Skip to main content

Decentralized Charging Coordination of Large-Population PEVs Under a Hierarchical Structure

  • Chapter
  • First Online:
Book cover Decentralized Charging Coordination of Large-scale Plug-in Electric Vehicles in Power Systems

Abstract

Centralized or decentralized charging schedules of large-scale PEVs coordinated by a system operator usually require significant management, computation and communication capabilities on the system. Alternatively in this chapter, it constructs a hierarchical model for the PEV charging coordination problems where a collection of agents are introduced between the system operator and individual vehicles, and proposes an off-line decentralized method for the constructed hierarchical optimization problems. Under the decentralized method, each PEV implements its best behavior with respect to a given local charging price curve set by its agent. Each agent submits the collected aggregated charging behaviors under this agent to the system operator who then updates the electricity generation price and broadcasts it to PEVs via agents. To reimburse the transaction operation costs on agents, the charging price on the PEVs under an agent comprises both the generation price broadcasted from the system operator and the operation price set by this agent. It is shown that, under certain conditions, the proposed dynamical procedure converges to the efficient (or socially optimal) solution. The proposed method under the hierarchical structure presents the advantage of the autonomy of the individual PEVs and the low computation and communication capability requirements on the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Sundstrom, C. Binding, Planning electric-drive vehicle charging under constrained grid conditions. Technical Report (IBM - Zurich, Switzerland, 2010)

    Google Scholar 

  2. K. Clement-Nyns, E. Haesen, J. Driesen, The impact of charging plug-in hybrid electric vehicles on a residential distribution grid. IEEE Trans. Power Syst. 25(1), 371–380 (2010)

    Google Scholar 

  3. R. Hermans, M. Almassalkhi, I.A. Hiskens. Incentive-based coordinated charging control of plug-in electric vehicles at the distribution-transformer level, in American Control Conference (ACC), Montreal, Canada (2012), pp. 264–269

    Google Scholar 

  4. M.D. Galus, G. Andersson, Demand management of grid connected plug-in hybrid electric vehicles (PHEV), in IEEE Energy 2030, Atlanta, Georgia, 17–18 November 2008

    Google Scholar 

  5. Z. Li, Q. Guo, H. Sun, S. Xin, and J. Wang. A new real-time smart-charging method considering expected electric vehicle fleet connections. IEEE Trans. Power Syst., pp(99), 1–2 (2014)

    Google Scholar 

  6. S. Wang, L. Han, D. Wang, M. Shahidehpour, Z. Li, Hierarchical charging management strategy of plug-in hybrid electric vehicles to provide regulation service, in 2012 3rd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies (ISGT Europe) (IEEE, Berlin, 2012), pp. 1–6

    Google Scholar 

  7. W. Qi, Z. Xu, Z.J.M. Shen, Z. Hu, Y. Song, Hierarchical coordinated control of plug-in electric vehicles charging in multifamily dwellings. IEEE Trans. Smart Grid 5(3), 1465–1474 (2014)

    Google Scholar 

  8. W. Yao, J. Zhao, F. Wen, Y. Xue, G. Ledwich, A hierarchical decomposition approach for coordinated dispatch of plug-in electric vehicles. IEEE Trans. Power Syst. 28(3), 2768–2778 (2013)

    Google Scholar 

  9. W. Tang, R. Jain, Hierarchical auction mechanisms for network resource allocation. IEEE J. Sel. Areas Commun. 30(11), 2117–2125 (2012)

    Google Scholar 

  10. F. Kelly, A. Maulloo, D. Tan, Rate control for communication networks: shadow prices, proportional fairness and stability. J. Oper. Res. Soc. 49(3), 237–252 (1998)

    Google Scholar 

  11. Zhong Fan, A distributed demand response algorithm and its application to PHEV charging in smart grids. IEEE Trans. Smart Grid 3(3), 1280–1290 (2012)

    Google Scholar 

  12. S. Bashash, S.J. Moura, J.C. Forman, H.K. Fathy, Plug-in hybrid electric vehicle charge pattern optimization for energy cost and battery longevity. J. Power Sources 196(1), 541–549 (2011)

    Google Scholar 

  13. J. Wang, P. Liu, J. Hicks-Garner, E. Sherman, S. Soukiazian, M. Verbrugge, H. Tataria, J. Musser, P. Finamore, Cycle-life model for graphite-LiFePO\(_4\) cells. J. Power Sources 194(8), 3942–3948 (2011)

