Skip to main content

Remediation of Pesticides Through Microbial and Phytoremediation Techniques

  • Chapter
  • First Online:
Fresh Water Pollution Dynamics and Remediation

Abstract

Pesticides contamination in the environment presents a real hazard to human beings and other aquatic and terrestrial life. If not controlled, the contamination can lead to serious problems to the environment. In order to keep this contamination at a low level, some sustainable and cost-effective alternatives methods are required. Remediation techniques, such as microbial remediation and phytoremediation are reliable and efficient methods that utilize microbes and plants to eliminate the pesticide residues in the environment. These techniques offer useful and effective alternatives to physical and chemical remediation processes for being economically and ecologically sustainable. This chapter discusses present remediation techniques for the removing of pesticides from the natural environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AbdulWaheed, A., Awang, S., & Sarva, P. (2014). The comparison of phytoremediation abilities of water mimosa and water hyacinth. ARPN Journal of Science and Technology, 4(12), 722–731.

    Google Scholar 

  • Abhilash, P. C., & Nandita, C. (2010). Withania somnifera Dunal-mediated dissipation oflindane from simulated soil: Implications for rhizoremediation of contaminated soil. Journal of Soils and Sediments, 10, 272–282.

    Article  CAS  Google Scholar 

  • Abhilash, P. C., Singh, B., Srivastava, P., Schaeffer, A., & Singh, N. (2013). Remediation of lindaneby Jatropha curcas L.: Utilization of multipurpose species for rhizoremediation. Biomass and Bioenergy, 51, 189–193.

    Article  CAS  Google Scholar 

  • Ahmed-Ali, R. (2014). Phytoremediation of cyanophos insecticide by Plantago major L. in water. Journal of Environmental Health Science and Engineering, 12, 38.

    Article  Google Scholar 

  • Al-Qurainy, F., & Abdel-Megeed, A. (2009). Phytoremediation and detoxification of two organophosphorous pesticides residues in Riyadh area. World Applied Sciences Journal, 6(7), 987–998.

    CAS  Google Scholar 

  • Bhat, S. A., Bhatti, S. S., Singh, J., Sambyal, V., Nagpal, A., & Vig, A. P. (2016). Vermiremediation and phytoremediation: Eco approaches for soil stabilization. Austin Environmental Sciences, 1(2), 1006.

    Google Scholar 

  • Biswas, K., Paul, D., & Sinha, S. N. (2015). Biological agents of bioremediation: A concise review. Frontiers Environmental Microbiology, 1, 39–43.

    Google Scholar 

  • Briceno, G., Schalchli, H., Rubilar, O., Tortella, G. R., Mutis, A., Benimeli, C. S., Palma, G., & Diez, M. C. (2016). Increased diazinon hydrolysis to 2-isopropyl-6-methyl-4-pyrimidinol in liquid medium by as specific Streptomyces mixed culture. Chemosphere, 156, 195–203.

    Article  CAS  Google Scholar 

  • Buyan, C., Janjit, I., and Jae, S.R (2009). Phytoremediation of organophosphorus and organochlorine pesticides by Acorus gramineus. Environmental Engineering Research, 14(4), 226–236.

    Article  Google Scholar 

  • Byrne, F. J., & Toscano, N. C. (2005). Uptake and persistence of imidacloprid in grapevines treated by chemigation. Crop Protection 2006, 25, 831–834.

    Article  Google Scholar 

  • Carter, A. D., & Heather, A. I. J. (1995). Pesticides in groundwater. In G. A. Best & A. D. Ruthven (Eds.), Pesticides – developments, impacts, and controls (pp. 113–123). London: The Royals Society of Chemistry.

    Google Scholar 

  • Cheng, S., Jin, X., Huiping, X., Liping, Z., & Zhenbin, W. (2007). Phytoremediation of triazophos by canna indicalinn. in a hydroponic system. International Journal of Phytoremediation, 9, 453–463.

    Article  CAS  Google Scholar 

  • Chrinside, A. E., Ritter, W. F., & Radosevich, M. (2011). Biodegradation of aged residues of atrazine and alachlor in a mix-load site soil by fungal enzymes. Applied and Environmental Soil Science, 2011, 1–10. https://doi.org/10.1155/2011/658569.

