Skip to main content

Using Traditional and Simulation Methods for C and N Cycling Studies with Additional Periods of Human Civilisation: Replicating the Procedures at Regional Levels Advocate

  • Chapter
  • First Online:
  • 1601 Accesses

Abstract

Carbon and nitrogen cycling are two essential processes in soil health and ecosystem stability. Many researchers and scholars have supported these processes as immensely vital for continued life on the planet earth. Not just their cycling but carbon and nitrogen sink are needed in the era of greenhouse gases emissions, associated global warming and climate change. The sinking of nitrogen naturally and through the activities of nitrogen fixers is also a panacea to nitrogen mobility, accumulated losses and constant replenishment with costly and environment-damaging inorganic fertilisers. An English experience may give clue to global action plan on enhancing soil carbon and nitrogen sink for various periods of human civilisation. These periods were grouped into prehistoric, historical and agricultural revolution, post-agricultural revolution, Green Planet and Post Green Planet. Besides, several types of land management were compared with reference to effective and efficient carbon sequestration, namely, grassland under permanent pasture on 5-year ley prior to grazing, grassland under permanent pasture sown with red clover prior to grazing, arable land under barley and deciduous woodland. By the aid of modelling, simulated data was generated for over 8500 years of English agriculture and compared with field data. The study showed that all these land management practices sequester little or no carbon but required integrated approaches. Nevertheless, the practices if continued were found to be sustainable, as serious changes that may require other sustainable options were forecasted over subsequent 25–30 years.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ANOVA:

Analysis of Variance

AR:

Agricultural revolution

ATP:

Adenosine triphosphate

BD:

Bulk density

CEC:

Cation exchange capacity

CHCl3 :

Chloroform

CMC:

Carboxyl methyl cellulose

COOH:

Carboxylic

CPMAS:

Cross polarisation magic angle spinning

Cult:

Cultivation

Cv:

Coefficient of variation

DMSO:

Dimethylsulphoxide

DOC:

Dissolved organic carbon

DOY:

Day of the year

E(df):

Error degree of freedom

ECL:

Chemiluminescence

EF:

Electrostatic factor

EMBRACE:

Earth Model Bias Reduction and Assessing Abrupt Climate Change

ESR:

Electronic spin resonance

Fa:

Aromaticity fraction

FA:

Fulvic acid

FACE:

Free-air carbon dioxide enrichment

FLSD:

Fisher’s least significant difference

FTIR:

Fourier transform infrared spectroscopy

FYM:

Farmyard manure

GP:

Green Planet

GPP:

Gross primary productivity

H+ :

Hydrogen ion

HÁ:

Humic acid

HA:

Prehistoric agriculture

HÁg:

Historic agriculture

HS:

Humic substances

K2S2O8 :

Potassium silicate

K2SO4 :

Potassium sulphate

KCl:

Potassium chloride

KD:

Kilo Dalton

MBC:

Microbial carbon

MRT:

Mean residence time

MUB:

Modified universal buffer

MW:

Molecular weight

N2H2 :

Hydrazine

NMR:

Nuclear magnetic resonance

OD:

Above Datum

OH :

Hydroxyl

OM:

Organic matter

PAR:

Post-agricultural revolution

PD:

Particle density

PGP:

Post Green Planet

PHAg:

Prehistoric agriculture

PNP:

р-Nitrophenyl Phosphate

POM:

Particulate organic matter

R2 :

Coefficient of determination

RPM:

Resistant plant material

Rpm:

Revolution per minute

RQ:

Respiratory quotient

RT:

Research time

Se:

Standard error

SIR:

Substrate-induced respiration

SOC:

Soil organic carbon

SOM:

Soil organic matter

SOMNET:

Soil Organic Matter Network

SON:

Soil organic nitrogen

SWC:

Soil water content

WFPS:

Water-filled pore space

WHC:

Water holding capacity

XAD-8:

Polymethylmethacrylate resin

References

  • Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (1985) In: Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (eds) Humic substances in soil, sediment, and water: geochemistry, isolation, and characterization. John Wiley, New York

    Google Scholar 

  • Alef K (1990) Bestimmung mikrobieller Aktivität und Biomasse in Boden und Kompost. Umweltwiss Schadst Forsch 2(2):76–78

    Article  Google Scholar 

  • Alef K (1995) Soil respiration. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry, 2nd edn. Academic, London, pp 214–219

    Google Scholar 

  • Alef K, Kleiner D (1987) Applicability of arginine ammonification as indicator of microbial activity in different soils. Biol Fertil Soils 5(2):148–151

    Article  CAS  Google Scholar 

  • Alef K, Nannipieri P (1995) Cellulase activity. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic, London, p 345

    Google Scholar 

  • Alef K, Nannipieri P (1998) Methods in applied soil microbiology and biochemistry, 2nd edn. Academic, London

    Google Scholar 

  • Alef K, Beck T, Zelles L, Kleiner D (1988) A comparison of methods to estimate microbial biomass and N-mineralization in agricultural and grassland soils. Soil Biol Biochem 20(4):561–565

    Article  CAS  Google Scholar 

  • Alef K, Nannipieri P, Trazar-Cepeda C (1995) Phosphatase activity. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic, London, pp 335–336

    Google Scholar 

  • Alexander M (1977) Soil microbiology. Wiley, New York

    Google Scholar 

  • Anderson JPE (1982) Soil respiration. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2, chemical and microbiological properties, 2nd edn. American Society of Agronomy, Madison

    Google Scholar 

  • Anderson J, Domsch K (1978a) Mineralization of bacteria and fungi in chloroform-fumigated soils. Soil Biol Biochem 10(3):207–213

    Article  CAS  Google Scholar 

  • Anderson J, Domsch K (1978b) A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol Biochem 10(3):215–221

    Article  CAS  Google Scholar 

  • Anderson JR, Slinger JM (1975) Europium chelate and fluorescent brightener staining of soil propagules and their photomicrographic counting—I. Methods Soil Biol Biochem 7(3):205–209

    Article  Google Scholar 

  • Anderson HA, Stewart M, Miller JD, Hepburn A (1984) Organic nitrogen in soils and associated surface waters. In: Wilson WS (ed) Advances in soil organic matter research: the impact on agriculture and environment. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Appelqvist IAM (1990) The binding of Cu [Superior] 2 [plus] and AI [superior] 3 [plus] ions by a high molecular weight humic acid fraction using continuous flow stirred cell-flow injection analysis. University of Birmingham, Birmingham

    Google Scholar 

  • Babiuk L, Paul EA (1970) The use of fluorescein isothiocyanate in the determination of the bacterial biomass of grassland soil. Can J Microbiol 16(2):57–62

    Article  CAS  Google Scholar 

  • Ball A, Milne E, Drake B (2000) Elevated atmospheric-carbon dioxide concentration increases soil respiration in a mid-successional lowland forest. Soil Biol Biochem 32(5):721–723

    Article  CAS  Google Scholar 

  • Batterman SA, Hedin LO, Van Breugel M, Ransijn J, Craven DJ, Hall JS (2013) Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502(7470):224

