Skip to main content

Vision-Based Seam Tracking in Robotic Welding: A Review of Recent Research

  • Conference paper
  • First Online:

Part of the book series: Transactions on Intelligent Welding Manufacturing ((TRINWM))

Abstract

Robotic welding is widely used in industrial automation, and weld seam tracking is key to the robotic welding and needs to be solved urgently. Because of high precision and adaptability, vision-based seam tracking has become the most widely used technology in weld seam tracking. Researches on vision-based seam tracking have been conducted by many scholars and progressive results have been obtained. Aimed at key problems of seam tracking, this paper summarizes the relevant research work in recent years, especially the application of active vision and passive vision. This paper focuses on the advantages and defects of these two typical methods and discusses recent outstanding progress on seam tracking techniques. In addition, the possibility of the composite vision method of active vision and passive vision in tracking is also discussed, and development directions of intelligent weld seam tracking technology are prospected.

These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chen SB, Lv N (2014) Research evolution on intelligentized technologies for arc welding process. J Manuf Process 16(1):109–122

    Article  Google Scholar 

  2. Kotera S (2018) Teaching system and teaching method of welding robot. US Patent Application 15/951,862, 25 Oct 2018

    Google Scholar 

  3. Ban K (2018) Programming device and robot control method. US Patent Application 15/948,046, 22 Nov 2018

    Google Scholar 

  4. Zhang W, Dong Z, Liu Z (2017) Present situation and development trend of welding robot. In: 2017 2nd international conference on materials science, machinery and energy engineering (MSMEE 2017). Atlantis Press

    Google Scholar 

  5. Lai R, Lin W, Wu Y (2018) Review of research on the key technologies, application fields and development trends of intelligent robots. In: International conference on intelligent robotics and applications, vol 1. Springer, Cham, pp 449–458

    Chapter  Google Scholar 

  6. Almassri AM, Wan Hasan WZ, Ahmad SA et al (2015) Pressure sensor: state of the art, design, and application for robotic hand. J Sens 1:1–10

    Article  Google Scholar 

  7. Shelyagin V, Zaitsev I, Bernatskyi A, et al (2018) Contactless monitoring of welding processes with computer processing of acoustic emission signals. In: 2018 14th international conference on advanced trends in radio electronics, telecommunications and computer engineering (TCSET), vol 1. IEEE, pp 706–710

    Google Scholar 

  8. Shi Y, Zhang G, Li C, et al (2015) Weld pool oscillation frequency in pulsed gas tungsten arc welding with varying weld penetration. In: 2015 IEEE international conference on automation science and engineering (CASE), vol 1. IEEE, pp 401–406

    Google Scholar 

  9. Le J, Zhang H, Chen X (2017) Right-angle fillet weld tracking by robots based on rotating arc sensors in GMAW. Int J Adv Manuf Technol 93(1–4):605–616

    Article  Google Scholar 

  10. Soares LB, Weis ÁA, Rodrigues RN et al (2017) Seam tracking and welding bead geometry analysis for autonomous welding robot. In: 2017 Latin American robotics symposium (LARS) and 2017 Brazilian symposium on robotics (SBR), vol 1. IEEE, pp 1–6

    Google Scholar 

  11. Shah HNM, Sulaiman M, Shukor AZ et al (2016) Review paper on vision based identification, detection and tracking of weld seams path in welding robot environment. Mod Appl Sci 10(2):83–89

    Article  Google Scholar 

  12. Chen SB (2011) Research evolution on intelligentized technologies for robotic welding at SJTU. In: Robotic welding, intelligence and automation. Springer, Berlin, pp 3–14

    Google Scholar 

  13. Zhong J, Xu Y, Chen H et al (2019) Based on multi-sensor of roughness set model of aluminium alloy pulsed GTAW seam forming control research. In: Transactions on intelligent welding manufacturing, vol 1. Springer, Singapore, pp 39–57

    Chapter  Google Scholar 

  14. Pérez L, Rodríguez Í, Rodríguez N et al (2016) Robot guidance using machine vision techniques in industrial environments: a comparative review. Sensors 16(3):335

    Article  Google Scholar 

  15. Gong Y, Lin Z, Wang J et al (2018) Bringing machine intelligence to welding visual inspection: development of low-cost portable embedded device for welding quality control. Electron Imaging 9:1–4

    Article  Google Scholar 

  16. Tarn TJ, Chen SB (2007) Robotic welding, intelligence and automation. Springer, Berlin

    Book  MATH  Google Scholar 

  17. Fridenfalk M (2003) Development of intelligent robot systems based on sensor control. Univ

    Google Scholar 

  18. Chaki S, Shanmugarajan B, Ghosal S et al (2015) Application of integrated soft computing techniques for optimization of hybrid CO2 laser–MIG welding process. Appl Soft Comput 30:365–374