    Article  CAS  Google Scholar 

  • Dosnon-Olette, R., Couderche, M., El Arfaoui, A., Sayen, S., & Eullaffroy, P. (2010). Influence of initial pesticide concentrations and plant population density on dimethomorph toxicity and removal by two duckweed species. Science of the Total Environment, 408(10), 2254–2259.

    Article  CAS  Google Scholar 

  • Dubey, K. K., & Fulekar, M. H. (2013). Investigation of potential rhizospheric isolate forcypermethrin degradation. Biotech, 3, 33–43.

    Google Scholar 

  • Ellegaard-Jensen, L., Knudsen, B. E., Johansen, A., Albers, C. N., Aamand, J., & Rosendahl, S. (2014). Fungal–bacterial consortia increase diuron degradation in water-unsaturated systems. Science of the Total Environment, 466, 699–705.

    Article  Google Scholar 

  • Fuentes, M. S., Raimondo, E. E., Amoroso, M. J., & Benimeli, C. S. (2017). Removal of a mixture of pesticides by a Streptomyces consortium: Influence of different soil systems. Chemosphere, 173, 359–367.

    Article  CAS  Google Scholar 

  • Gent, M. P. N., White, J. C., Parrish, Z., Isleyen, M., Eitzer, B., & Incorvia Mattina, M. J. (2007). Uptake and translocation of p,p′-dichlorodiphenyldichloroethylene supplied in hydroponics solution to Cucurbita. Environmental Toxicology and Chemistry, 26(12), 2467–2475.

    Article  CAS  Google Scholar 

  • Goda, S. K., Elsayed, I. M., Khodair, T. A., El-Sayed, W., & Mohamed, M. E. (2010). Screening for and isolation and identification of malathion-degrading bacteria: Cloning and sequencing agene that potentially encodes the malathion-degrading enzyme, carboxylestrase in soil bacteria. Biodegradation, 21, 903–913.

    Article  CAS  Google Scholar 

  • Guimarães, F. P., Aguiar, R., Karam, D., Oliveira, J. A., Silva, J. A. A., Santos, C. L., Sant’anna-Santos, B. F., & Lizieri-Santos, C. (2011). Potential of macrophytes for removing atrazine from aqueous solution. Planta daninha, 29 (no.spe Viçosa), 1137–1147.

    Google Scholar 

  • Kabra, A. N., Ji, M. K., Choi, J., Kim, J. R., Govindwar, S. P., & Jeon, B. H. (2014). Toxicity of atrazine and itsbioaccumulation and biodegradation in a green microalga, Chlamydomonas mexicana. Environmental Science and Pollution Research, 21, 12270–12278.

    Article  CAS  Google Scholar 

  • Karunya, S. K., & Saranraj, P. (2014). Toxic effects of pesticide pollution and its biological control by microorganisms: A review. Applied Journal of Hygiene, 3, 1–10.

    Google Scholar 

  • Khan, N. U., Bhavya, V., Nazeeb, I., & Paddu, K. S. (2011). Phytoremediation using an indigenous crop plant (wheat): The uptake of methyl parathion and metabolism of p-nitrophenol. Indian Journal of Science and Technology, 4, 1661–1667.

    CAS  Google Scholar 

  • Kharabsheh, H. A., Han, S., Allen, S., & Chao, S. L. (2017). Metabolism of chlorpyrifos by Pseudomonas aeruginosa increases toxicity in adult zebrafish (Danio rerio). International Biodeterioration & Biodegradation, 121, 114–121.

    Article  CAS  Google Scholar 

  • Kong, L., Zhu, S., Zhu, L., Xie, H., Su, K., Yan, T., Wang, J., Wang, J., Wang, F., & Sun, F. (2013). Biodegradation of organochlorine pesticide endosulfan by bacterial strain Alcaligenes faecalisJBW4. Journal of Environmental Sciences, 25, 2257–2264.

    Article  CAS  Google Scholar 

  • Kumar, P. S., Carolin, C. F., & Varjani, S. J. (2018). Pesticides bioremediation. In S. J. Varjani et al. (Eds.), Bioremediation: Applications for environmental protection and management. Energy, environment, and sustainability. Singapore: Springer. https://doi.org/10.1007/978-981-10-7485-1_10.

