Skip to main content

Black Phosphorus

  • Chapter
  • First Online:
  • 410 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter, we firstly introduce basic properties and related literatures of black phosphorus, and then show experimental results obtained in this study. In semimetallic state above 1.4 GPa, we observed clear Shubnikov-de Haas oscillation and large magnetoresistance effect. From the analysis of Shubnikov-de Haas oscillations, we identified the light cyclotron mass and small carrier density near semiconductor-semimetal transition, which is comparable to bismuth and graphite. Fermi surfaces become monotonically larger as pressure increases, which indicates that the carrier density is tunable by hydrostatic pressure. Also, we quantitatively determined the carrier densities and mobilities of electrons and holes based on the two-carrier model, which confirmed the nearly compensated nature in the semimetallic state, and large mobility difference between electrons and holes. The large magnetoresistance observed in the semimetallic phase cannot be reproduced by conventional two-carrier model, which suggests additional mechanisms beyond the semiclassical framework.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bridgmann PW (1914) J Am Chem Soc 36: 1344. https://doi.org/10.1021/ja02184a002

  2. Brown A, Rundqvist S (1965) Acta Cryst 19: 684. https://doi.org/10.1107/S0365110X65004140

  3. Hultgren R, Gingrich NS, Warren BE (1935) J Chem Phys 3: 351. https://doi.org/10.1063/1.1749671

  4. Li L, Yu Y, Ye GJ, Ge Q, Ou X, Wu H, Feng D, Chen XH, Zhang Y (2014) Nat Nanotechnol 9: 372. https://doi.org/10.1038/nnano.2014.35

  5. Morita A (1986) Appl Phys A 39: 227. https://doi.org/10.1007/BF00617267

  6. Fukuoka S, Taen T, Osada T (2015) J Phys Soc Jpn 84: 121004. https://doi.org/10.7566/JPSJ.84.121004

  7. Li L, Kim J, Jin C, Ye GJ, Qiu DY, da Jornada FH, Shi Z, Chen L, Zhang Z, Yang F, Watanabe K, Taniguchi T, Ren W, Louie SG, Chen XH, Zhang Y, Wang F (2017) Nat Nanotechnol 12: 21. https://doi.org/10.1038/nnano.2016.171

  8. Takao Y, Asahina H, Morita A (1981) J Phys Soc Jpn 50: 3362. https://doi.org/10.1143/JPSJ.50.3362

  9. Asahina H, Shindo K, Morita A (1982) J Phys Soc Jpn 51: 1193. https://doi.org/10.1143/JPSJ.51.1193

  10. Yaguchi H, Singleton J (2009) J Phys Condens Matter 21: 344207. http://stacks.iop.org/0953-8984/21/i=34/a=344207

  11. Keyes RW (1953) Phys Rev 92: 580. https://doi.org/10.1103/PhysRev.92.580

  12. Warschauer D (1963) J Appl Phys 34: 1853. https://doi.org/10.1063/1.1729699

  13. Maruyama Y, Suzuki S, Kobayashi K, Tanuma S (1981) Physica B&C 105: 99. http://www.sciencedirect.com/science/article/pii/0378436381902230

  14. Shirotani I, Maniwa R, Sato H, Fukizawa A, Sato N, Maruyama Y, Kajiwara T, Inokuchi H, Akimoto S (1981) Nihon Kagakukai Shi. J Chem Soc Jpn 1981: 1604. https://doi.org/10.1246/nikkashi.1981.1604 (In Japanese)

  15. Endo S, Akahama Y, Terada S, Narita S (1982) J Appl Phys 21: L482. http://stacks.iop.org/1347-4065/21/i=8A/a=L482

  16. Akahama Y, Endo S, Narita S (1983) J Phys Soc Jpn 52: 2148. https://doi.org/10.1143/JPSJ.52.2148

  17. Brown DM, Bray R (1962) Phys Rev 127: 1593. https://doi.org/10.1103/PhysRev.127.1593

  18. Narita S, Terada S, Mori S, Muro K, Akahama Y, Endo S (1983) J Phys Soc Jpn 52: 3544. https://doi.org/10.1143/JPSJ.52.3544

  19. Takeyama S, Miura N, Akahama Y, Endo S (1990) J Phys Soc Jpn 59: 2400. https://doi.org/10.1143/JPSJ.59.2400

  20. Sugai S, Ueda T, Murase K (1981) J Phys Soc Jpn 50: 3356. https://doi.org/10.1143/JPSJ.50.3356

  21. Sugai S, Shirotani I (1985) Solid State Commun 53: 753. http://www.sciencedirect.com/science/article/pii/0038109885902133