    Article  Google Scholar 

  19. Dinham M, Fang G (2013) Autonomous weld seam identification and localization using eye-in-hand stereo vision for robotic arc welding. Robot Comput-Integr Manuf 29(5):288–301

    Article  Google Scholar 

  20. Shen H, Lin T, Chen S et al (2010) Real-time seam tracking technology of welding robot with visual sensing. J Intell Rob Syst 59(3–4):283–298

    Article  MATH  Google Scholar 

  21. Du R, Xu Y, Hou Z et al (2019) Strong noise image processing for vision-based seam tracking in robotic gas metal arc welding. Int J Adv Manuf Technol 101(5–8):2135–2149

    Article  Google Scholar 

  22. Xu Y, Lv N, Han Y et al (2016) Research on the key technology of vision sensor in robotic welding. In: 2016 IEEE workshop on advanced robotics and its social impacts (ARSO). IEEE, pp 121–125

    Google Scholar 

  23. Rout A, Deepak B, Biswal BB (2019) Advances in weld seam tracking techniques for robotic welding: a review. Robot Comput-Integr Manuf 56:12–37

    Article  Google Scholar 

  24. Muhammad J, Altun H, Abo-Serie E (2017) Welding seam profiling techniques based on active vision sensing for intelligent robotic welding. Int J Adv Manuf Technol 88(1–4):127–145

    Article  Google Scholar 

  25. Shen H, Wu J, Lin T et al (2008) Arc welding robot system with seam tracking and weld pool control based on passive vision. Int J Adv Manuf Technol 39(7–8):669–678

    Article  Google Scholar 

  26. Chen SB, Zhang Y, Qiu T et al (2003) Robotic welding systems with vision-sensing and self-learning neuron control of arc welding dynamic process. J Intell Rob Syst 36(2):191–208

    Article  Google Scholar 

  27. Ma H, Wei S, Sheng Z et al (2010) Robot welding seam tracking method based on passive vision for thin plate closed-gap butt welding. Int J Adv Manuf Technol 48(9–12):945–953

    Article  Google Scholar 

  28. Ye Z, Fang G, Chen S et al (2013) Passive vision-based seam tracking system for pulse-MAG welding. Int J Adv Manuf Technol 67(9–12):1987–1996

    Article  Google Scholar 

  29. Jin Z, Li H, Zhang C et al (2017) Online welding path detection in automatic tube-to-tubesheet welding using passive vision. Int J Adv Manuf Technol 90(9–12):3075–3084

    Article  Google Scholar 

  30. Xu Y, Fang G, Chen S et al (2014) Real-time image processing for vision-based weld seam tracking in robotic GMAW. Int J Adv Manuf Technol 73(9–12):1413–1425

    Article  Google Scholar 

  31. Xu Y, Yu H, Zhong J et al (2012) Real-time seam tracking control technology during welding robot GTAW process based on passive vision sensor. J Mater Process Technol 212(8):1654–1662

    Article  Google Scholar 

  32. Nele L, Sarno E, Keshari A (2013) An image acquisition system for real-time seam tracking. Int J Adv Manuf Technol 69(9–12):2099–2110

    Article  Google Scholar 

  33. Chen H, Liu K, Xing G et al (2014) A robust visual servo control system for narrow seam double head welding robot. Int J Adv Manuf Technol 71(9–12):1849–1860

    Article  Google Scholar 

  34. Liu J, Fan Z, Olsen S I, et al (2015) A real-time passive vision system for robotic arc welding. In: 2015 IEEE international conference on automation science and engineering (CASE). IEEE, pp 389–394

    Google Scholar 

  35. Lin L, Bingqiang L, Yanbiao Z (2015) Study on seam tracking system based on stripe type laser sensor and welding robot. Chin J Lasers 42(5):1–8

    Google Scholar 

  36. Zou Y, Wang Y, Zhou W et al (2018) Real-time seam tracking control system based on line laser visions. Opt Laser Technol 103:182–192

    Article  Google Scholar 

  37. Zou Y, Chen X, Gong G et al (2018) A seam tracking system based on a laser vision sensor. Measurement 127:489–500

    Article  Google Scholar 

  38. Zhang L, Ke W, Han Z et al (2013) A cross structured light sensor for weld line detection on wall-climbing robot. In: 2013 IEEE international conference on mechatronics and automation. IEEE, pp 1179–1184

