Skip to main content

Divisor Graphs of a Commutative Ring

  • Chapter
  • First Online:
Advances in Commutative Algebra

Part of the book series: Trends in Mathematics ((TM))

Abstract

If x is an element of a commutative ring R then define the x-divisor graph \(\varGamma _x(R)\) to be the graph, whose vertices are the elements of \(d(x)=\{r\in R\) | \(rs=x\) for some \(s\in R\}\) such that two distinct vertices r and s are adjacent if and only if \(rs=x\). In this chapter, the components of \(\varGamma _x(R)\) are completely characterized when R is a von Neumann regular ring. Various other types of “divisor graphs” are considered as well. For example, if x is a nonzero element of an integral domain R with group of units U(R) then the compressed divisor graph \((\varGamma _E)_x^{d^\times }(R)\) associated with x is defined to be the graph, whose vertices are the associate-equivalence classes \(\overline{r}=rU(R)\) of elements \(r\in d(x)^\times =d(x)\setminus (xU(R)\cup U(R))\) such that two distinct vertices \(\overline{r}\) and \(\overline{s}\) are adjacent if and only if \(rs\in d(x)\). Alternatively, by letting M be the positive cone of the group of divisibility of R, every \((\varGamma _E)_x^{d^\times }(R)\) is a member of the class of graphs \(\varGamma _{\le x}(M)\) defined by picking an element x of a partially ordered commutative monoid M with least element equal to its identity 1, and letting the vertices of \(\varGamma _{\le x}(M)\) be the elements of \(\{m\in M\) | \(1<m<x\}\) such that two distinct vertices m and n are adjacent if and only if \(mn\le x\). Other aspects of the chapter include the exploration of graph-theoretic criteria that reveal when two elements of an integral domain are associates, and it is proved that R is a unique factorization domain if and only if \((\varGamma _E)_x^{d^\times }(R)\) is either null or finite with a dominant clique for every \(x\in R\setminus \{0\}\). Throughout, emphasis is placed on similarities with zero-divisor graphs. For example, it is proved that if R is von Neumann regular and G is a component of \(\varGamma _x(R)\) that contains a square root of x then \(G\cong \varGamma _0(\text {ann}_R(x))\) (in particular, if \(x=0\) then we have the tautology \(G\cong \varGamma _0(R)\)), and if x is a square-free element of a unique factorization domain then \((\varGamma _E)_x^{d^\times }(R)\) is isomorphic to a zero-divisor graph of a finite Boolean ring.

This work is dedicated to David Fenimore Anderson, whose guidance and leadership has fostered multitudes of mathematical pursuits, and whose friendship has inspirited a lighthearted approach to all of them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    “Compressed irreducible divisor graphs” were defined in [16, Sect. 5] using coarser equivalence relations on irr(R).

  2. 2.

    For an integral domain R with quotient field K, the group of divisibility \((K\setminus \{0\})/U(R)\) of R is often denoted by G(R); it is a partially ordered abelian group under the relation \(rU(R)\le sU(R)\) if and only if \(sr^{-1}\in R\), and then \(G(R)^+\) is the positive cone of G(R).

References

  1. D.D. Anderson, M. Naseer, Beck’s coloring of a commutative ring. J. Algebra 159, 500–514 (1993)

    Article  MathSciNet  Google Scholar 

  2. D.D. Anderson, D.F. Anderson, M. Zafrullah, Factorization in integral domains. J. Pure Appl. Algebra 69, 1–19 (1990)

    Article  MathSciNet  Google Scholar 

  3. D.D. Anderson, D.F. Anderson, M. Zafrullah, Rings between \(D[X]\) and \(K[X]\). Houst. J. Math. 17, 109–129 (1991)

    Google Scholar 

  4. D.D. Anderson, J. Coykendall, L. Hill, M. Zafrullah, Monoid domain constructions of antimatter domains. Commun. Algebra 35, 3236–3241 (2007)