  22. Kaneta C, Yoshida HK, Morita A (1986) J Phys Soc Jpn 55: 1213. https://doi.org/10.1143/JPSJ.55.1213

  23. Kaneta C, Morita A (1986) J Phys Soc Jpn 55: 1224. https://doi.org/10.1143/JPSJ.55.1224

  24. Jamieson JC (1963) Science 139: 1291. http://science.sciencemag.org/content/139/3561/1291

  25. Cohen MH, Falicov LM, Golin S (1964) IBM J Res Dev 8: 215. http://ieeexplore.ieee.org/document/5392227/

  26. Akahama Y, Kobayashi M, Kawamura H (1999) Phys Rev B 59: 8520. https://doi.org/10.1103/PhysRevB.59.8520

  27. Kawamura H, Shirotani I, Tachikawa K (1984) Solid State Commun 49: 879. http://www.sciencedirect.com/science/article/pii/0038109884904447

  28. Cartz L, Strinivasa SR, Riedner RJ, Jorgensen JD, Worlton TG (1979) J Chem Phys 71: 1718. https://doi.org/10.1063/1.438523

  29. Kikegawa T, Iwasaki H (1983) Acta Cryst B39: 158. https://doi.org/10.1107/S0108768183002220

  30. Okajima M, Endo S, Akahama Y, Narita S (1984) Jpn J Appl Phys 23: 15. http://stacks.iop.org/1347-4065/23/i=1R/a=15

  31. Akahama Y, Endo S, Narita S (1986) Physica B+C 139–140: 397. http://www.sciencedirect.com/science/article/pii/0378436386906066

  32. Akahama Y, Kawamura H (2001) Phys Status Solidi B 223: 349. https://doi.org/10.1002/1521-3951(200101)223:1<349::AID-PSSB349>3.0.CO;2-F

  33. Vanderborgh CA, Schiferl D (1989) Phys Rev B 40: 9595. https://doi.org/10.1103/PhysRevB.40.9595

  34. Akiba K, Miyake A, Akahama Y, Matsubayashi K, Uwatoko Y, Arai H, Fuseya Y, Tokunaga M (2015) J Phys Soc Jpn 84: 073708. https://doi.org/10.7566/JPSJ.84.073708

  35. Akiba K, Miyake A, Akahama Y, Matsubayashi K, Uwatoko Y, Tokunaga M (2017) Phys Rev B 95: 115126. https://doi.org/10.1103/PhysRevB.95.115126

  36. Xiang ZJ, Ye GJ, Shang C, Lei B, Wang NZ, Yang KS, Liu DY, Meng FB, Luo XG, Zou LJ, Sun Z, Zhang Y, Chen XH (2015) Phys Rev Lett 115: 186403. https://doi.org/10.1103/PhysRevLett.115.186403

  37. Li CH, Long YJ, Zhao LX, Shan L, Ren ZA, Zhao JZ, Weng HM, Dai X, Fang Z, Ren C, Chen GF (2017) Phys Rev B 95: 125417. https://doi.org/10.1103/PhysRevB.95.125417

  38. Strutz T, Miura N, Akahama Y (1994) Physica B 201: 387. http://www.sciencedirect.com/science/article/pii/0921452694911215

  39. Nicholas RJ (1985) Prog Quantum Electron 10: 1. http://www.sciencedirect.com/science/article/pii/0079672785900047

  40. Kapitza P (1928) Proc R Soc A 119: 358. http://rspa.royalsocietypublishing.org/content/119/782/358

  41. McClure JW, Spry WJ (1968) Phys Rev 165: 809. https://doi.org/10.1103/PhysRev.165.809

  42. Ali MN, Xiong J, Flynn S, Tao J, Gibson QD, Schoop LM, Liang T, Haldolaarachchige N, Hirschberger M, Ong NP, Cava RJ (2014) Nature (London) 514: 205. https://doi.org/10.1038/nature13763

  43. Shoenberg D (1984) Magnetic oscillations in metals. Cambridge University Press, Cambridge

    Google Scholar 

  44. Woollam JA (1970) Phys Rev Lett 25: 810. https://doi.org/10.1103/PhysRevLett.25.810

  45. Ando Y (2013) J Phys Soc Jpn 82: 102001. https://doi.org/10.7566/JPSJ.82.102001

  46. Brandt NB, Chudinov SM (1972) J Low Temp Phys 8: 339. https://doi.org/10.1007/BF00655088

  47. Küchler R, Steinke L, Daou R, Brando M, Behnia K, Steglich F (2014) Nat Mater 13: 461. https://doi.org/10.1038/nmat3909