    Article  CAS  Google Scholar 

  • Beck T (1973) Uber die Eignung von Modellversuchen bei der Messung der biologischen Aktivitat von Boden. Bayer Landw Jb 50:270–288

    Google Scholar 

  • Benefield C (1971) A rapid method for measuring cellulase activity in soils. Soil Biol Biochem 3(4):325–329

    Article  CAS  Google Scholar 

  • Benjamin MM, Honeyman BD (1992) Trace metals. In: Butcher SS, Charlson RJ, Orans G, Wolfe GV (eds) Global biogeochemical cycles. Academic Press, New York, pp 318–352

    Google Scholar 

  • Birch J, Melville M (1969) An electrolytic respirometer for measuring oxygen uptake in soils. Eur J Soil Sci 20(1):101–110

    Article  CAS  Google Scholar 

  • Bremner JM, Mulvaney RL (1978) Urease activity in soils. In: Burns RG (ed) Soil enzymes. Academic, New York, pp 149–196

    Google Scholar 

  • Briggs DJ, Courtney FM (1985) Agriculture and environment: the physical geography of temperate agriculture systems. Longman Group Ltd., London

    Google Scholar 

  • Brookes PD, Paul EA (1987) A new automated technique for measuring respiration in soil samples. Plant Soil 101(2):183–187

    Article  Google Scholar 

  • Brookes P, Landman A, Pruden G, Jenkinson D (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17(6):837–842

    Article  CAS  Google Scholar 

  • Brumme R, Beese F (1995) Automated monitoring of biological trace gas production and consumption. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic, London, pp 468–472

    Google Scholar 

  • Burns RG (1978) Enzyme activity in soil: some theoretical and practical considerations. In: Burn RG (ed) Soil enzymes. Academic, London, pp 73–75

    Google Scholar 

  • Burns RG (1982) Enzyme activity in soil: location and a possible role in microbial ecology. Soil Biol Biochem 14(5):423–427

    Article  CAS  Google Scholar 

  • Burns RJ (1986) Interaction of enzymes with soil mineral and organic colloids. In: Huang PM, Schnitzer M (eds) Interactions of soil minerals with natural organics and microbes, SSSA Special Publication 17. SSSA, Madison, pp 429–452

    Google Scholar 

  • Burns RG, Pukite A, McLaren A (1972) Concerning the location and persistence of soil urease 1. Soil Sci Soc Am J 36(2):308–311

    Article  CAS  Google Scholar 

  • Cannell MGR, Milne R, Dewar RC, Howard PJA (1994) Carbon pools and sinks in British vegetation and soils. NERL Annual Report

    Google Scholar 

  • Cantor L (1987) The changing English countryside (1400–1700). Routledge and Kegan Paul Ltd, London

    Google Scholar 

  • Carlisle SM, Trevors JT (1986) Effect of the herbicide glyphosate on respiration and hydrogen consumption in soil. Water Air Soil Pollut 27(3–4):391–401

    Article  CAS  Google Scholar 

  • Chambers JD, Mingay GE (1966) The agricultural revolution 1750–1880. Batsford, London

    Google Scholar 

  • Chaussod R, Nicolardot (1982) Mesure de la biomasse microbienne dans les sols cultivés. I Approche cinétique et estimation simplifiée du carbone facilement minéralisable. Rev Ecol Biol Sol 19:501–512

    Google Scholar 

  • Chen Y, Senesi N, Schnitzer M (1977) Information provided on humic substances by E4/E6 ratios 1. Soil Sci Soc Am J 41(2):352–358

    Article  CAS  Google Scholar 

  • Cheng W, Coleman DC (1989) A simple method for measuring CO2 in a continuous air-flow system: modifications to the substrate-induced respiration technique. Soil Biol Biochem 21(3):385–388

    Article  Google Scholar 

  • Chhonkar P, Tarafdar J (1981) Characteristics and location of phosphatases in soil-plant system. J Indian Soc Soil Sci 29(2):215–219

    CAS  Google Scholar 

  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M (2014) Carbon and other biogeochemical cycles. In: Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 465–570

    Google Scholar 

  • Clark FE, Kemper W (1967) Microbial activity in relation to soil water and soil aeration. Irrig Agric Lands 11:472–480

    Google Scholar 

  • Clarke A, Stone BJ (1965) Properties of a β-(1→ 4)-glucan hydrolase from Aspergillus niger. Biochem J 96(3):802

    Article  CAS  Google Scholar 

  • Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis SS, Latty EF, Von Fischer JC, Elseroad AJ (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Glob Biogeochem Cycles 13(2):623–645

    Article  CAS  Google Scholar 

  • Coleman K, Jenkinson DS (2005) ROTHC-26.3 A model for the turnover of carbon in soil-Model description and windows users guide, November 1999 issue (modified April 2005). Rothamsted Research, Harpenden

    Google Scholar 

  • Compton JE, Boone RD (2000) Long-term impacts of agriculture on soil carbon and nitrogen in New England forests. Ecology 81(8):2314–2330

    Article  Google Scholar 

  • Compton JE, Boone RD, Motzkin G, Foster DR (1998) Soil carbon and nitrogen in a pine-oak sand plain in central Massachusetts: role of vegetation and land-use history. Oecologia 116(4):536–542

    Article  Google Scholar 

  • Curci M, Pizzigallo M, Crecchio C, Mininni R, Ruggiero P (1997) Effects of conventional tillage on biochemical properties of soils. Biol Fertil Soils 25(1):1–6

    Article  CAS  Google Scholar 

  • Datta R, Anand S, Moulick A, Baraniya D, Pathan SI, Rejsek K, Vranova V, Sharma M, Sharma D, Kelkar A (2017) How enzymes are adsorbed on soil solid phase and factors limiting its activity: a review. Int Agrophys 31(2):287–302

    Article  CAS  Google Scholar 

  • Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena R, Formanek P (2017a) Enzymatic degradation of lignin in soil: a review. Sustainability 9(7):1163

    Article  CAS  Google Scholar 

  • Datta R, Baraniya D, Wang Y-F, Kelkar A, Meena RS, Yadav GS, Teresa Ceccherini M, Formanek P (2017b) Amino acid: its dual role as nutrient and scavenger of free radicals in soil. Sustainability 9(8):1402

    Article  CAS  Google Scholar 

  • Davis B, Walter B, Ball N, Fitter A (1992) The soil: the new naturalistic survey of British natural history. Harper Collins, London

    Google Scholar 

  • DeNobilli M, Gjessing E, Sequi P (1989) In: Hayes MHB, MacCarthy P, Malcolm RL, Swift RS (eds) Humic substances II. In search of structure. Wiley, Chichester, p 561

    Google Scholar 

  • Dent JM, Russell EJ (1966) A history of agricultural science in Great Britain. George Allen and Unwin, London

    Google Scholar 

  • Dick W, Juma N, Tabatabai M (1983) Effects of soils on acid phosphatase and inorganic pyrophosphatase of corn roots. Soil Sci 136(1):19–25

    Article  CAS  Google Scholar 

  • Domsch KH (1962) Bodenatmung, Sammelbericht über Methoden und Ergebnisse. Zbl Bakt Abt II 116:33–78