    Google Scholar 

  39. Kiddee P, Fang Z, Tan M (2016) An automated weld seam tracking system for thick plate using cross mark structured light. Int J Adv Manuf Technol 87(9–12):3589–3603

    Article  Google Scholar 

  40. Xu P, Xu G, Tang X et al (2008) A visual seam tracking system for robotic arc welding. Int J Adv Manuf Technol 37(1–2):70–75

    Article  Google Scholar 

  41. Xu P, Tang X, Yao S (2008) Application of circular laser vision sensor (CLVS) on welded seam tracking. J Mater Process Technol 205(1–3):404–410

    Article  Google Scholar 

  42. Zhang C, Li H, Jin Z et al (2017) Seam sensing of multi-layer and multi-pass welding based on grid structured laser. Int J Adv Manuf Technol 91(1–4):1103–1110

    Article  Google Scholar 

  43. Soares LB, Weis ÁA, Rodrigues RN et al (2017) Seam tracking and welding bead geometry analysis for autonomous welding robot. In: 2017 Latin American robotics symposium (LARS) and 2017 Brazilian symposium on robotics (SBR). IEEE, pp 1–6

    Google Scholar 

  44. Lü X, Gu D, Wang Y et al (2018) Feature extraction of welding seam image based on laser vision. IEEE Sens J 18(11):4715–4724

    Article  Google Scholar 

  45. Li X, Li X, Ge SS et al (2017) Automatic welding seam tracking and identification. IEEE Trans Ind Electron 64(9):7261–7271

    Article  Google Scholar 

  46. Aviles-Viñas JF, Rios-Cabrera R, Lopez-Juarez I (2016) On-line learning of welding bead geometry in industrial robots. Int J Adv Manuf Technol 83(1–4):217–231

    Article  Google Scholar 

  47. Aviles-Viñas JF, Lopez-Juarez I, Rios-Cabrera R (2015) Acquisition of welding skills in industrial robots. Ind Robot: Int J 42(2):156–166

    Article  Google Scholar 

  48. Zhang L, Xu Y, Du S et al (2018) Point cloud based three-dimensional reconstruction and identification of initial welding position. In: Transactions on intelligent welding manufacturing. Springer, Singapore, pp 61–77

    Chapter  Google Scholar 

  49. Fan J, Jing F, Fang Z et al (2017) Automatic recognition system of welding seam type based on SVM method. Int J Adv Manuf Technol 92(1–4):989–999

    Article  Google Scholar 

  50. Shah HNM, Sulaiman M, Shukor AZ (2017) Autonomous detection and identification of weld seam path shape position. Int J Adv Manuf Technol 92(9–12):3739–3747

    Article  Google Scholar 

  51. Shah HNM, Sulaiman M, Shukor AZ et al (2018) Butt welding joints recognition and location identification by using local thresholding. Robot Comput-Integr Manuf 51:181–188

    Article  Google Scholar 

  52. Zeng J, Chang B, Du D et al (2017) A vision-aided 3D path teaching method before narrow butt joint welding. Sensors 17(5):1099

    Article  Google Scholar 

  53. Dittrich D, Schedewy R, Brenner B et al (2013) Laser-multi-pass-narrow-gap-welding of hot crack sensitive thick aluminum plates. Phys Procedia 41:225–233

    Article  Google Scholar 

  54. Gu WP, Xiong ZY, Wan W (2013) Autonomous seam acquisition and tracking system for multi-pass welding based on vision sensor. Int J Adv Manuf Technol 69(1–4):451–460

    Article  Google Scholar 

  55. He Y, Xu Y, Chen Y et al (2016) Weld seam profile detection and feature point extraction for multi-pass route planning based on visual attention model. Robot Comput-Integr Manuf 37:251–261

    Article  Google Scholar 

  56. He Y, Chen Y, Xu Y et al (2016) Autonomous detection of weld seam profiles via a model of saliency-based visual attention for robotic arc welding. J Intell Rob Syst 81(3–4):395–406

    Article  Google Scholar 

  57. Zeng J, Chang B, Du D et al (2018) A weld position recognition method based on directional and structured light information fusion in multi-layer/multi-pass welding. Sensors 18(1):129

    Article  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the National Natural Science Foundation of China (61973213), and the Shanghai Natural Science Foundation (18ZR1421500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanling Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z., Xu, Y. (2020). Vision-Based Seam Tracking in Robotic Welding: A Review of Recent Research. In: Chen, S., Zhang, Y., Feng, Z. (eds) Transactions on Intelligent Welding Manufacturing. Transactions on Intelligent Welding Manufacturing. Springer, Singapore. https://doi.org/10.1007/978-981-13-8192-8_3

Download citation

Publish with us

Policies and ethics