328

    Article  Google Scholar 

  • Straatsma G, Gerrits JPG, Augustin APAM, Camp HJM, Van GLJLD (1991) Growth kinetics of Agaricus bisporus mycelium on solid substrate (mushroom compost). J Gen Microbiol 137:1471–1477

    Article  Google Scholar 

  • Straatsma G, Samson RA, Olijnsma TW, Den Camp HJMO, Gerrits JPG, Van Griensven LJLD (1994) Ecology of thermophilic fungi in mushroom compost, with emphasis on Scytalidium thermophilum and growth stimulation of Agaricus bisporus mycelium. Appl Environ Microbiol 60(2):454–458

    Google Scholar 

  • Subrahmanyam A (1977) Nutritional requirements of Torula thermophila Cooney & Emerson at two different temperatures. Nova Hedwigia 19:85–89

    Google Scholar 

  • Subrahmanyam A (1978) Isolation of thermophilic fungi from dust on books. Curr Sci 47:817–819

    Google Scholar 

  • Subrahmanyam A (1980) Studies on morphology and biochemical activities of some thermophilicfungi. DSc thesis, Kumaun University, Nainital, India

    Google Scholar 

  • Subrahmanyam A (1997) Ecology and distribution. In: Johri BN, Satyanarayana T, Olsen J (eds) Thermophilic moulds in biotechnology. Kluwer Academic, Dordrecht, pp 13–20

    Google Scholar 

  • Subrahmanyam A (1999) Ecology and distribution. In: Johri BN, Satyanarayana T, Olsen J (eds) Thermophilic moulds in biotechnology. Kluwer Academic Publishers, Dordrecht, pp 13–42

    Chapter  Google Scholar 

  • Subrahmanyam A, Mehrotra BS, Thirumalacher MJ (1977) Thermomucor, a new genus of mucorales. Geor J Sci 35:1–6

    Google Scholar 

  • Svahn KS, Göransson U, El-Seedi H (2012) Antimicrobial activity of filamentous fungi isolated from highly antibioticcontaminated river sediment. Infect Ecol Epidemiol 2. https://doi.org/10.3402/iee.v2i0.11591

    Article  Google Scholar 

  • Syed A, Saraswati S, Kundu GC (2013) Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochim Acta A Mol Biomol Spectrosc 114:144–147

    Article  CAS  PubMed  Google Scholar 

  • Taber RA, Pattit RE (1975) Occurrence of thermophilic microorganism in peanuts and peanut soil. Mycologia 67:157–161

    Article  CAS  PubMed  Google Scholar 

  • Taha M, Adetutua EM, Shahsavaria E (2014) Azo and anthraquinone dye mixture decolourization at elevated temperature and concentration by a newly isolated thermophilic fungus, Thermomucor indicae-seudaticae. J Environ Chem Eng 2:415–423

    Article  CAS  Google Scholar 

  • Tambor JH, Ren H, Ushinsky S (2012) Recombinant expression, activity screening and functional characterization identifies three novel endo-1,4-b-glucanases that efficiently hydrolyse cellulosic substrates. Appl Microbiol Biotechnol 93:203–214

    Article  PubMed  CAS  Google Scholar 

  • Tansey MR (1971) Isolation of thermophilic fungi from self-heated, industrial wood chip piles. Mycologia 63:537–547

    Article  Google Scholar 

  • Tansey MR (1973) Isolation of thermophilic fungi from alligator nesting materials. Mycologia 65:594–601

    Article  CAS  PubMed  Google Scholar 

  • Tansey MR, Brock TD (1972) The upper temperature limit for eukaryotic organisms. Proc Natl Acad Sci U S A 69:2426–2428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tansey MR, Brock TD (1973) Dactylaria gallopoya—a cause of avian encephalitis in hot spring effl uents, thermal soils and self heated coal waste piles. Nature 242:202–205

    Article  CAS  PubMed  Google Scholar 

  • Tansey MR, Brock TD (1978) Microbial life at high temperatures: ecological aspects. In: Kushner DJ (ed) Life in extreme environments. Academic Press, Ltd. United Kingdom, London, pp 159–216

    Google Scholar 

  • Tansey MR, Jack MA (1976) Thermophilic fungi in sun heated soils. Mycologia 68:1061–1075

    Article  CAS  PubMed  Google Scholar 

  • Tansey MR, Jack MA (1977) Growth of thermophilic fungi in soil in situ and vitro. Mycologia 69:563–578