    Google Scholar 

  • Domsch KH, Schroder M (1986) Einfluβ einiger Herbizide auf den Mikrobiellen Biomasse-Kohlenstoff und den Mineralstickstoffgehalt des Bodens. In: DFG-Forschungsbericht Herbizide 11. VCH verlagsgesellschaft mbH, Weinheim

    Google Scholar 

  • Domsch K, Beck T, Anderson J, Söderström B, Parkinson D, Trolldenier GJ (1979) A comparison of methods for soil microbial population and biomass studies. Z Pflanzenernähr Bodenkd 142(3):520–533

    Article  CAS  Google Scholar 

  • Douglas L, Bremner J (1970) Extraction and colorimetric determination of urea in soils 1. Proc Soil Sci Soc Am J 34(6):859–862

    Article  CAS  Google Scholar 

  • Durán J, Morse JL, Rodríguez A, Campbell JL, Christenson LM, Driscoll CT, Fahey TJ, Fisk MC, Mitchell MJ, Templer PH (2017) Differential sensitivity to climate change of C and N cycling processes across soil horizons in a northern hardwood forest. Soil Biol Biochem 107:77–84

    Article  CAS  Google Scholar 

  • Eivazi F, Tabatabai MJ (1977) Phosphatases in soils. Soil Biol Biochem 9(3):167–172

    Article  CAS  Google Scholar 

  • Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, Pöschl U (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 5(7):459

    Article  CAS  Google Scholar 

  • Elliott E, Cambardella CA (1991) Physical separation of soil organic matter. Agric Ecosyst Environ 34(1–4):407–419

    Article  Google Scholar 

  • Enders C, Tschapek M, Glane R, Kolloid Z (1948) Concepts of the origins, composition and structure of humic substances. In: Wilson WS (ed) Advances in soil organic matter: the impact on agriculture and environment. Royal Society of Chemistry, Cambridge, pp 3–5

    Google Scholar 

  • Eriksson KE, Wood TM (1985) Biodegradation of cellulose. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic, London, pp 469–503

    Chapter  Google Scholar 

  • Europe’s Environment (EE) (1993) The Dobris assessment. Prepared by the European Environmental Agency Force. HMSO, London

    Google Scholar 

  • Falkowski PG (1994) The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosynth Res 39(3):235–258

    Article  CAS  Google Scholar 

  • Falkowski PG, Barber RT, Smetacek VJ (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281(5374):200–206

    Article  CAS  Google Scholar 

  • Falkowski P, Scholes R, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder SJ (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science 290(5490):291–296

    Article  CAS  Google Scholar 

  • FAO (2000) Carbon sequestration options under the clean development mechanism address land degradation. World resources reports. Rome, FAO

    Google Scholar 

  • Farage P, Pretty J, Ball A (2005) Carbon sequestration in tropical dryland agroecosystems. Carbon sequestration in dryland tropics modelling report. Centre for Environment and Society/Department of Biological Sciences, University of Essex, Essex

    Google Scholar 

  • Finzi AC, Abramoff RZ, Spiller KS, Brzostek ER, Darby BA, Kramer MA, Phillips RP (2015) Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Glob Chang Biol 21(5):2082–2094

    Article  Google Scholar 

  • Flaig W (1988) Humic substances and their role in the environment. Wiley, Chichester

    Google Scholar 

  • Florkin M, Stotz E (1964) Report of the Enzyme Commission of the International Union of Biochemistry. International Union of Biochemistry, Amsterdam

    Google Scholar 

  • Foereid B, de Neergaard A, Høgh-Jensen H (2004) Turnover of organic matter in a Miscanthus field: effect of time in Miscanthus cultivation and inorganic nitrogen supply. Soil Biol Biochem 36(7):1075–1085

    Article  CAS  Google Scholar 

  • Fowler PJ (1983) The farming of prehistoric Britain. Cambridge University Press, Cambridge

    Google Scholar 

  • Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, Reis S, Sheppard LJ, Jenkins A, Grizzetti B, Galloway JN (2013) The global nitrogen cycle in the twenty-first century. Philos Trans R Soc Lond Ser B Biol Sci 368(1621):20130164

    Article  CAS  Google Scholar 

  • Frankenberger W Jr, Johanson J (1986) Use of plasmolytic agents and antiseptics in soil enzyme assays. Soil Biol Biochem 18(2):209–213

    Article  CAS  Google Scholar 

  • Franklin O, Johansson J, Dewar RC, Dieckmann U, McMurtrie RE, Brännström Å, Dybzinski R (2012) Modeling carbon allocation in trees: a search for principles. Tree Physiol 32(6):648–666

    Article  CAS  Google Scholar 

  • Franklin O, Näsholm T, Högberg P, Högberg MN (2014) Forests trapped in nitrogen limitation–an ecological market perspective on ectomycorrhizal symbiosis. New Phytol 203(2):657–666

    Article  CAS  Google Scholar 

  • Franzluebbers K, Franzluebbers A, Jawson M (2002) Environmental controls on soil and whole-ecosystem respiration from a tallgrass prairie. Soil Sci Soc Am J 66(1):254–262

    Article  CAS  Google Scholar 

  • Gabrielle B, Mary B, Roche R, Smith P, Gosse G (2002) Simulation of carbon and nitrogen dynamics in arable soils: a comparison of approaches. Eur J Agron 18(1–2):107–120

    Article  CAS  Google Scholar 

  • Gosewinkel U, Broadbent FE (1984) Conductimetric determination of soil urease activity. Commun Soil Sci Plant Anal 15(11):1377–1389

    Article  CAS  Google Scholar 

  • Gottschalk G, Andressen JR, Hippe H (1981) In: Starr MP, Stolp H, Truper HG, Balows A, Schlegel HG (eds) The prokaryote, vol II. Springer, Berlin, pp 1767–1803

    Google Scholar 

  • Gray TRG, Williams ST (1977) Soil micro-organisms. Longman, London

    Google Scholar 

  • Grenville A, Grant A (1988) The countryside of medieval England. Basil Blackwell Ltd, Oxford

    Google Scholar 

  • Hart P (1984) Effects of soil type and past cropping on the nitrogen supplying ability of arable soils. University of Reading, Reading

    Google Scholar 

  • Hayano K (1986) Cellulase complex in a tomato field soil: induction, localization and some properties. Soil Biol Biochem 18(2):215–219

    Article  CAS  Google Scholar 

  • Hayes MHB (1985) In: Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (eds) Humic substances in soil, sediment and water. Wiley, New York, p 329

    Google Scholar 

  • Hayes MHB (1991) Concepts of the origins, composition and structure of humic substances. In: Hayes MHB, MacCarthy P, Malcolm RL, Swift RS (eds) Humic substances II. In search of structure. Wiley, New York, p 3

    Google Scholar 

  • Hayes MH, Swift RJ (1978) The chemistry of soil organic colloids. Wiley, New York, pp 179–320

    Google Scholar 

  • Hayes M, Swift R, Wardle R, Brown J (1975) Humic materials from an organic soil: a comparison of extractants and of properties of extracts. Geoderma 13(3):231–245