  48. Tanuma S, Inada R, Furukawa A, Takahashi O, Iye Y, Onuki Y (1981) Electrical properties of layered materials at high magnetic fields. In: Chikazumi S, Miura N (eds) Physics in high magnetic fields. Springer, Berlin

    Google Scholar 

  49. Iye Y, Tedrow PM, Timp G, Shayegan M, Dresselhaus MS, Dresselhaus G, Furukawa A, Tanuma S (1982) Phys Rev B 25: 5478. https://doi.org/10.1103/PhysRevB.25.5478

  50. Yaguchi H, Singleton J (1998) Phys Rev Lett 81: 5193. https://doi.org/10.1103/PhysRevLett.81.5193

  51. Fauqué B, LeBoeuf D, Vignolle B, Nardone M, Proust C, Behnia K (2013) Phys Rev Lett 110: 266601. https://doi.org/10.1103/PhysRevLett.110.266601

  52. Akiba K, Miyake A, Yaguchi H, Matsuo A, Kindo K, Tokunaga M (2015) J Phys Soc Jpn 84: 054709. https://doi.org/10.7566/JPSJ.84.054709

  53. For the OpenMX package, code, pseudo-atomic basis functions, and pseudopotentials. http://www.openmx-square.org/

  54. Qiao J, Kong X, Hu ZX, Yang F, Ji Q (2014) Nat Commun 5: 4475. https://doi.org/10.1038/ncomms5475

  55. Fuseya Y, private communication

    Google Scholar 

  56. Gong P-L, Liu D-Y, Yang K-S, Xiang Z-J, Chen X-H, Zeng Z, Shen S-Q, Zou L-J (2016) Phys Rev B 93: 195434. https://doi.org/10.1103/PhysRevB.93.195434

  57. Zhao J, Yu R, Weng H, Fang Z (2016) Phys Rev B 94: 195104. https://doi.org/10.1103/PhysRevB.94.195104

  58. Baba M, Izumida F, Takeda Y, Shibata K, Morita A, Koike Y, Fukase T (1991) J Phys Soc Jpn 60: 3777. https://doi.org/10.1143/JPSJ.60.3777

  59. Hou Z, Yang B, Wang Y, Ding B, Zhang X, Yao Y, Liu E, Xi X, Wu G, Zeng Z, Liu Z, Wang W (2016) Sci Rep 6: 23807. https://doi.org/10.1038/srep23807

  60. Soule DE (1958) Phys Rev 112: 698. https://doi.org/10.1103/PhysRev.112.698

  61. Eguchi G, Kuroda K, Shirai K, Ando Y, Shinjo T, Kimura A, Shiraishi M (2015) Phys Rev B 91: 235117. https://doi.org/10.1103/PhysRevB.91.235117

  62. Eguchi G, Paschen S. arXiv:1609.04134. https://arxiv.org/abs/1609.04134

  63. Fei R, Tran V, Yang L (2015) Phys Rev B 91: 195319. https://doi.org/10.1103/PhysRevB.91.195319

  64. Liang T, Gibson Q, Ali MN, Liu M, Cava RJ, Ong NP (2015) Nat Mater 14: 280. https://doi.org/10.1038/nmat4143

  65. Sun S, Wang Q, Guo P-J, Liu K, Lei H (2016) New J Phys 18: 082002. http://stacks.iop.org/1367-2630/18/i=8/a=082002

  66. Du X, Tsai S-W, Maslov D-L, Hebard AF (2005) Phys Rev Lett 94: 166601. https://doi.org/10.1103/PhysRevLett.94.166601

  67. Ziman JM (1972) Principles of the theory of solids, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  68. Roth LM, Argyres PN (1966) Magnetic quantum effects, In: Willardson RK, Beer AC (eds) Semiconductors and semimetals, vol 1, Academic Press, New York

    Google Scholar 

  69. Nagahama T, Kobayashi M, Akahama Y, Endo S, Narita S (1985) J Phys Soc Jpn 54: 2096 (1985). https://doi.org/10.1143/JPSJ.54.2096

  70. Yafet Y, Keyes RW, Adams EN (1956) J Phys Chem Solids 1: 137. http://www.sciencedirect.com/science/article/pii/0022369756900208

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuto Akiba .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akiba, K. (2019). Black Phosphorus. In: Electronic States of Narrow-Gap Semiconductors Under Multi-Extreme Conditions. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-7107-3_3

Download citation

Publish with us

Policies and ethics