    Google Scholar 

  14. K.W.E. Cheng, B.P. Divakar, H. Wu, K. Ding, H.F. Ho, Battery-management system (BMS) and SOC development for electrical vehicles. IEEE Trans. Veh. Technol. 60(1), 76–88 (2011)

    Google Scholar 

  15. S. Boyd, L. Vandenberghe, Convex optimization (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  16. Z. Ma, D.S. Callaway, I.A. Hiskens, Decentralized charging control of large populations of plug-in electric vehicles. IEEE Trans. Control Syst. Technol. 21(1), 67–78 (2013)

    Google Scholar 

  17. L. Gan, U. Topcu, S.H. Low, Optimal decentralized protocol for electric vehicle charging. IEEE Trans. Power Syst. 28(2), 940–951 (2013)

    Google Scholar 

  18. D. Bertsekas, Dynamic Programming and Optimal Control, vol. I (Athena Scientific, Singapore, 1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongjing Ma .

4.6    Appendices

4.6    Appendices

4.1.1 4.6.1    Proof of Lemma 4.1

To solve the optimization problem, a Lagrangian function is defined as follow \(L_{nm}\left( \varvec{u}_n^m;\varvec{\rho }_m\right) \triangleq J_{nm}\left( \varvec{u}_n^m;\varvec{\rho }_m\right) + A_m\left( \Gamma _{nm}-\displaystyle \sum _{t\in \mathscr {T}}\varvec{u}_n^m\right) \), where \(A_m\) is Lagrange multiplier. Since \(J_{nm}\left( \varvec{u}_n^m;\varvec{\rho }_m\right) \) is convex with respect to \(\varvec{u}_n^m\) due to the convexity of \(f_{nm}\), the charging control that minimizes \(J_{nm}\left( \varvec{u}_n^m;\varvec{\rho }_m\right) \), subject to \(\varvec{u}_n^m\in \mathscr {U}_n^m\), must satisfy,

  • (I). \(\displaystyle \frac{\partial {L_{nm}}}{\partial {A}_m} = 0\),

  • (II). \(\displaystyle \frac{\partial {L_{nm}}}{\partial {u_{nt}^m}}\le {0}, u_{nt}^m\ge {0}\), with complementary slackness.

Condition (I) contains the constraint \(\displaystyle \sum _{t\in \mathscr {T}}\left( \varvec{u}_n^m\right) =\Gamma _{nm}\). It can be derived from condition (II) that

$$\begin{aligned} \left[ f_{nm}'\right] ^{-1}\left( u_{nt}^m\right) + \rho _{mt} - A_m \left\{ \begin{array}{ll} = 0, &{} \text {in case}\,\,u_{nt}^m > 0, \\ < 0, &{} { otherwise}, \end{array} \right. \end{aligned}$$

which is equivalent to (4.8).

The dependence of \(u_{nt}^m\left( \varvec{\rho }_{m}, A_m\right) \) on \(A_m\) expressed in (4.8) ensures that, for any fixed \(\varvec{\rho }_{m}\),

  • There exists an \(A_{m-}\) such that for \(A_m \le A_{m-}\), \(\displaystyle \sum _{t\in \mathscr {T}}u_{nt}^m\left( \varvec{\rho }_{m},A_m\right) = 0\).

  • For \(A_m > A_{m-}\), \(\displaystyle \sum _{t\in \mathscr {T}}u_{nt}^m\left( \varvec{\rho }_{m},A_m\right) \) is strictly increasing with \(A_m\), with the relationship continuous, though not smooth. Hence, \(\displaystyle \sum _{t\in \mathscr {T}}u_{nt}^m\left( \varvec{\rho }_{m},A_m\right) \) is invertible over this domain.

Therefore a constraint \(\displaystyle \sum _{t\in \mathscr {T}}u_{nt}^m\left( \varvec{\rho }_{m},A_m\right) = K > 0\) defines a unique \(A_m > A_{m-}\) for each fixed \(\varvec{\rho }_m\), which may be written as \(A_m\left( \varvec{\rho }_m\right) \). The particular value of \(A_m\) that ensures satisfaction of the constraint \(\displaystyle \sum _{t\in \mathscr {T}}u_{nt}^m = \Gamma _{nm}\) shall be denoted by \(A_m^{*}\left( \varvec{\rho }_m\right) \). The resulting control trajectory can be written \(\varvec{u}_n^m\left( \varvec{\rho }_m,A_m^{*}\left( \varvec{\rho }_m\right) \right) = \varvec{u}_n^{m,*}\left( \varvec{\rho }_m\right) \).