    Article  CAS  Google Scholar 

  • Heinemeyer O, Insam H, Kaiser E, Walenzik G (1989) Soil microbial biomass and respiration measurements: an automated technique based on infra-red gas analysis. Plant Soil 116(2):191–195

    Article  Google Scholar 

  • Hoffman E, Schmidt WJBZ (1953) Uber das Enzymsystem unserer Kulturboden. 2 Urease. Biochem Z 324(2):125–127

    Google Scholar 

  • Holderness BA, Turner M (1991) Land, labour and agriculture (1700–1920). Hambledon Press, London

    Google Scholar 

  • Holland EA, Parton WJ, Detling JK, Coppock DLJT (1992) Physiological responses of plant populations to herbivory and their consequences for ecosystem nutrient flow. Am Nat 140(4):685–706

    Article  CAS  Google Scholar 

  • Hope C, Burns RG (1987) Activity, origins and location of cellulases in a silt loam soil. Biol Fertil Soils 5(2):164–170

    Article  CAS  Google Scholar 

  • Houghton RA, Hackler JL, Daniels RC (1995) Continental scale estimates of the biotic carbon flux from land cover change: 1850–1980, Rep. ORNL/. CDIAC-79 NDP-050, R. C. Daniels. Oak Ridge Natl. Lab, Oak Ridge

    Google Scholar 

  • Hungate BA, Dukes JS, Shaw MR, Luo Y, Field CB (2003) Nitrogen and climate change. Science 302(5650):1512–1513

    Article  CAS  Google Scholar 

  • Hunt HW (1977) A simulation model for decomposition in grasslands. Ecology 58(3):469–484

    Article  CAS  Google Scholar 

  • Igboji PO (2006) The effects of land management on the biological properties of East Anglian agricultural soils. University of Essex, Essex

    Google Scholar 

  • Igboji PO, Pretty JN, Ball AS (2015) Effect of park grassland management on C-fluxes in temperate ecosystem. Elixir Int J Elixir Agric 82:2415–2434

    Google Scholar 

  • Imbert M, Blondeau RJ (1998) On the iron requirement of lactobacilli grown in chemically defined medium. Curr Microbiol 37(1):64–66

    Article  CAS  Google Scholar 

  • Inubushi K, Wada H, Takai YJ (1984) Determination of microbial biomass-nitrogen in submerged soil. Soil Sci Plant Nutr 30(3):455–459

    Article  Google Scholar 

  • Isbister J, Shippen R, Caplan JJ (1980) A new method for monitoring cellulose and starch degradation in soils. Bull Environ Contam Toxicol 24(1):570–574

    Article  CAS  Google Scholar 

  • Isermeyer H (1952) Eine einfache Methode zur Bestimmung der Bodenatmung und der Karbonate im Boden. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde 56(1–3):26–38

    Article  CAS  Google Scholar 

  • Jaggi W (1976) Die Bestimmung der CO_2-Bildung als Maβ der bodenbiologischen Aktivitat. Schweiz Landwirtch Forsch 15(314):317–380

    Google Scholar 

  • Janssens I, Dieleman W, Luyssaert S, Subke J-A, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci GJ (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nat Geosci 3(5):315

    Article  CAS  Google Scholar 

  • Jenkinson D (1988) Determination of microbial biomass carbon and nitrogen in soil. CAB International, Wallingford, pp 368–386

    Google Scholar 

  • Jenkinson D (1991) The Rothamsted long-term experiments: are they still of use? Agron J 83(1):2–10

    Article  Google Scholar 

  • Jenkinson D, Rayner JJ (1977) The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci 123(5):298–305

    Article  CAS  Google Scholar 

  • Joergensen R, Brookes P, Jenkinson D (1990) Survival of the soil microbial biomass at elevated temperatures. Soil Biol Biochem 22(8):1129–1136

    Article  Google Scholar 

  • Johnson DW, Curtis PS (2001) Effects of forest management on soil C and N storage: meta analysis. For Ecol Manag 140(2–3):227–238

    Article  Google Scholar 

  • Johnson DW, Todd D (1988) Nitrogen fertilization of young yellow poplar and loblolly pine plantations at differing frequencies. Soil Sci Soc Am J 52(5):1468–1477

    Article  Google Scholar 

  • Johnson DW, Todd D, Tolbert VR (2003) Changes in ecosystem carbon and nitrogen in a loblolly pine plantation over the first 18 years. Soil Sci Soc Am J 67(5):1594–1601

    Article  CAS  Google Scholar 

  • Joliff G, Edelman A, Klier A, Rapoport GJ (1989) Inducible secretion of a cellulase from Clostridium thermocellum in Bacillus subtilis. Appl Environ Microbiol 55(11):2739–2744

    CAS  Google Scholar 

  • Kaiser E, Mueller T, Joergensen R, Insam H, Heinemeyer O (1992) Evaluation of methods to estimate the soil microbial biomass and the relationship with soil texture and organic matter. Soil Biol Biochem 24(7):675–683

    Article  CAS  Google Scholar 

  • Kandeler E, Gerber H (1988) Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol Fertil Soils 6(1):68–72

    Article  CAS  Google Scholar 

  • Kieft TL (1987) Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biol Biochem 19(2):119–126

    Article  Google Scholar 

  • Kieft TL, Rosacker LL (1991) Application of respiration-and adenylate-based soil microbiological assays to deep subsurface terrestrial sediments. Soil Biol Biochem 23(6):563–568

    Article  Google Scholar 

  • King AW, Post WM, Wullschleger SD (1997) The potential response of terrestrial carbon storage to changes in climate and atmospheric CO2. Climate Change 35(2):199–227

    Article  CAS  Google Scholar 

  • Kiss S, Dragan-Bularda M, Radulescu D (1978) Soil polysaccharides: activity and agricultural importance. In: Burns RG (ed) Soil enzymes. Academic, New York, pp 117–147

    Google Scholar 

  • Kissel DE, Cabrera ML (1988) Factors affecting urease activity. In: Bock BR, Kissel DE (eds) Ammonia volatilization from urea fertilizers. TVA, National Fertilizer, Muscle Shoals

    Google Scholar 

  • Knoepp JD, Swank WT (1997) Forest management effects on surface soil carbon and nitrogen. Soil Sci Soc Am J 61(3):928–935

    Article  CAS  Google Scholar 

  • Kononova MJ, Somne PP (1966) Soil organic matter. Pergamon Press, Oxford/New York

    Google Scholar 

  • Körner C (2003) Slow in, rapid out--carbon flux studies and Kyoto targets. Science 300(5623):1242–1243

    Article  Google Scholar 

  • Kowalenko C, Ivarson K (1978) Effect of moisture content, temperature and nitrogen fertilization on carbon dioxide evolution from field soils. Soil Biol Biochem 10(5):417–423

    Article  CAS  Google Scholar 

  • Kroeckel L, Stolp H (1986) Influence of the water regime on denitrification and aerobic respiration in soil. Biol Fertil Soils 2(1):15–21

    Article  Google Scholar 

  • Kshattriya S, Sharma G, Mishra R (1992) Enzyme activities related to litter decomposition in forests of different age and altitude in North East India. Soil Biol Biochem 24(3):265–270