    Chapter  Google Scholar 

  • Kurade, M. B., Kim, J. R., Govindwar, S. P., & Jeon, B. (2016). Insights into microalgae mediated biodegradation of diazinon by Chlorella vulgaris: Microalgal tolerance to xenobiotic pollutants and metabolism. Algal Research, 20, 126–134.

    Article  Google Scholar 

  • Li, F. B., Li, X. M., Zhou, S. G., Zhuang, L., Cao, F., Huang, D. Y., Xu, W., Liu, T. X., & Feng, C. H. (2010). Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide. Environmental Pollution, 158, 1733–1740.

    Article  CAS  Google Scholar 

  • Li, S., Feng-Ying, Z., Yang, H., & Jian-Cong, N. (2011). Thorough removal of inorganic and organic mercury from aqueous solutions by adsorption on Lemna minor powder. Journal of Hazardous Materials, 186(1), 423–429.

    Article  CAS  Google Scholar 

  • Lin, C., & Lin, K. S. (2007). Photocatalytic oxidation of toxic organohalides with TiO2/UV: The effects of humic substances and organic mixtures. Chemosphere, 66, 1872–1877.

    Article  CAS  Google Scholar 

  • London, L., & Myers, J. E. (1995). General patterns of agricultural chemical usage in the southern regions of South Africa. The South African Journal of Science, 91, 508.

    Google Scholar 

  • Maqbool, Z., Hussain, S., Imran, M., Mahmood, F., Shahzad, T., Ahmed, Z., Azeem, F., & Muzammil, S. (2016). Perspectives of using fungi as bioresource for bioremediation of pesticides in the environment: A critical review. Environmental Science and Pollution Research, 23, 16904–16925.

    Article  Google Scholar 

  • Mattina, M. J. I., Lannucci-Berger, W., Musante, C., & White, J. C. (2003). Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environmental Pollution, 124, 375–378.

    Article  CAS  Google Scholar 

  • Mitton, F. M., Miglioranza, K. S. B., Gonzalez, M., Shimabukuro, V. M., & Monserrat, J. M. (2014). Assessment of tolerance and efficiency of crop species in the phytoremediation of DDT polluted soils. Ecological Engineering, 71, 501–508.

    Article  Google Scholar 

  • Mitton, F. M., Gonzalez, M., Monserrat, J. M., & Miglioranza, K. S. B. (2016). Potential use of edible crops in the phytoremediation of endosulfan residues in soil. Chemosphere, 148, 300–306.

    Article  CAS  Google Scholar 

  • Mohamed, A. T., El-Hussain, A. A., El-Siddig, M. A., & Osman, A. G. (2011). Degradation of oxyfluorfen herbicide by soil microorganism biodegradation of herbicides. Biotechnology, 10, 274–279.

    Article  CAS  Google Scholar 

  • Mohany, M., Badr, G., Refaat, I., & El-Feki, M. (2011). Immunological and histological effects of exposure to imidacloprid insecticide in male albino rats. African Journal of Pharmacy and Pharmacology, 5, 2106–2114.

    Article  CAS  Google Scholar 

  • Moore, M. T., & Locke, M. A. (2012). Phytotoxicity of atrazine, S-metolachlor, and permethrin to Typha latifolia (Linnaeus) germination and seedling growth. Bulletin of Environmental Contamination and Toxicology, 89, 292–295.

    Article  CAS  Google Scholar 

  • Mori, T., Wang, J., Tanaka, Y., Nagai, K., Kawagishi, H., & Hirai, H. (2017). Bioremediation of the neonicotinoid insecticide clothianidin by the white-rot fungus Phanerochaete sordida. Journal of Hazardous Materials, 321, 586–590.

    Article  CAS  Google Scholar 

  • Moschet, C., Wittmer, I., Simovic, J., Junghans, M., Piazzoli, A., Singer, H., Stamm, C., Leu, C., & Hollender, J. (2014). How a complete pesticide screening changes the assessment of surface water quality. Environmental Science & Technology, 48, 5423–5432.

    Article  CAS  Google Scholar 

  • Mukherjee, I., & Kumar, A. (2012). Phytoextraction of endosulfan: A remediation technique. Bulletin of Environmental Contamination and Toxicology, 88, 250–254.

    Article  CAS  Google Scholar 

  • Pan, X., Xu, T., Xu, H., Fang, H., & Yu, Y. (2017). Characterization and genome functional analysis of the DDT-degrading bacterium Ochrobactrum sp. DDT-2. Science of the Total Environment, 592, 593–599.

    Article  CAS  Google Scholar 

  • Paul, D., Pandey, G., Meier, C., van-der-Meer, J. R., & Jain, R. K. (2006). Bacterial community structure of a pesticide-contaminated site and assessment of changes induced in community structure during bioremediation. FEMS Microbiology Ecology, 57, 116–127.

    Article  CAS  Google Scholar 

  • Peng, X., Huang, J., Liu, C., Xiang, Z., Zhou, J., & Zhong, G. (2012). Biodegradation of bensulphuron-methyl by a novel Penicillium pinophilum strain BP-H-02. Journal of Hazardous Materials, 213, 216–221.

    Article  Google Scholar 

  • Plangklang, P., & Reungsang, A. (2010). Bioaugmentation of carbofuran by Burkholderia cepacia pcl 3 in a bioslurry phase sequencing batch reactor. Process Biochemistry, 45(2), 230–238.

    Article  CAS  Google Scholar 

  • Prasertsup, P., & Ariyakanon, N. (2011). Removal of Chlorpyrifos by water lettuce (Pistia stratiotes L.) and duckweed (Lemna minor L.). The International Journal of Phytoremediation, 13(4), 383–395.

    Article  Google Scholar 

  • Prasertsup, P., & Naiyanan, A. (2011). Removal of chlorpyrifos by water lettuce (Pistia stratiotes l.) and duckweed (Lemna minor L.). International Journal of Phytoremediation, 13, 383–395.

    Article  Google Scholar 

  • Priyadarshani, I., Sahu, D., & Rath, B. (2011). Microalgal bioremediation: Current practices and perspectives. Journal of Biochemical Technology, 3, 299–304.

    CAS  Google Scholar 

  • Rachel, O., Michel, C., & Philippe, E. (2009). Phytoremediation of fungicides by aquatic macrophytes: Toxicity and removal rate. Ecotoxicology and Environmental Safety, 72(8), 2096–2101.

    Article  Google Scholar 

  • Rani, K., & Dhania, G. (2014). Bioremediation and biodegradation of pesticide from contaminated soil and water—A noval approach. International Journal of Current Microbiology and Applied Sciences, 3, 23–33.

    Google Scholar 

  • Rani, M., Shanker, U., & Jassal, V. (2017). Recent strategies for removal and degradation of persistent and toxic organochlorine pesticides using nanoparticles: A review. Journal of Environmental Management, 190, 208–222.

    Article  CAS  Google Scholar 

  • Riaz, G., Amtul Bari, T., Shakir, I., Abdullah, Y., Mateen, A., Khan, A. M., Mahfooz, Y., & Baqar, M. (2017). Phytoremediation of organochlorine and pyrethroid pesticides by aquatic macrophytes and algae in freshwater systems. The International Journal of Phytoremediation, 19(10), 894–898.

    Article  CAS  Google Scholar 

  • Rodante, F., Marrosu, G., & Catalani, G. (1992). Thermal-analysis and kinetic-study of decomposition processes of some pesticides. Journal of Thermal Analysis and Calorimetry, 38, 2669–2682.

    Article  CAS  Google Scholar 

  • Roman, M., Wojciech, B., Paweł, C., Łukasz, Ł., & Łukasz, C. (2012). Phytoremediation potential of three wetland plant species toward atrazine in environmentally relevant concentrations. Polish Journal of Environmental Studies, 21(3), 697–702.

    Google Scholar 

  • Romeh, A. A. (2015a). Enhancing agents for phytoremediation of soil contaminated by cyanophos. Ecotoxicology and Environmental Safety, 117, 124–131.

    Article  Google Scholar 

  • Romeh, A. A. (2015b). Evaluation of the phytoremediation potential of three plant species for azoxystrobin-contaminated soil. International Journal for Environmental Science and Technology, 12, 3509–3518.