Since \(J_{nm}\left( \varvec{u}_n^m;\varvec{\rho }_m\right) \) is convex with respect to \(\varvec{u}_n^m\), the minimizing control defined by (4.8) must be unique.    \(\blacksquare \)

4.1.2 4.6.2    Proof of Lemma 4.2

Recall that \(\varvec{u}_n^{m,*}\left( \varvec{\rho }_m\right) \triangleq \underset{\varvec{u}_n^m\in \,\mathscr {U}_n^m}{\text {argmin}}\left\{ J_{nm}\left( \varvec{u}_n^m;\varvec{\rho }_m\right) \right\} \), it means that \(\varvec{u}_n^{m,*}\left( \varvec{\rho }_m\right) \) represents the charging behavior that minimizes the individual cost function (4.6) with respect to a given price curve \(\varvec{\rho }_m\).

By the same token, \(\varvec{u}_n^{m,*}\left( \widehat{\varvec{\rho }}_m\right) \in \mathscr {U}_n^m\) represents the best response of PEV n with respect to \(\widehat{\varvec{\rho }}_m\), such that \(\varvec{u}_n^{m,*}\left( \widehat{\varvec{\rho }}_m\right) \triangleq \underset{\varvec{u}_n \in \,\mathscr {U}_n}{\text {min}} \, J_{n}^m\left( \varvec{u}_n^m; \widehat{\varvec{\rho }}_m\right) \). Then, by Lemma 4.1, it obtains that \(\varvec{u}_n^{m,*}\left( \varvec{\rho }_m\right) = \varvec{u}_{n}^m\left( \varvec{\rho }_m, A_m\left( \varvec{\rho }_m\right) \right) \) and \(\varvec{u}_n^{m,*}\left( \widehat{\varvec{\rho }}_m\right) = \varvec{u}_{n}^m\left( \widehat{\varvec{\rho }}_m, A_m\left( \widehat{\varvec{\rho }}_m\right) \right) \).

Another behavior \(\varvec{v}_{n}^m\left( \varvec{\rho }_m,\widehat{\varvec{\rho }}_m\right) \) is defined as follow

$$\begin{aligned}&v_{nt}^m\left( \varvec{\rho }_m,\widehat{\varvec{\rho }}_m\right) = \left\{ \begin{array}{ll} u_{nt}^m\left( \widehat{\varvec{\rho }}_m,A_m^{*}\left( \varvec{\rho }_m\right) \right) , &{} \text {in case}\,\,t\in \mathscr {T}, \\ 0, &{} { otherwise} \end{array} \right. \end{aligned}$$
(4.21)

Remark: As specified in (4.21), the charging behavior \(v_{nt}^m\left( \varvec{\rho }_m,\widehat{\varvec{\rho }}_m\right) \) describes an individual charging control satisfying (4.8) with respect to \(\widehat{\varvec{\rho }}_m\) and \(A_m^{*}\left( \varvec{\rho }_m\right) \). There is no guarantee that \(v_{nt}^m\left( \varvec{\rho }_m,\widehat{\varvec{\rho }}_m\right) \) is an admissible charging behavior, such that \(\sum v_{nt}^m\left( \varvec{\rho }_m,\widehat{\varvec{\rho }}_m\right) = \Gamma _{nm}\).

The inequality (4.14) will be testified in (I) and (II) below.

  1. (I)

    It will be show that:

    $$\begin{aligned}&\left| u_{nt}^{m,*}\left( \varvec{\rho }_m\right) - v_{nt}^m\left( \varvec{\rho }_m,\widehat{\varvec{\rho }}_m\right) \right| \nonumber \\ \le&\Big |\left[ f_{nm}'\right] ^{-1}\left( A_m^{*}\left( \varvec{\rho }_m\right) - \rho _{mt}\right) - \left[ f_{nm}'\right] ^{-1}\left( A_m^{*}\left( \varvec{\rho }_m\right) - \widehat{\rho }_{mt}\right) \Big |. \end{aligned}$$
    (4.22)

    Obviously, (4.22) holds for \(t\not \in \mathscr {T}_n^m\), since \(u_{nt}^{m,*}\left( \varvec{\rho }_m\right) = v_{nt}^m\left( \varvec{\rho }_m, \widehat{\varvec{\rho }}_m\right) = 0 \) It is shown that (4.22) holds for all \(t \in \mathscr {T}_n^m\). Note: For notational simplicity, \(\varvec{v}_n^m\equiv \varvec{v}_{n}^m\left( \varvec{\rho }_m,\widehat{\varvec{\rho }}_m\right) \) will be adopted throughout the following proof.