    Article  MathSciNet  Google Scholar 

  5. D.F. Anderson, A. Badawi, The total graph of a commutative ring. J. Algebra 320, 2706–2719 (2008)

    Article  MathSciNet  Google Scholar 

  6. D.F. Anderson, A. Badawi, The zero-divisor graph of a commutative semigroup: a survey, in Groups, Modules, and Model Theory-Surveys and Recent Developments, ed. by M. Droste, L. Fuchs, B. Goldsmith, L. Strüngmann (Springer, Berlin, 2017), pp. 23–39

    Chapter  Google Scholar 

  7. D.F. Anderson, J.D. LaGrange, Commutative Boolean monoids, reduced rings, and the compressed zero-divisor graph. J. Pure Appl. Algebra 216, 1626–1636 (2012)

    Article  MathSciNet  Google Scholar 

  8. D.F. Anderson, J.D. LaGrange, Abian’s poset and the ordered monoid of annihilator classes in a reduced commutative ring. J. Algebra Appl. 13, 1450070(18 pp.) (2014)

    Article  MathSciNet  Google Scholar 

  9. D.F. Anderson, J.D. LaGrange, Some remarks on the compressed zero-divisor graph. J. Algebra 447, 297–321 (2016)

    Article  MathSciNet  Google Scholar 

  10. D.F. Anderson, E.F. Lewis, A general theory of zero-divisor graphs over a commutative ring. Int. Electron. J. Algebra 20, 111–135 (2016)

    Article  MathSciNet  Google Scholar 

  11. D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring. J. Algebra 217, 434–447 (1999)

    Article  MathSciNet  Google Scholar 

  12. D.F. Anderson, D. Weber, The zero-divisor graph of a commutative ring without identity. Int. Electron. J. Algebra 23, 176–202 (2018)

    Article  MathSciNet  Google Scholar 

  13. D.F. Anderson, R. Levy, J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and Boolean algebras. J. Pure Appl. Algebra 180, 221–241 (2003)

    Article  MathSciNet  Google Scholar 

  14. D.F. Anderson, M.C. Axtell, J.A. Stickles Jr., Zero-divisor graphs in commutative rings, in Commutative Algebra, Noetherian and Non-Noetherian Perspectives, ed. by M. Fontana, S.-E. Kabbaj, B. Olberding, I. Swanson (Springer, New York, 2011), pp. 23–45

    MATH  Google Scholar 

  15. M. Axtell, J. Stickles, Irreducible divisor graphs in commutative rings with zero-divisors. Commun. Algebra 36, 1883–1893 (2008)

    Article  MathSciNet  Google Scholar 

  16. M. Axtell, M. Baeth, J. Stickles, Irreducible divisor graphs and factorization properties of domains. Commun. Algebra 39, 4148–4162 (2011)

    Article  MathSciNet  Google Scholar 

  17. M. Axtell, M. Baeth, J. Stickles, Survey article-graphical representations of factorizations in commutative rings. Rocky Mt. J. Math. 43, 1–36 (2013)

    Article  MathSciNet  Google Scholar 

  18. M. Axtell, M. Baeth, J. Stickles, Cut structures in zero-divisor graphs of commutative rings. J. Commut. Algebra 8, 143–171 (2016)

    Article  MathSciNet  Google Scholar 

  19. A. Badawi, On the annihilator graph of a commutative ring. Commun. Algebra 42, 108–121 (2014)

    Article  MathSciNet  Google Scholar 

  20. A. Badawi, On the dot product graph of a commutative ring. Commun. Algebra 43, 43–50 (2015)

    Article  MathSciNet  Google Scholar 

  21. I. Beck, Coloring of commutative rings. J. Algebra 116, 208–226 (1988)

    Article  MathSciNet  Google Scholar 

  22. M. Behboodi, Z. Rakeei, The annihilating-ideal graph of commutative rings I. J. Algebra Appl. 10, 727–739 (2011)

    Article  MathSciNet  Google Scholar 

  23. B. Bollobás, Modern Graph Theory (Springer, New York, 1998)

    Book  Google Scholar 

  24. P.M. Cohn, Bézout rings and their subrings. Math. Proc. Camb. Philos. Soc. 64, 251–264 (1968)

    Article  Google Scholar 

  25. J. Coykendall, J. Maney, Irreducible divisor graphs. Commun. Algebra 35, 885–895 (2007)

    Article  MathSciNet  Google Scholar 

  26. J. Coykendall, D.E. Dobbs, B. Mullins, On integral domains with no atoms. Commun. Algebra 27, 5813–5831 (1999)

    Article  MathSciNet  Google Scholar 

  27. J. Coykendall, S. Sather-Wagstaff, L. Sheppardson, S. Spiroff, On zero divisor graphs, in Progress in Commutative Algebra II: Closures, Finiteness and Factorization, ed. by C. Francisco, L.C. Klinger, S.M. Sather-Wagstaff, J.C. Vassilev (de Gruyter, Berlin, 2012), pp. 241–299