    Article  CAS  Google Scholar 

  • Romeh, A. A., & Hendawi, M. Y. (2013). Chlorpyrifos insecticide uptake by plantain from polluted water and soil. Environmental Chemistry Letters, 11, 163–170.

    Article  CAS  Google Scholar 

  • Romeh, A. A., & Hendawi, M. Y. (2017). Biochemical interactions between Glycine max L. silicondi-oxide (SiO2) and plant growth-promoting bacteria (PGPR) for improving phytoremediation of soil contaminated with fenamiphos and its degradation products. Pesticide Biochemistry and Physiology, 142, 32–43. https://doi.org/10.1016/j.pestbp.2017.01.001.

    Article  CAS  Google Scholar 

  • Saez, J. M., Alvareza, A., Benimeli, C. S., & Amoroso, M. J. (2014). Enhanced lindane removal from soil slurry by immobilized Streptomyces consortium. International Biodeterioration & Biodegradation, 93, 63–69.

    Article  CAS  Google Scholar 

  • Sahu, O. (2014). Reduction of organic and inorganic pollutant from waste water by algae. International Letters of Natural Sciences, 8, 1–8.

    Article  Google Scholar 

  • Sasmaz, M., Obek, E., & Sasmaz, A. (2017). The accumulation of La, Ce and Y by Lemna minor and Lemna gibba in the Keban gallery water, Elazig Turkey. Water Environment Journal, 13(4), 383–395.

    Google Scholar 

  • Semple, K. T., Ronald, B. C., & Stefan, S. (1999). Biodegradation of aromatic compounds by microalgae. Mini review. FEMS Microbiology Letters, 170, 291–300.

    Article  CAS  Google Scholar 

  • Sharma, P., Chopra, A., Cameotra, S. S., & Suri, C. R. (2010). Efficient biotransformation of herbicide diuron by bacterial strain Micrococcus sp. PS-1. Biodegradation, 21, 979–987.

    Article  CAS  Google Scholar 

  • Singh, B., & Mandal, K. (2013). Environmental impact of pesticides belonging to newer chemistry. In A. K. Dhawan, B. Singh, M. Brar-Bhullar, & R. Arora (Eds.), Integrated pest management (pp. 152–190). Jodhpur: Scientific Publishers.

    Google Scholar 

  • Smith, E., Smith, J., Naidu, R., & Juhasz, A. L. (2004). Desorption of DDT from a contaminated soil using cosolvent and surfactant washing in batch experiments. Water, Air, and Soil Pollution, 151, 71–86.

    Article  CAS  Google Scholar 

  • Somtrakoon, K., Kruatrachue, M., & Lee, H. (2014). Phytoremediation of endosulfansulfate-contaminated soil by single and mixed plant cultivations. Water, Air, and Soil Pollution, 225, 1886.

    Article  Google Scholar 

  • Sun, H., Xu, J., Yang, S., Liu, G., & Dai, S. (2004). Plant uptake of aldicarb from contaminated soil and its enhanced degradation in the rhizosphere. Chemosphere, 54, 569–574.

    Article  CAS  Google Scholar 

  • Suresh, B., Sherkane, P., Kale, S., Eapen, S., & Ravishankar, G. (2005). Uptake and degradation of DDT by hairy root cultures of Cichorium intybus and Brassica juncea. Chemosphere, 61, 1288–1292.

    Article  CAS  Google Scholar 

  • Thengodkar, R. R., & Sivakami, S. (2010). Degradation of Chlorpyrifos by an alkaline phosphatase from the cyanobacterium Spirulina platensis. Biodegradation, 21, 637–644.

    Article  CAS  Google Scholar 

  • Varsha, Y. M., Naga, D. C. H., & Chenna, S. (2011). An emphasis on xenobiotic degradation in environmental cleanup, review article. Journal of Bioremediation & Biodegradation, 4, 1–10.

    Google Scholar 

  • Verardo, E., Atteia, O., & Prommer, H. (2017). Elucidating the fate of a mixed toluene, DHM, methanol, and i-propanol plume during in situ bioremediation. Journal of Contaminant Hydrology, 201, 6–18. https://doi.org/10.1016/j.jconhyd.2017.04.002.