    1. (I.a)

        \(v_{nt}^m = u_{nt}^{m,*} = 0\). It follows immediately that \(v_{nt}^m - u_{nt}^{m,*} =0\)

    2. (I.b)

        \(v_{nt}^m > 0\) and \(u_{nt}^{m,*} = 0\). By (4.8), \(v_{nt}^m > 0\) implies \(\left[ f_{nm}'\right] ^{-1}\left( A_m^{*}\left( \varvec{\rho }_m\right) - \widehat{\rho }_{mt}\right) > 0\), and \(u_{nt}^{m,*} = 0\) implies \(\left[ f_{nm}'\right] ^{-1}\left( A_m^{*}\left( \varvec{\rho }_m\right) - \rho _{mt}\right) \le 0 \). Together these give:

      $$\begin{aligned} 0&< v_{nt}^m - u_{nt}^{m,*}\\&\le \left[ f_{nm}'\right] ^{-1}\left( A_m^{*}\left( \varvec{\rho }_m\right) - \widehat{\rho }_{mt}\right) - \left[ f_{nm}'\right] ^{-1}\left( A^{*}\left( \varvec{\rho }_m\right) - \rho _{mt}\right) . \end{aligned}$$
    3. (I.c)

        \(v_{nt}^m = 0\) and \(u_{nt}^{m,*} > 0\). Similar to (I.b),

      $$\begin{aligned} 0&< u_{nt}^{m,*} - v_{nt}^m\\&\le \left[ f_{nm}'\right] ^{-1}\left( A^{*}\left( \varvec{\rho }_m\right) - \rho _{mt}\right) - \left[ f_{nm}'\right] ^{-1}\left( A^{*}\left( \varvec{\rho }_m\right) - \widehat{\rho }_{mt}\right) . \end{aligned}$$
    4. (I.d)

        \(v_{nt}^m > 0\) and \(u_{nt}^{m,*} > 0\). By (4.8) the following holds:

      $$\begin{aligned}&\left| v_{nt}^m - n_{nt}^{m,*}\right| \\ =&\Big |\min \left\{ \gamma _{nm}, \left[ f_{nm}'\right] ^{-1}\left( A_m^{*}\left( \varvec{\rho }_m\right) - \widehat{\rho }_{mt}\right) \right\} \\&\quad - \min \left\{ \gamma _{nm}, \left[ f_{nm}'\right] ^{-1}\left( A_m^{*}\left( \varvec{\rho }_m\right) - \rho _{mt}\right) \right\} \Big | \\ \le&\Big |\left[ f_{nm}'\right] ^{-1}\left( A_m^{*}\left( \varvec{\rho }_m\right) - \widehat{\rho }_{mt}\right) - \left[ f_{nm}'\right] ^{-1}\left( A_m^{*}\left( \varvec{\rho }_m\right) - \rho _{mt}\right) \Big | \end{aligned}$$
  2. (II)

      The following inequality below will be verified:

    $$\begin{aligned}&\left\| \varvec{u}_n^{m,*}\left( \varvec{\rho }_m\right) - \varvec{u}_n^{m,*}\left( \widehat{\varvec{\rho }}_m\right) \right\| _{1} \le 2 \left\| \varvec{u}_n^{m,*}\left( \varvec{\rho }_m\right) - \varvec{v}_{n}^m\left( \varvec{\rho }_m,\widehat{\varvec{\rho }}_m\right) \right\| _{1}. \end{aligned}$$
    (4.23)

    For notational simplicity, \(\sum \varvec{u}_n^m \equiv \displaystyle \sum _{t\in \mathscr {T}}u_{nt}^m\) is applied in the following (II.a) to (II.c).