    Google Scholar 

  28. F.R. DeMeyer, T. McKenzie, K. Schneider, The zero-divisor graph of a commutative semigroup. Semigroup Forum 65, 206–214 (2002)

    Article  MathSciNet  Google Scholar 

  29. D.S. Dummit, R.M. Foote, Abstract Algebra, 3rd edn. (Wiley, New York, 2004)

    Google Scholar 

  30. J. Fröberg, An Introduction to Gröbner Bases (Wiley, New York, 1997)

    Google Scholar 

  31. R. Gilmer, Commutative Semigroup Rings (The University of Chicago Press, Chicago, 1984)

    MATH  Google Scholar 

  32. R. Halaš, M. Jukl, On Beck’s coloring of partially ordered sets. Discret. Math. 309, 4584–4589 (2009)

    Article  Google Scholar 

  33. E. Hashemi, M. Abdi, A. Alhevaz, On the diameter of the compressed zero-divisor graph. Commun. Algebra 45, 4855–4864 (2017)

    Article  MathSciNet  Google Scholar 

  34. V. Joshi, S. Sarode, Beck’s conjecture and multiplicative lattices. Discret. Math. 338, 93–98 (2015)

    Article  MathSciNet  Google Scholar 

  35. C.F. Kimball, J.D. LaGrange, The idempotent-divisor graphs of a commutative ring. Commun. Algebra 46, 3899–3912 (2018)

    Article  MathSciNet  Google Scholar 

  36. J.D. LaGrange, The x-divisor pseudographs of a commutative groupoid. Int. Electron. J. Algebra 22, 62–77 (2017)

    Google Scholar 

  37. J. Lambek, Lectures on Rings and Modules (Blaisdell Publishing Company, Waltham, 1966)

    MATH  Google Scholar 

  38. D. Lu, T. Wu, The zero-divisor graphs of partially ordered sets and an application to semigroups. Graph Comb. 26, 793–804 (2010)

    Article  Google Scholar 

  39. X. Ma, D. Wang, J. Zhou, Automorphisms of the zero-divisor graph over \(2\times 2\) matrices. J. Korean Math. Soc. 53, 519–532 (2016)

    Google Scholar 

  40. J. Maney, Irreducible divisor graphs II. Commun. Algebra 36, 3496–3513 (2008)

    Article  MathSciNet  Google Scholar 

  41. C.P. Mooney, Generalized irreducible divisor graphs. Commun. Algebra 42, 4366–4375 (2014)

    Article  MathSciNet  Google Scholar 

  42. S.B. Mulay, Cycles and symmetries of zero-divisors. Commun. Algebra 30, 3533–3558 (2002)

    Article  MathSciNet  Google Scholar 

  43. S.P. Redmond, An ideal based zero-divisor graph of a commutative ring. Commun. Algebra 31, 4425–4443 (2003)

    Article  MathSciNet  Google Scholar 

  44. S. Spiroff, C. Wickham, A zero divisor graph determined by equivalence classes of zero divisors. Commun. Algebra 39, 2338–2348 (2011)

    Article  MathSciNet  Google Scholar 

  45. A. Zaks, Half-factorial domains. Bull. Am. Math. Soc. 82, 721–724 (1976)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. LaGrange .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

LaGrange, J.D. (2019). Divisor Graphs of a Commutative Ring. In: Badawi, A., Coykendall, J. (eds) Advances in Commutative Algebra. Trends in Mathematics. Birkhäuser, Singapore. https://doi.org/10.1007/978-981-13-7028-1_11

Download citation

Publish with us

Policies and ethics