    Article  CAS  Google Scholar 

  • Lackner KS (2003) A guide to CO2 sequestration. Science 300(5626):1677–1678

    Article  CAS  Google Scholar 

  • Lal R, Kimble J, Follett R (1998) Management of carbon sequestration in soil. In: Lal R (ed) Land use and soil C pools in terrestrial ecosystems. CRC Press, Boca Raton, pp 1–10

    Google Scholar 

  • Lamothe PJ, McCormick PG (1973) Role of hydrindantin in the determination of amino acids using ninhydrin. Anal Chem 45(11):1906–1911

    Article  CAS  Google Scholar 

  • Larmola T, Leppänen SM, Tuittila E-S, Aarva M, Merilä P, Fritze H, Tiirola M (2014) Methanotrophy induces nitrogen fixation during peatland development. Proc Natl Acad Sci U S A 111(2):734–739

    Article  CAS  Google Scholar 

  • Lee Y-H, Fan L (1980) Properties and mode of action of cellulase. In: Advances in biochemical engineering, vol 17. Springer, New York, pp 101–129

    Google Scholar 

  • Levia DF Jr, Frost E (2003) A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems. J Hydrol 274(1–4):1–29

    Article  CAS  Google Scholar 

  • Lovelock J (1995) New statements on the Gaia theory. Microbiologia 11(3):295–304

    CAS  Google Scholar 

  • Lundgren B (1981) Fluorescein diacetate as a stain of metabolically active bacteria in soil. Oikos 36:17–22

    Article  Google Scholar 

  • Malcolm RL (1989) In: Hayes MHB, MacCarthy P, Malcolm RL, Swift RS (eds) Humic substances II. In search of structure. Wiley, Chichester, p 339

    Google Scholar 

  • Malkomes H-P (1985) Einfluß des Herbizids Dinoseb-acetat und dessen Kombination mit einem Phospholipid auf bodenmikrobiologische Aktivitäten unter Labor-und Gewächshausbedingungen/Influence of the herbicide dinoseb acetate and its combination with a phospholipid on microbial activities in soil under laboratory and field conditions. Z Pflanzenkrankh Pflanz/J Plant Dis Protect 92:489–501

    CAS  Google Scholar 

  • Mann L (1986) Changes in soil carbon storage after cultivation. Soil Sci 142(5):279–288

    Article  CAS  Google Scholar 

  • Martens R (1985) Limitations in the application of the fumigation technique for biomass estimations in amended soils. Soil Biol Biochem 17(1):57–63

    Article  CAS  Google Scholar 

  • Martin J, Haider K, Kassim G (1980) Biodegradation and stabilization after 2 years of specific crop, lignin, and polysaccharide carbons in soils. Congr Int Soc Soil Sci 44(6):1250–1255

    Article  CAS  Google Scholar 

  • McCarty G, Bremner J, Chai H (1989) Effect of N-(n-butyl) thiophosphoric triamide on hydrolysis of urea by plant, microbial, and soil urease. Biol Fertil Soils 8(2):123–127

    Article  CAS  Google Scholar 

  • McGill W, Cole C (1981) Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26(4):267–286

    Article  CAS  Google Scholar 

  • Menge DN, Hedin LO (2009) Nitrogen fixation in different biogeochemical niches along a 120,000-year chronosequence in New Zealand. Ecology 90(8):2190–2201

    Article  Google Scholar 

  • Metherell AK (1992) Simulation of soil organic matter dynamics and nutrient cycling in microbial assimilation of nitrogen. Biol Fertil Soils 12:261–264

    Article  Google Scholar 

  • Metherell AK, Parton WJ, Cambardella CA, Peterson GA, Harding LA, Cole CV (1993) Simulation of soil organic matter dynamics in dryland wheat-fallow cropping systems. In: Proceedings of the international symposium on soil processes and management systems: greenhouse gas emissions and carbon sequestration, Ohio State University, April 5–9

    Google Scholar 

  • Meyerholt J, Zaehle S, Smith MJ (2016) Variability of projected terrestrial biosphere responses to elevated levels of atmospheric CO2 due to uncertainty in biological nitrogen fixation. Biogeosciences 13(5):1491–1518

    Article  CAS  Google Scholar 

  • Moore S, Stein WH (1948) Photometric nin-hydrin method for use in the chromatography of amino acids. J Biol Chem 176:367–388

    CAS  Google Scholar 

  • Moyo C, Kissel D, Cabrera M (1989) Temperature effects on soil urease activity. Soil Biol Biochem 21(7):935–938

    Article  CAS  Google Scholar 

  • Mueller T, Joergensen R, Meyer B (1992) Estimation of soil microbial biomass C in the presence of living roots by fumigation-extraction. Soil Biol Biochem 24(2):179–181

    Article  Google Scholar 

  • Mulvaney R, Bremner J (1979) A modified diacetyl monoxime method for colorimetric determination of urea in soil extracts. Commun Soil Sci Plant Anal 10(8):1163–1170

    Article  CAS  Google Scholar 

  • Nakas JP, Klein DA (1981) Use of an amino acid mixture to estimate the mineralization capacity of grassland soils. Soil Biol Biochem 13:427–428

    Article  CAS  Google Scholar 

  • Nannipieri P (1994) Productivity, sustainability and pollution. In: Parkhurst CE, Double BM, Gupta VV, Grace PR (eds) Soil biota: management in sustainable farming systems. CSIRO, Melbourne, pp 238–244

    Google Scholar 

  • Nannipieri P, Ceccanti B, Cervelli S, Sequi P (1974) Use of 0· 1 m pyrophosphate to extract urease from a podzol. Soil Biol Biochem 6(6):359–362

    Article  CAS  Google Scholar 

  • Nannipieri P, Ceccanti B, Cervelli S (1978) Stability and kinetic properties of humus-urease complexes. Soil Biol Biochem 10(2):143–147

    Article  CAS  Google Scholar 

  • Nannipieri P, Ceccanti B, Bianchi D (1988) Characterization of humus-phosphatase complexes extracted from soil. Soil Biol Biochem 20(5):683–691

    Article  CAS  Google Scholar 

  • Nannipieri P, Grego S, Ceccanti B, Bollag J, Stotzky G (1990) Ecological significance of the biological activity in soil. In: Bollag JM, Stotzky G (eds) Soil biochemistry, vol 6. Marcel Dekker, New York/Basel, pp 293–355

    Google Scholar 

  • Neff JC, Holland EA, Dentener FJ, McDowell WH, Russell KM (2002) The origin, composition and rates of organic nitrogen deposition: a missing piece of the nitrogen cycle? Biogeochemistry 57(1):99–136

    Article  Google Scholar 

  • Newman DK, Banfield JF (2002) Geomicrobiology: how molecular-scale interactions underpin biogeochemical systems. Science 296(5570):1071–1077

    Article  CAS  Google Scholar 

  • Nicks AD (1974) Stochastic generation of the occurrence, pattern, location of maximum amount of daily rainfall. In: Proceedings symposium on statistical hydrology, United States Department of Agriculture Misc, vol 1275, pp 154–171

    Google Scholar 

  • Nip M, Tegelaar E, De Leeuw J, Schenck P, Holloway P (1986) A new non-saponifiable highly aliphatic and resistant biopolymer in plant cuticles. Naturwissenschaften 73(10):579–585

    Article  CAS  Google Scholar 

  • Norman J, Garcia R, Verma SJ (1992) Soil surface CO2 fluxes and the carbon budget of a grassland. J Geophys Res Atmos 97(D17):18845–18853

    Article  Google Scholar 

  • Ogunseitan O (2005) Microbial diversity. Blackwell Publishing Company, Malden

    Google Scholar 

  • Ojima D (2006) Century soil organic matter model version 5. Natural Resource Ecology Laboratory 5, Fort Collins

    Google Scholar 

  • Ojima DS, Parton W, Schimel D, Owensby C (1990) Simulated impacts of annual burning on prairie ecosystems. In: Collins SL, Wallance L (eds) Fire in North American prairies. University of Oklahoma, Norman

    Google Scholar 

  • Parkinson D, Gray TR, Williams ST (1971) Methods for study-ing the ecology of soil micro-organisms. Blackwells, Oxford

    Google Scholar 

  • Parton WJ, Anderson DW, Cole CV, Stewart JWB (1983) Simulation of soil organic matter formation and mineralization in semi-arid agroecosystems. In: Lowrance RR, Todd RL, Asmussen LE, Leonard RA (eds) Nutrient cycling in agricultural ecosystem, Special Publication No 23. The University of Georgia, College of Agriculture Experiment Stations, Athens, pp 553–550

    Google Scholar 

  • Parton W, Schimel DS, Cole C, Ojima D (1987) Analysis of factors controlling soil organic matter levels in Great Plains Grasslands. Soil Sci Soc Am J 51(5):1173–1179

    Article  CAS  Google Scholar 

  • Parton WJ, Metherell AK, Harding LA, Cole CV (1993) CENTURY: Soil organic matter model environment. Technical documentation, agroecosystem version 4.0. Great Plains System Research. USDA-ARS, Fort Collins

    Google Scholar 

  • Paul E, Johnson R (1977) Microscopic counting and adenosine 5′-triphosphate measurement in determining microbial growth in soils. Appl Environ Microbiol 34(3):263–269

    CAS  Google Scholar 

  • Paul E, Collins H, Leavitt S (2001) Dynamics of resistant soil carbon of Midwestern agricultural soils measured by naturally occurring 14C abundance. Geoderma 104(3–4):239–256

    Article  CAS  Google Scholar 

  • Paul E, Morris S, Six J, Paustian K, Gregorich E (2003) Interpretation of soil carbon and nitrogen dynamics in agricultural and afforested soils. Soil Sci Soc Am J 67(5):1620–1628

    Article  CAS  Google Scholar 

  • Perry PJ (1973) British agriculture (1875–1914). Methuen and Co. Ltd, London

    Google Scholar 

  • Phillips RP, Brzostek E, Midgley MG (2013) The mycorrhizal associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytol 199(1):41–51

    Article  CAS  Google Scholar 

  • Pidwimy M (2005) Introduction to the biosphere. In: Fundamaentals of physical geography. University of British Columbia, Okanagan

    Google Scholar 

  • Plentinger M, Penning de Vries F (1995) CAMASE, register of agroecosystems models, version 1. Centre for Agricultural Publishing and Documentation, Wageningen

    Google Scholar 

  • Pochon J, Tardieux P (1962) Techniques d’analyse en microbiologie du sol. Editions de la Tourelle, St Mande

    Google Scholar 

  • Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Chang Biol 6(3):317–327

    Article  Google Scholar 

  • Pretty J (2002) Reconnecting people, land and nature. Earthscan, London

    Google Scholar 

  • Pretty J, Ball A (2001) Agricultural influences on carbon emissions and sequestration: a review of evidence and the emerging trading options. Centre Environ Soc Occ Pap 3:31

    Google Scholar 

  • Pumpanen J, Ilvesniemi H, Hari P (2003) A process-based model for predicting soil carbon dioxide efflux and concentration. Soil Sci Soc Am J 67(2):402–413

    Article  CAS  Google Scholar 

  • Qian Y, Bandaranayake W, Parton W, Mecham B, Harivandi M, Mosier AJ (2003) Long-term effects of clipping and nitrogen management in turfgrass on soil organic carbon and nitrogen dynamics. J Environ Qual 32(5):1694–1700

    Article  CAS  Google Scholar 

  • RCEP (1996) Commission on Environmental Pollution, 1996. Sustainable use of soil. HMSO, Royal Commission on Environmental Pollution (RCEP), London

    Google Scholar 

  • Reed SC, Cleveland CC, Townsend AR (2011) Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annu Rev Ecol Evol Syst 42:489–512

    Article  Google Scholar 

  • Rhee Y, Hah Y, Hong S (1987) Relative contributions of fungi and bacteria to soil carboxymethylcellulase activity. Soil Biol Biochem 19(4):479–481

    Article  CAS  Google Scholar 

  • Richter J (1972) Zur Methodik des Bodengashaushaltes. II. Ergebnisse und Diskussion. Z Pflanzenern Bodenkde 132(3):220–239

    Article  CAS  Google Scholar 

  • Richter DD, Markewitz D, Trumbore SE, Wells CG (1999) Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature 400(6739):56

    Article  CAS  Google Scholar 

  • Rowell DL (1994) Soil science: methods and applications, vol 1. Longman Scientific Ltd, London

    Google Scholar 

  • Ryan MJ (1996) Comparing models of ecosystem function for temperate conifer forests. I. Model description and validation. In: Global change: effects on coniferous forests and grasslands. Wiley, Chichester

    Google Scholar 

  • Sarkar J, Batistic L, Mayaudon J (1980) Les hydrolases du sol et leur association avec les hydrates de carbone. Soil Biol Biochem 12(4):325–328

    Article  CAS  Google Scholar 

  • Sarmiento JL, Gruber N (2002) Sinks for anthropogenic carbon. Phys Today 55(8):30–36

    Article  CAS  Google Scholar 

  • Sato K (1981) Relations between soil microflora and CO 2 evolution upon decomposition of cellulose. Plant Soil 61(1–2):251–258

    Article  CAS  Google Scholar 

  • Schinner F, Von Mersi W (1990) Xylanase-, CM-cellulase-and invertase activity in soil: an improved method. Soil Biol Biochem 22(4):511–515

    Article  CAS  Google Scholar 

  • Schlesinger WH (1977) Carbon balance in terrestrial detritus. Annu Rev Ecol Syst 8(1):51–81

    Article  CAS  Google Scholar 

  • Schlesinger WH (1990) Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature 348(6298):232

    Article  CAS  Google Scholar 

  • Schlesinger W (1991) The global carbon cycle. Wiley, New York

    Google Scholar 

  • Schlosser HJ (1988) Auswertung ökotoxikologischer Forschung zur Belastung von Ökosystemen durch Chemikalien: Bundesministerium für Forschung u. Technologie Förderkennzeichen 03 7393 4. Projektleitung Biologie, Ökologie, Energie (PBE) d. Kernforschungsanlage Jülich

    Google Scholar 

  • Schröder D, Gewehr H (1977) Stroh-und Zelluloseabbau in verschiedenen Bodentypen. Z Pflanzenernähr Bodenk 140(3–4):273–284

    Article  Google Scholar 

  • Schröder D, Urban B (1985) Bodenatmung, Celluloseabbau und Dehydrogenaseaktivität in verschiedenen Böden und ihre Beziehungen zur organischen Substanz sowie Bodeneigenschaften. Forschung 38:166–172

    Google Scholar 

  • Schuffelen AC, Bolt GH (1962) Landbouwk tidjschr. ste Jaargang No 4/5

    Google Scholar 

  • Schuster E (1988) EinfluB von Pflanzenschutzmittel-Spritzfolgen und-Kombinationen auf die mikro-biologische Aktivitat des Bodens. Freiland-und Laborversuche. Dissertations arbeit, Fach Boden-Kunde Universitat Trier

    Google Scholar 

  • Sellers PJ, Dickinson RE, Randall DA, Betts AK, Hall F, Berry G, Senesi N, Steelink C (1989) Humic substances. In: Hessen et al (eds) Humic substances II. In search of structure. Wiley, Chichester, p 372

    Google Scholar 

  • Shen S, Pruden G, Jenkinson D (1984) Mineralization and immobilization of nitrogen in fumigated soil and the measurement of microbial biomass nitrogen. Soil Biol Biochem 16(5):437–444

    Article  CAS  Google Scholar 

  • Simmons IG, Tooley MJ (1981) The environment in British prehistory. Duckworth, London

    Google Scholar 

  • Sinsabaugh R, Linkins A (1988) Adsorption of cellulase components by leaf litter. Soil Biol Biochem 20(6):927–931

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Linkins A (1989) Ellulase mobility in decomposing leaf litter. Soil Biol Biochem 21(2):205–209

    Article  CAS  Google Scholar 

  • Skujiņš J (1978) History of abiotic soil enzyme research. In: Burns RG (ed) Soil enzymes. Academic, London, pp 1–49

    Google Scholar 

  • Skujiņš J, McLaren A (1969) Assay of urease activity using 14C-urea in stored, geologically preserved, and in irradiated soils. Soil Biol Biochem 1(1):89–99

    Article  Google Scholar 

  • Smith J, Paul E, Bollag J, Stotzky G (1990) The significance of soil microbial biomass estimations. In: Bollag J-M, Stotzky G (eds) Soil biochemistry, vol 6. Marcel Dekker, New York, pp 357–396

    Google Scholar 

  • Smith P, Smith JU, Powlson DS (1996) Soil organic matter network (SOMNET): model and experimental metadata. GCTE Task 3.3.1. Global Change and Terrestrial Ecosystems Rep. No 7, Wallingford

    Google Scholar 

  • Smith P, Smith J, Powlson D, McGill W, Arah J, Chertov O, Coleman K, Franko U, Frolking S, Jenkinson D (1997) A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81(1–2):153–225

    Article  Google Scholar 

  • Söderström B (1977) Vital staining of fungi in pure cultures and in soil with fluorescein diacetate. Soil Biol Biochem 9(1):59–63

    Article  Google Scholar 

  • Sollins P, Glassman C, Paul E, Swanston C, Lajtha K, Heil J (1999) Soil carbon and nitrogen. Elliott Management Corporation, New York, pp 89–105

    Google Scholar 

  • Somerville L, Greaves MP (1987) In: Somerville L, Greaves MP (eds) Pesticide effects on soil microflora. Taylor and Francis, London/New York

    Google Scholar 

  • Sowerby A, Blum H, Gray TR, Ball AS (2000) The decomposition of Lolium perenne in soils exposed to elevated CO2: comparisons of mass loss of litter with soil respiration and soil microbial biomass. Soil Biol Biochem 32(10):1359–1366

    Article  CAS  Google Scholar 

  • Sparling G (1981a) Heat output of the soil biomass. Soil Biol Biochem 13(5):373–376

    Article  CAS  Google Scholar 

  • Sparling G (1981b) Microcalorimetry and other methods to assess biomass and activity in soil. Soil Biol Biochem 13(2):93–98

    Article  CAS  Google Scholar 

  • Sparling G, West A (1990) A comparison of gas chromatography and differential respirometer methods to measure soil respiration and to estimate the soil microbial biomass. Pedobiologia 34(2):103–112

    CAS  Google Scholar 

  • Speir T, Ross D (1978) Soil phosphatase and sulphatase. Soil Enzymes 203:197–250

    Google Scholar 

  • Speir T, Ross D (1981) A comparison of the effects of air-drying and acetone dehydration on soil enzyme activities. Soil Biol Biochem 13(3):225–229

    Article  CAS  Google Scholar 

  • Steelink C, Wershaw RL, Thorn KA, Wilson MA (1989) In: Hayes MHB, MacCarthy P, Malcolm RL, Swift RS (eds) Humic substances II: In search of structure. Wiley, Chichester, p 281

    Google Scholar 

  • Stocker BD, Prentice IC, Cornell SE, Davies-Barnard T, Finzi AC, Franklin O, Janssens I, Larmola T, Manzoni S, Näsholm T (2016) Terrestrial nitrogen cycling in Earth system models revisited. New Phytol 210(4):1165–1168

    Article  Google Scholar 

  • Stotzky G (1965) Microbial respiration. In: Methods of soil analysis. Part 2, Agronomy Monograph 9. UFRGS, Porto Alegre, pp 1550–1572

    Google Scholar 

  • Stutzenberger FJ (1972) Cellulolytic activity of Thermomonospora curvata: optimal assay conditions, partial purification, and product of the cellulase. Appl Microbiol 24(1):83–90

    CAS  Google Scholar 

  • Sullivan BW, Smith WK, Townsend AR, Nasto MK, Reed SC, Chazdon RL, Cleveland CC (2014) Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle. Proc Natl Acad Sci 111:8101

    Article  CAS  Google Scholar 

  • Suttner T, Alef K (1988) Correlation between the arginine ammonification, enzyme activities, microbial biomass, physical and chemical properties of different soils. Zentralbl Mikrobiol 143(8):569–573

    Article  CAS  Google Scholar 

  • Swift RS (1985) Fractionation of soil humic substances. In: Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (eds) Humic substances in soil, sediment and water: geochemistry, isolation and characterisation. Wiley, New York, pp 387–408

    Google Scholar 

  • Swift RS (1989) In: Hayes MHB, MacCarthy P, Malcolm RL, Swift RS (eds) Humic substances II. In search of structure. Wiley, Chichester, p 467

    Google Scholar 

  • Tabatabai M, Bremner J (1972) Assay of urease activity in soils. Soil Biol Biochem 4(4):479–487

    Article  CAS  Google Scholar 

  • Tarafdar J, Jungk A (1987) Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biol Fertil Soils 3(4):199–204

    Article  CAS  Google Scholar 

  • Tateno M (1988) Limitations of available substrates for the expression of cellulase and protease activities in soil. Soil Biol Biochem 20:117–118

    Article  CAS  Google Scholar 

  • Thalmann A (1968) Zur Methodik der Bestimmung der DehydrogenaseaktivitAt im Boden mittels triphenytetrazoliumchlorid (TTC). Landwirtsch Forsch 21:249–258

    CAS  Google Scholar 

  • Thirsk J (1991) The agrarian history of England and Wales, vol 111. Cambridge University Press, New York

    Google Scholar 

  • Thirsk J (2000) The agrarian history of England and Wales (1850–1914), vol VII. Cambridge University Press, New York

    Google Scholar 

  • Torsvik VL, Goksoyr J (1978) Determination of bacterial DNA in soil. Soil Biol Biochem 10(1):7–12

    Article  Google Scholar 

  • Trasar-Cepeda MC, Gil-Sotres F (1987) Phosphatase activity in acid high organic matter soils in Galicia (NW Spain). Soil Biol Biochem 19(3):281–287

    Article  CAS  Google Scholar 

  • Trasar-Cepeda MC, Gil-Sotres F (1988) Kinetics of acid phosphatase activity in various soils of Galicia (NW Spain). Soil Biol Biochem 20(3):275–280

    Article  CAS  Google Scholar 

  • Trevors JT (1985) Oxygen consumption in soil: effect of assay volume. Soil Biol Biochem 17:385–386

    Article  CAS  Google Scholar 

  • Trolldenier G (1973) The use of fluorescence microscopy for counting soil microorganisms. Bull Ecol Res Commun (Stockholm) 17:53–59

    Google Scholar 

  • Turner J, Lambert M (2000) Change in organic carbon in forest plantation soils in eastern Australia. For Ecol Manag 133(3):231–247

    Article  Google Scholar 

  • Van de Werf H, Verstraete W (1987) Estimation of active soil microbial biomass by mathematical analysis of respiration curves: development and verification of the model. Soil Biol Biochem 19(3):253–260

    Article  Google Scholar 

  • Van de Werf H, Genouw G, Van Vooren L, Verstraete W (1995) The determination of active microbial biomass by the respiration simulation method of Chapter 8 ‘Microbial biomass’. In: Alef K, Nannipieri P (eds) Methods in applied soil and biochemistry. Academic Press Ltd., London, pp 405–408

    Google Scholar 

  • Vance E, Brookes P, Jenkinson D (1987a) Microbial biomass measurements in forest soils: determination of kc values and tests of hypotheses to explain the failure of the chloroform fumigation-incubation method in acid soils. Soil Biol Biochem 19(6):689–696

    Article  Google Scholar 

  • Vance E, Brookes P, Jenkinson D (1987b) Microbial biomass measurements in forest soils: the use of the chloroform fumigation-incubation method in strongly acid soils. Soil Biol Biochem 19(6):697–702

    Article  CAS  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987c) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19(6):703–707

    Article  CAS  Google Scholar 

  • Verma SB (1990) Micrometeorological methods for measuring surface fluxes of mass and energy. Remote Sens Rev 5(1):99–115

    Article  Google Scholar 

  • Vitousek PM, Menge DN, Reed SC, Cleveland CC (2013) Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philos Trans R Soc Lond B Biol Sci: Biol Sci 368(1621):20130119

    Article  CAS  Google Scholar 

  • Walker AP, Zaehle S, Medlyn BE, De Kauwe MG, Asao S, Hickler T, Parton W, Ricciuto DM, Wang YP, Wårlind D (2015) Predicting long-term carbon sequestration in response to CO2 enrichment: how and why do current ecosystem models differ? Glob Biogeochem Cycles 29(4):476–495

    Article  CAS  Google Scholar 

  • Webb J, Bellamy P, Loveland P, Goodlass G (2003) Crop residue returns and equilibrium soil organic carbon in England and Wales. Soil Sci Soc Am J 67(3):928–936

    Article  CAS  Google Scholar 

  • Weinberg ED (1997) The Lactobacillus anomaly: total iron abstinence. Perspect Biol Med 40(4):578–583

    Article  CAS  Google Scholar 

  • Wenzel S, Cox PM, Eyring V, Friedlingstein PJ (2014) Emergent constraints on climate carbon cycle feedbacks in the CMIP5 Earth system models. J Geophys Res Biogeo 119(5):794–807

    Article  CAS  Google Scholar 

  • Wershaw RL (1985) In: Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (eds) Humic substances in soil, sediment and water. Wiley, New York, p 561

    Google Scholar 

  • Widén B, Majdi H (2001) Soil CO2 efflux and root respiration at three sites in a mixed pine and spruce forest: seasonal and diurnal variation. Can J For Res 31(5):786–796

    Article  Google Scholar 

  • Wilke B-M (1986) Einfluß verschiedener potentieller anorganischer Schadstoffe auf die mikrobielle Aktivität von Waldhumusformen unterschiedlicher Pufferkapazität. Dr.-Haus Bayreuth Verlag-Ges. Springer Verlag, Berlin/Heidelberg/New York

    Google Scholar 

  • Wilson MJHS (1989) Solid-state nuclear magnetic resonance spectroscopy of humic substances: basic concepts and techniques. Wiley, New York, pp 310–338

    Google Scholar 

  • Wilson JM, Griffin D (1975) Water potential and the respiration of microorganisms in the soil. Soil Biol Biochem 7(3):199–204

    Article  Google Scholar 

  • Wormel P (1999) Essex Farming (1900–2000). Alberton Books, Colchester

    Google Scholar 

  • Writtle College (2004) Crop production handbook: data and general information (2003–2004). Writtle College, Chelmsford Press, Essex

    Google Scholar 

  • Wu J, Joergensen R, Pommerening B, Chaussod R, Brookes P (1990) Measurement of soil microbial biomass C by fumigation-extraction-an automated procedure. Soil Biol Biochem 22(8):1167–1169

    Article  CAS  Google Scholar 

  • Yamane K, Suzuki H, Nisizawa K (1970) Purification and properties of extracellular and cell-bound cellulase components of Pseudomonas fluorescens var. cellulosa. J Biochem 67(1):19–35

    Article  CAS  Google Scholar 

  • Zaehle S, Medlyn BE, De Kauwe MG, Walker AP, Dietze MC, Hickler T, Luo Y, Wang YP, El-Masri B, Thornton P (2014) Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate Free-Air CO 2 Enrichment studies. New Phytol 202(3):803–822

    Article  CAS  Google Scholar 

  • Zantua M, Bremner J (1975) Comparison of methods of assaying urease activity in soils. Soil Biol Biochem 7(4–5):291–295

    Article  CAS  Google Scholar 

  • Zibilske LJ (1994) Carbon mineralization … methods of soil analysis: Part 2—Microbiological and biochemical properties, vol 5.2, pp 835–863. https://doi.org/10.2136/sssabookser5.2.frontmatter

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Ola Igboji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Igboji, P.O. (2020). Using Traditional and Simulation Methods for C and N Cycling Studies with Additional Periods of Human Civilisation: Replicating the Procedures at Regional Levels Advocate. In: Datta, R., Meena, R., Pathan, S., Ceccherini, M. (eds) Carbon and Nitrogen Cycling in Soil. Springer, Singapore. https://doi.org/10.1007/978-981-13-7264-3_5

Download citation

Publish with us

Policies and ethics