    Article  CAS  Google Scholar 

  • Vijayakumar, S. (2012). Potential applications of cyanobacteria in industrial effluents—A review. Journal of Bioremediation & Biodegradation, 3, 1–6.

    Google Scholar 

  • Villaverde, J., Rubio-Bellido, M., Merchan, F., & Morillo, E. (2017). Bioremediation of diuron contaminated soils by a novel degrading microbial consortium. Journal of Environmental Management, 188, 379–386.

    Article  CAS  Google Scholar 

  • Wang, F. Y., Tong, R. J., Shi, Z. Y., Xu, X. F., & He, X. H. (2011). Inoculations with arbuscular mycorrhizal fungi increase vegetable yields and decrease phoxim concentrations in carrot and green onion and their soils. PLoS One, 6(2), e16949.

    Article  CAS  Google Scholar 

  • Wang, Q., Zhang, W. X., Li, C., & Xiao, B. (2012). Phytoremediation of atrazine by three emergent hydrophytes in a hydroponic system. Water Science and Technology, 66(6), 1282–1288.

    Article  CAS  Google Scholar 

  • Warsaw, A. L., Fernandez, R. T., Kort, D. R., Cregg, B. M., Rowe, B., & Vandervoort, C. (2012). Remediation of metalaxyl, trifluralin, and nitrate from nursery runoff using container-grown woody ornamentals and phytoremediation areas. Ecological Engineering, 47, 254–263.

    Article  Google Scholar 

  • White, J. C., Parrish, Z., Isleyen, M., Gent, M., Iannucci-Berger, W., Eitzer, B., & Mattina, M. (2005). Uptake of weathered p,p′-DDE by plant species effective at accumulating soil elements. Microchemical Journal, 81, 148–155.

    Article  CAS  Google Scholar 

  • Xia, H., & Ma, X. (2006). Phytoremediation of ethion by water hyacinth (Eichhornia crassipes) from water. Bioresource Technology, 97(8), 1050–1054.

    Article  CAS  Google Scholar 

  • Xiao, P., Mori, T., Kamei, I., Kiyota, H., Takagi, K., & Kondo, R. (2011). Novel metabolic pathways of organochlorine pesticides dieldrin and aldrin by the white rot fungi of the genus Phlebia. Chemosphere, 85, 218–224.

    Article  CAS  Google Scholar 

  • Xu, X. J., Sun, J. Q., Nie, Y., & Wu, X. L. (2015). Spirodela polyrhiza stimulates the growth of its endophytes but differentially increases their fenpropathrin-degradation capabilities. Chemosphere, 125, 33–40.

    Article  CAS  Google Scholar 

  • Yu, Y. L., Chen, Y. X., Luo, Y. M., Pan, X. D., He, Y. F., & Wong, M. H. (2003). Rapid degradation of butachlor in wheat rhizosphere soil. Chemosphere, 50, 771–774.

    Article  CAS  Google Scholar 

  • Zhang, S., Qiu, C. B., Zhou, Y., Jin, Z. P., & Yang, H. (2011). Bioaccumulation and degradation of pesticide fluroxypyr are associated with toxic tolerance in green alga Chlamydomonas reinhardtii. Ecotoxicology, 20, 337–347.

    Article  Google Scholar 

  • Zhou, Y., Tigane, T., Li, X., Truu, M., Truu, J., & Mander, U. (2013). Hexachlorobenzene dechlorination in constructed wetland mecocosms. Water Research, 47, 102–110.

    Article  CAS  Google Scholar 

  • Zinovyev, S. S., Shinkova, N. A., Perosa, A., & Tundo, P. (2005). Liquid phase hydrodechlorination of dieldrin and DDT over Pd/C and Raney-Ni. Applied Catalysis B: Environmental, 55, 39–48.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhat, S.A., Qadri, H., Cui, G., Li, F. (2020). Remediation of Pesticides Through Microbial and Phytoremediation Techniques. In: Qadri, H., Bhat, R., Mehmood, M., Dar, G. (eds) Fresh Water Pollution Dynamics and Remediation. Springer, Singapore. https://doi.org/10.1007/978-981-13-8277-2_13

Download citation

Publish with us

Policies and ethics