    Article  Google Scholar 

  • Taylor JW (2011) One fungus = one name: DNA and fungal nomenclature 20 years after PCR. IMA Fungus 2(2):113–120. https://doi.org/10.5598/imafungus.2011.02.02.01

    Article  PubMed  PubMed Central  Google Scholar 

  • Thakur IS, Rana BK, Johri BN (1992) Multiplicity of xylanase in Humicola grisea var. thermoidea. In: Visser J, Beldman G, Kaustwersvan-Someren MA (eds) Xylan and xylanases. Elsevier Applied Science, Amsterdam, pp 511–514

    Google Scholar 

  • Thakur M S, Karanth NG, Nand K (1993) Downstream processing of microbial rennet from solid state fermented moldy bran. Biotechnol Adv 11:399–440

    Article  CAS  PubMed  Google Scholar 

  • Trent JD, Gabrielsen M, Jensen B (1994) Acquired thermotolerance and heat shock proteins in thermophiles from the three phylogenetic domains. J Bacteriol 176:6148–6152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tubaki K, Ito T, Matsuda Y (1974) Aquatic sediments as a habitat of thermophilic fungi. Ann Microbiol 24:199–207

    Google Scholar 

  • Vafiadi C, Topakas E, Biely P (2009) Purification, characterization and mass spectrometric sequencing of a thermophilic glucuronoyl esterase from Sporotrichum thermophile. FEMS Microbiol Lett 296:178–184

    Article  CAS  PubMed  Google Scholar 

  • van den Brink J, Samson RA, Hagen F, Boekhout T, De Vries RP (2012) Phylogeny of the industrial relevant, thermophilic genera Myceliophthora and Corynascus. Fungal Divers 52:197–207. https://doi.org/10.1007/s13225-011-0107-z

    Article  Google Scholar 

  • van den Brink J, van Muiswinkel GCJ, Theelen B (2013) Efficient plant biomass degradation by thermophilic fungus Myceliophthora heterothallica. Appl Environ Microbiol 79:1316–1324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Noort V, Bradatsch B, Arumugam M, Amlacher S, Bange G, Creevey C, Falk S, Mende DR, Sinning I, Hurt E, Bork P (2013) Consistent mutational paths predict eukaryotic thermostability. BMC Evol Biol. https://doi.org/10.1186/1471-2148-13-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Vartaja O (1949) High surface soil temperature. Oikos 1:6–28

    Article  Google Scholar 

  • Waksman SA, Umbreit WW, Cordon TC (1939) Thermophilic actinomycetes and fungi in soils and in composts. Soil Sci 47:37–61

    Article  CAS  Google Scholar 

  • Wali AS, Mattoo AK, Modi VV (1978) Stimulation of growth and glucoe catabolite enzymes by succinate in some thermophilic fungi. Arch Microbiol 118:49–53

    Article  CAS  PubMed  Google Scholar 

  • Ward JE, Cowley GT (1972) Thermophilic fungi of some central South Carolina forest soils. Mycologia 64:200–205

    Article  PubMed  Google Scholar 

  • Wiegant WM, Wery J, Britenhmis ET, De Bount JA (1992) Growth promoting effect of thermophilic fungi on mycelium of edible mushroom Agaricusbisporus. Appl Environ Microbiol 58:2644–2659

    Google Scholar 

  • Wingfield MJ, De Beer ZW, Slippers B, Wingfield BD, Groenewald JZ, Lombard L, Crous PW (2012) One fungus, one name promotes progressive plant pathology. Mol Plant Pathol 13(6):604–613. https://doi.org/10.1111/j.1364-3703.2011.00768.x

    Article  CAS  PubMed  Google Scholar 

  • Wright C, Alkewitz D, Somberg EW (1983) Eucaryote thermophily: role of lipids in the growth of Talaromyces thermophilus. J Bacteriol 156:493–497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Wu WP, Hu DM, Su YY, Cai L (2014) A new thermophilic species of Myceliophthora from China. Mycol Prog 13(1):165–170. https://doi.org/10.1007/s11557-013-0904-8

    Article  Google Scholar 

  • Zhou P, Zhang G, Chen S (2014) Genome sequence and transcriptome analyses of the thermophilic zygomycete fungus Rhizomucor miehei. BMC Genomics 15:294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dahiya, S., Satyanarayana, T., Singh, B. (2019). Thermophilic Fungal Diversity in Sustainable Development. In: Satyanarayana, T., Johri, B., Das, S. (eds) Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications. Springer, Singapore. https://doi.org/10.1007/978-981-13-8315-1_7

Download citation

Publish with us

Policies and ethics