    1. (II.a)

      \(\sum \varvec{v}_n^m\ = \sum \varvec{u}_n^{m,*}\left( \varvec{\rho }_m\right) \). This equality ensures \(\varvec{v}_n^m \in \mathscr {U}_n^m\). Also, charging control \(\varvec{v}_n^m\) has the form (4.8) with \(A_m = A_m\left( \varvec{\rho }_m\right) \). Therefor, by Lemma 4.1, \(\varvec{v}_n^m\) is the local optimal control with respect to \(\widehat{\varvec{\rho }}_m\). Hence, \(\varvec{u}_n^{m,*}\left( \widehat{\varvec{\rho }}_m\right) = \varvec{v}_n^m\). It follows that:

      $$\begin{aligned}&\left\| \varvec{u}_n^{m,*}\left( \widehat{\varvec{\rho }}_m\right) - \varvec{u}_n^m\left( \varvec{\rho }_m\right) \right\| _{1} = \left\| \varvec{v}_n^m - \varvec{u}_n^m\left( \varvec{\rho }_m\right) \right\| _{1}\le 2\left\| \varvec{v}_n^m - \varvec{u}_n^m\left( \varvec{\rho }_m\right) \right\| _{1}. \end{aligned}$$
    2. (II.b)

      \(\sum \varvec{v}_n^m <\sum \varvec{u}_n^{m,*}\left( \varvec{\rho }_m\right) \). By (4.1) and the definition of \(\varvec{u}_n^m\left( \widehat{\varvec{\rho }}_m\right) \), \(\sum \varvec{u}_n^m\left( \varvec{\rho }_m\right) = \sum \varvec{u}_n^m\left( \widehat{\varvec{\rho }}_m\right) = \Gamma _{nm}\). Therefor \(\sum \varvec{v}_n^m < \sum \varvec{u}_n^{m,*}\left( \widehat{\varvec{\rho }}_m\right) \), together with (4.8) and the definition of \(\varvec{v}_n^m\) and \(\varvec{u}_n^{m,*}\left( \widehat{\varvec{\rho }}_m\right) \) implies,

      $$\begin{aligned} A_m^{*}\left( \widehat{\varvec{\rho }}_m\right)> A_m^{*}\left( \varvec{\rho }_m\right) , u_{nt}^{m,*}\left( \widehat{\varvec{\rho }}_m\right) > v_{nt}^m, \text { for all } t, \end{aligned}$$

      Hence,

      $$\begin{aligned} 0&\le \left\| \varvec{v}_n^m - \varvec{u}_n^{m,*}\left( \widehat{\varvec{\rho }}_m\right) \right\| _{1}\\&= \sum \varvec{u}_n^{m,*}\left( \widehat{\varvec{\rho }}_m\right) - \sum \varvec{v}_n^m = \sum \varvec{u}_n^{m,*}\left( \varvec{\rho }_m\right) - \sum \varvec{v}_n^m \\&\le \left\| \varvec{v}_n^{m} - \varvec{u}_n^{m,*}\left( \varvec{\rho }_m\right) \right\| _{1} \end{aligned}$$

      where the last inequality is a consequence of the triangle inequality for norms, taking into account that \(\sum (\cdot ) = \Vert \cdot \Vert _{1}\) for all admissible non-negative control trajectories; then:

      $$\begin{aligned}&\left\| \varvec{u}_n^{m,*}\left( \widehat{\varvec{\rho }}_m\right) - \varvec{u}_n^{m,*}\left( \varvec{\rho }_m\right) \right\| _{1} \\ \le&\left\| \varvec{v}_n^{m} - \varvec{u}_n^{m,*}\left( \varvec{\rho }_m\right) \right\| _{1} + \left\| \varvec{v}_n^{m} - \varvec{u}_n^{m,*}\left( \widehat{\varvec{\rho }}_m\right) \right\| _{1} \\ \le&2 \left\| \varvec{v}_n^{m} - \varvec{u}_n^{m,*}\left( \varvec{\rho }_m\right) \right\| _{1} \end{aligned}$$
    3. (II.c)

      \(\sum \varvec{v}_n^m > \sum \varvec{u}_n^{m,*}\left( \varvec{\rho }_m\right) \). A similar argument to (II.b) can be used to show the inequality above holds in this case.

Together with (I) and (II), the conclusion of (4.14) in Lemma 4.2 can be obtained.   \(\blacksquare \)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, Z. (2020). Decentralized Charging Coordination of Large-Population PEVs Under a Hierarchical Structure. In: Decentralized Charging Coordination of Large-scale Plug-in Electric Vehicles in Power Systems. Springer, Singapore. https://doi.org/10.1007/978-981-13-7652-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-7652-8_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-7651-1

  • Online ISBN: 978-981-13-7652-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics