Skip to main content

Arsenic Behaviors and Pollution Control Technologies in Aqueous Solution

  • Chapter
  • First Online:
  • 437 Accesses

Abstract

The removal of arsenic from solutions has been investigated for decades and continues to be a topic of intense research studies. Many arsenic treatment techniques have been recommended, but paucity still exists where practically feasible and less expensive and eco-friendly technique for remediation of arsenic is urgently required. Redox behavior and chemical species of arsenic in acidic aqueous system, photochemical oxidation of trivalent arsenic and the molecular reaction mechanism, formation mechanism and characteristics of tooeleite are stated. Cascade sulfide precipitation and separation of copper from high-arsenic acid wastewater, and a new process to remove arsenic efficiently by Fe3O4 hierarchical particles via adsorption in aqueous solution are well detailed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Luo, T., Cui, J., Hu, S., et al.: Arsenic removal and recovery from copper smelting wastewater using TiO2. Environ. Sci. Technol. 44(23), 9094–9098 (2010)

    Article  CAS  Google Scholar 

  2. Baig, J.A., Kazi, T.G., Shah, A.Q., et al.: Speciation and evaluation of arsenic in surface water and groundwater samples: a multivariate case study. Ecotoxicol. Environ. Saf. 73(5), 914–923 (2010)

    Article  CAS  Google Scholar 

  3. Mandal, B.K., Suzuki, K.T.: Arsenic round the world: a review. Talanta 58(1), 201–235 (2002)

    Article  CAS  Google Scholar 

  4. Riveros, P.A., Dutrizac, J.E., Spencer, P.: Arsenic disposal practices in the metallurgical industry. Can. Metall. Q. 40(4), 395–420 (2001)

    Article  CAS  Google Scholar 

  5. Emett, M.T., Khoe, G.H.: Photochemical oxidation of arsenic by oxygen and iron in acidic solutions. Water Res. 35(3), 649–656 (2001)

    Article  CAS  Google Scholar 

  6. Kim, M.J., Nriagu, J.: Oxidation of arsenite in groundwater using ozone and oxygen. Sci. Total Environ. 247(1), 71–79 (2000)

    Article  CAS  Google Scholar 

  7. Jia, Y.F., Zhang, D.N., Pan, R.R., et al.: A novel two-step coprecipitation process using Fe (III) and Al (III) for the removal and immobilization of arsenate from acidic aqueous solution. Water Res. 46(2), 500–508 (2012)

    Article  CAS  Google Scholar 

  8. Cui, J.L., Jing, C.Y., Che, D.S., et al.: Groundwater arsenic removal by coagulation using ferric(III) sulfate and polyferric sulfate: a comparative and mechanistic study. J. Environ. Sci. 32, 42–53 (2015)

    Article  CAS  Google Scholar 

  9. Mertens, J., Casentini, B., Masiond, A., et al.: Polyaluminum chloride with high Al30 content as removal agent for arsenic-contaminated well water. Water Res. 46(1), 53–62 (2012)

    Article  CAS  Google Scholar 

  10. An, B., Liang, Q.Q., Zhao, D.Y.: Removal of arsenic(V) from spent ion exchange brine using a new class of starch-bridged magnetite nanoparticles. Water Res. 45(5), 1961–1972 (2011)

    Article  CAS  Google Scholar 

  11. Pakzadeh, B., Batista, J.R.: Surface complexation modeling of the removal of arsenic from ion-exchange waste brines with ferric chloride. J. Hazard. Mater. 188(1–3), 399–407 (2011)

    Article  CAS  Google Scholar 

  12. Zhang, G.S., Liu, F.D., Liu, H.J., et al.: Respective role of Fe and Mn oxide contents for arsenic sorption in iron and manganese binary oxide: an X-ray absorption spectroscopy investigation. Environ. Sci. Technol. 48(17), 10316–10322 (2014)

    Article  CAS  Google Scholar 

  13. Dou, X.M., Mohan, D., Pittman Jr., C.U.: Arsenate adsorption on three types of granular schwertmannite. Water Res. 47(9), 2938–2948 (2013)

    Article  CAS  Google Scholar 

  14. Na, L., Maohong, F., Johannes, V.L., et al.: Oxidation of As (III) by potassium permanganate. J. Environ. Sci. 19(7), 783–786 (2007)

    Google Scholar 

  15. Sorlini, S., Gialdini, F.: Conventional oxidation treatments for the removal of arsenic with chlorine dioxide, hypochlorite, potassium permanganate and monochloramine. Water Res. 44(19), 5653–5659 (2010)

    Article  CAS  Google Scholar 

  16. Lee, Y.H., Um, I., Yoon, J.: Arsenic(III) oxidation by iron(VI) (ferrate) and subsequent removal of arsenic(V) by iron(III) coagulation. Environ. Sci. Technol. 37(24), 5750–5756 (2003)

    Article  CAS  Google Scholar 

  17. Molnár, L., Virčíkova, E., Lech, P.: Experimental study of As (III) oxidation by hydrogen peroxide. Hydrometallurgy 35(1), 1–9 (1994)

    Google Scholar 

  18. Hug, S.J., Leupin, O.: Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the fenton reaction. Environ. Sci. Technol. 37(12), 2734–2742 (2003)

    Article  CAS  Google Scholar 

  19. Laat, J.D., Le, T.G.: Kinetics and modeling of the Fe(III)/H2O2 system in the presence of sulfate in acidic aqueous solutions. Environ. Sci. Technol. 39(6), 1811–1818 (2005)

    Article  CAS  Google Scholar 

  20. Sorlini, S., Gialdini, F., Stefan, M.: Arsenic oxidation by UV radiation combined with hydrogen peroxide. Water Sci. Technol. 61(2), 339–344 (2010)

    Article  CAS  Google Scholar 

  21. Bissen, M., Vieillard-Baron, M.-M., Schindelin, A.J., et al.: TiO2-catalyzed photooxidation of arsenite to arsenate in aqueous samples. Chemosphere 44(4), 751–757 (2001)

    Google Scholar 

  22. Klaning, U.K., Bielski, B.H.J., Sehested, K.: Arsenic(IV). A pulse-radiolysis study. Inorg. Chem. 28(14), 2717–2724 (1989)

    Article  Google Scholar 

  23. Rastogi, A., Al-Abed, S.R., Dionysiou, D.D.: Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems. Appl. Catal. B 85(3–4), 171–179 (2009)

    Article  CAS  Google Scholar 

  24. Gomathi Devi, L., Girish Kumar, S., Mohan Reddy, K., et al.: Photo degradation of methyl orange an azo dye by advanced fenton process using zero valent metallic iron: Influence of various reaction parameters and its degradation mechanism. J. Hazard. Mater. 164(2–3), 459–467 (2009)

    Google Scholar 

  25. Yang, Y., Pignatello, J.J., Ma, J., Mitch, W.A.: Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs). Environ. Sci. Technol. 48(4), 2344–2351 (2014)

    Google Scholar 

  26. Hori, H., Hayakawa, E., Einaga, H., et al.: Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches. Environ. Sci. Technol. 38(22), 6118–6124 (2004)

    Article  CAS  Google Scholar 

  27. Schröder, H.F., Meesters, R.J.W.: Stability of fluorinated surfactants in advanced oxidation processes–a follow up of degradation products using flow injection-mass spectrometry, liquid chromatography-mass spectrometry and liquid chromatography-multiple stage mass spectrometry. J. Chromatogr. A 1082(1), 110–119 (2005)

    Google Scholar 

  28. Zhang, B.T., Zhang, Y., Teng, Y.G., et al.: Sulfate radical and its application in decontamination technologies. Crit. Rev. Environ. Sci. Technol. 45(16), 1756–1800 (2015)

    Article  CAS  Google Scholar 

  29. Lei, Z., Wei, Z., Jinfeng, Z., et al.: Ferrous-activated persulfate oxidation of arsenic (III) and diuron in aquatic system. J. Hazard. Mater. 263(Part 2), 422–430 (2013)

    Google Scholar 

  30. Jing, X., Wei, D., Feng, W., et al.: Rapid catalytic oxidation of arsenite to arsenate in an iron (III)/sulfite system under visible light. Appl. Catal. B Environ. 186, 56–61 (2016)

    Google Scholar 

  31. Neppolian, B., Doronila, A., Ashokkumar, M.: Sonochemical oxidation of arsenic (III) to arsenic (V) using potassium peroxydisulfate as an oxidizing agent. Water Res. 44(12), 3687–3695 (2010)

    Article  CAS  Google Scholar 

  32. Neppolian, B., Celik, E., Choi, H.: Photochemical oxidation of arsenic(III) to arsenic(V) using peroxydisulfate ions as an oxidizing agent. Environ. Sci. Technol. 42(16), 6179–6184 (2008)

    Article  CAS  Google Scholar 

  33. Woods, R., Kolthoff, I.M., Meehan, E.J.: Arsenic(IV) as an intermediate in the induced oxidation of arsenic(III) by the iron(II)- persulfate reaction and the photoreduction of iron(III). I. Absence of oxygen. J. Am. Chem. Soc. 85(16), 2385–2390 (1963)

    Google Scholar 

  34. Woods, R., Kolthoff, I.M., Meehan, E.J.: Arsenic(IV) as an intermediate in the iron(III) and copper(II) catalyzed arsenic(III)-per sulfate reaction. Inorg. Chem. 4(5), 697–704 (1965)

    Article  CAS  Google Scholar 

  35. Takahashi, M., Chiba, K., Li, P.: Formation of hydroxyl radicals by collapsing ozone microbubbles under strongly acidic conditions. J. Phys. Chem. B 111(39), 11443–11446 (2007)

    Article  CAS  Google Scholar 

  36. Li, Y., Cai, X.J., Guo, J.W., et al.: UV-induced photoactive adsorption mechanism of arsenite by anatase TiO2 with high surface hydroxyl group density. Colloids Surf. A 462, 202–210 (2014)

    Article  CAS  Google Scholar 

  37. Robins, R.G.: The solubility of metal arsenates. Metall. Trans. B 12(1), 103–109 (1981)

    Article  Google Scholar 

  38. Trigub, A.L., Tagirov, B.R., Kvashnina, K.O., et al.: X-ray spectroscopy study of the chemical state in “invisible” Au in synthetic minerals in the Fe-As-S system. Am. Miner. 102(5), 1057–1065 (2017)

    Google Scholar 

  39. Gonzalez-Contreras, P., Weijma, J., Buisman, C.J.N.: Bioscorodite crystallization in an airlift reactor for arsenic removal. Cryst. Growth Des. 12(5), 2699–2706 (2012)

    Article  CAS  Google Scholar 

  40. Fujita, T., Taguchi, R., Abumiya, M., et al.: Novel atmospheric scorodite synthesis by oxidation of ferrous sulfate solution. Hydrometallurgy 90(2–4), 92–102 (2008)

    Article  CAS  Google Scholar 

  41. Paktunc, D., Dutrizac, J., Gertsman, V.: Synthesis and phase transformations involving scorodite, ferric arsenate and arsenical ferrihydrite: implications for arsenic mobility. Geochim. Cosmochim. Acta 72(11), 2649–2672 (2008)

    Article  CAS  Google Scholar 

  42. Dutrizac, J.E., Jambor, J.L.: The synthesis of crystalline scorodite, FeAsO4·2H2O. Hydrometallurgy 19(3), 377–384 (1988)

    Article  CAS  Google Scholar 

  43. Yang, J.Q., Chai, L.Y., Yue, M.Q., et al.: Complexation of arsenate with ferric ion in aqueous solutions. RSC Adv. 5(126), 103936–103942 (2015)

    Article  CAS  Google Scholar 

  44. Sergeyeva, E.I., Khodakovskiy, I.L.: Physicochemical conditions of formation of native arsenic in hydrothermal deposits. Geochem. Int. 846–859 (1969)

    Google Scholar 

  45. Technical Note 270-7. Schumm, R.H., Wagman, D.D., Evans, W.H., et al.: Selected Values of Chemical Thermodynamic Properties. National Bureau of Standards (1973)

    Google Scholar 

  46. Wagman, D.D., Evans, W.H., Parker, V.B., et al.: Erratum: The NBS tables of chemical thermodynamic properties. J. Phys. Chem. Ref. Data 18(4), 1807–1812 (1989)

    Article  CAS  Google Scholar 

  47. Bard, A.J., Parsons, R., Jordan, J.: Standard Potentials in Aqueous Solution. CRC Press, New York (1985)

    Google Scholar 

  48. Shock, E.L., Helgeson, H.C.: Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000 °C. Geochim. Cosmochim. Acta 52(8), 2009–2036 (1988)

    Article  CAS  Google Scholar 

  49. Nordstrom, D.K., Archer, D.G.: Arsenic Thermodynamic Data and Environmental Geochemistry. Arsenic in Ground Water, pp. 1–25. Springer, (2003)

    Google Scholar 

  50. Jin-qin, Y.A.N.G., Li-yuan, C.H.A.I., Qing-zhu, L.I., et al.: Redox behavior and chemical species of arsenic in acidic aqueous system. Trans. Nonferrous Species Arsen. Acidic Aqueous 27(9), 2063–2072 (2017)

    Google Scholar 

  51. Long, H.: A Fundamental Study of the Acidic Pressure Oxidation of Orpiment and Pyrite at High Temperature. University of British Columbia, British Columbia (2000)

    Google Scholar 

  52. Masscheleyn, P.H., Delaune, R.D., Patrick, J.R.W.H.: Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ. Sci. Technol. 25(8), 1414–1419 (1991)

    Article  CAS  Google Scholar 

  53. Pieczaba, E., Sanak-rydlewska, S., Zieba, D.: Removal of arsenic from aqueous solutions by the method of precipitate flotation. Arch. Min. Sci. 50(1), 131–142 (2005)

    CAS  Google Scholar 

  54. Yazdi, M.R.S., Darban, A.K.: Effect of arsenic speciation on remediation of arsenic-contaminated soils and waters. In: 15th International Conference on Heavy Metals in the Environment (ICHMET), Gdansh, pp. 492–495 (2010)

    Google Scholar 

  55. Yi, X.W.: An empirical estimation of standard entropy for some complex cationa and the E-pH diagram of As-H2O system at elevated temperature. J. Kunming Univ. Sci. Technol. 3, 58–73 (1982)

    Google Scholar 

  56. Debusschere, L., Demesmay, C., Rocca, J.L.: Arsenic speciation by coupling capillary zone electrophoresis with mass spectrometry. Chromatographia 51(5–6), 262–268 (2000)

    Article  CAS  Google Scholar 

  57. Gout, R., Pokrovski, G., Schott, J., et al.: Raman spectroscopic study of arsenic speciation in aqueous solutions up to 275 °C. J. Raman Spectrosc. 28(9), 725–730 (1997)

    Article  CAS  Google Scholar 

  58. Loehr, T.M., Plane, R.A.: Raman spectra and structures of arsenious acid and arsenites in aqueous solution. Inorg. Chem. 7(9), 1708–1714 (1968)

    Article  CAS  Google Scholar 

  59. Mähler, J., Persson, I., Herbert, R.B.: Hydration of arsenic oxyacid species. Dalton Trans. 42(5), 1364–1377 (2013)

    Article  Google Scholar 

  60. Bu, L.J., Gu, T., Ma, Y.X., et al.: Enhanced cathodic preconcentration of As(0) at Au and Pt electrodes for anodic stripping voltammetry analysis of As(III) and As(V). J. Phys. Chem. C 119(21), 11400–11409 (2015)

    Article  CAS  Google Scholar 

  61. Marini, L., Accornero, M.: Prediction of the thermodynamic properties of metal–arsenate and metal–arsenite aqueous complexes to high temperatures and pressures and some geological consequences. Environ. Geol. 52(7), 1343–1363 (2007)

    Article  CAS  Google Scholar 

  62. Pettine, M., Campanella, L., Millero, F.J.: Arsenite oxidation by H2O2 in aqueous solutions. Geochim. Cosmochim. Acta 63(18), 2727–2735 (1999)

    Article  CAS  Google Scholar 

  63. Vink, B.W.: Stability relations of antimony and arsenic compounds in the light of revised and extended Eh-pH diagrams. Chem. Geol. 130(1–2), 21–30 (1996)

    Article  CAS  Google Scholar 

  64. Marini, L., Accornero, M.: Erratum to: Prediction of the thermodynamic properties of metal–arsenate and metal–arsenite aqueous complexes to high temperatures and pressures and some geological consequences. Environ. Earth Sci. 59(7), 1601–1606 (2010)

    Article  Google Scholar 

  65. Knight, R.J., Sylva, R.N.: Spectrophotometric investigation of iron (III) hydrolysis in light and heavy water at 25 °C. J. Inorg. Nucl. Chem. 37(3), 779–783 (1975)

    Article  CAS  Google Scholar 

  66. Langmuir, D., Mahoney, J., Rowson, J.: Solubility products of amorphous ferric arsenate and crystalline scorodite (FeAsO4·2H2O) and their application to arsenic behavior in buried mine tailings. Geochim. Cosmochim. Acta 70(12), 2942–2956 (2006)

    Article  CAS  Google Scholar 

  67. Robins, R.G.: The stability and solubility of ferric arsenate: an update. In: EPD Congress’90, pp. 93–104 (1990)

    Google Scholar 

  68. Whiting, K.S.: The Thermodynamics and Geochemistry of Arsenic with Application to Subsurface Waters at the Sharon Steel Superfund Site at Midvale, Utah. Colorado School of Mines, Midvale (1992)

    Google Scholar 

  69. Hug, S.J., Canonica, L., Wegelin, M., et al.: Solar oxidation and removal of arsenic at circumneutral pH in iron containing waters. Environ. Sci. Technol. 35(10), 2114–2121 (2001)

    Article  CAS  Google Scholar 

  70. Wang, K.L., Jia, Y.F.: Effects of temperature and pH on the transformation of ferric arsenate to scorodite in acidic solution. Adv. Mater. Res. 726–731, 2165–2168 (2013)

    Article  Google Scholar 

  71. Paktunc, D., Dutrizac, J., Gertsman, V.: Synthesis and phase transformations involving scorodite, ferric arsenate and arsenical ferrihydrite: implications for arsenic mobility. Geochim. Cosmochim. Acta 72(11), 2649–2672 (2008)

    Article  CAS  Google Scholar 

  72. Welham, N.J., Malatt, K.A., Vukcevic, S.: The effect of solution speciation on iron–sulfur–arsenic–chloride systems at 298 K. Hydrometallurgy 57(3), 209–223 (2000)

    Article  CAS  Google Scholar 

  73. Raposo, J.C., Olazabal, M.A., Madariaga, J.M.: Complexation and precipitation of arsenate and iron species in sodium perchlorate solutions at 25 °C. J. Solut. Chem. 35(1), 79–94 (2006)

    Article  CAS  Google Scholar 

  74. Khoe, G.H., Robins, R.G.: ChemInform abstract: the complexation of iron(III) with sulfate, phosphate, or arsenate ion in sodium nitrate medium at 25 °C. J. Chem. Soc. Dalton Trans. 8, 2015–2021 (1988)

    Article  Google Scholar 

  75. Chai, L., Yang, J., Zhang, N., et al.: Structure and spectroscopic study of aqueous Fe(III)-As(V) complexes using UV-Vis, XAS and DFT-TDDFT. Chemosphere 182, 595–604 (2017)

    Article  CAS  Google Scholar 

  76. Ikeda-Ohno, A., Hennig, C., Tsushima, S., et al.: Speciation and structural study of U(IV) and (VI) in perchloric and nitric acid solutions. Inorg. Chem. 48(15), 7201–7210 (2009)

    Article  CAS  Google Scholar 

  77. Stefansson, A., Lemke, K.H., Seward, T.M.: Iron(III) complexation in hydrothermal solutionse an experimental and theoretical study. In: 15th International Conference on the Properties of Water and Steam, Berlin (2008)

    Google Scholar 

  78. Chen, Z., Zhu, Y.G., Liu, W.J., et al.: Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa) roots. New Phytol. 165(1), 91–97 (2005)

    Article  CAS  Google Scholar 

  79. Glastras, M.: The Precipitation of Arsenic from Aqueous Solutions. University of New South Wales, Sydney (1988)

    Google Scholar 

  80. Lee, J.S., Nriagu, J.O.: Stability constants for metal arsenates. Environ. Chem. 4(2), 123–133 (2007)

    Article  CAS  Google Scholar 

  81. Nordstrom, D.K., Parks, G.A.: Solubility and stability of scorodite, FeAsO4•2H2O: discussion. Am. Miner. 72(7–8), 849–851 (1987)

    CAS  Google Scholar 

  82. Galal-Gorchev, H., Stumm, W.: The reaction of ferric iron with ortho-phos-phate. J. Inorg. Nucl. Chem. 25(5), 567–574 (1963)

    Article  CAS  Google Scholar 

  83. Wilhelmy, R.B., Patel, R.C., Matijevic, E.: Thermodynamics and kinetics of aqueous ferric phosphate complex formation. Inorg. Chem. 24(20), 3290–3297 (1985)

    Article  CAS  Google Scholar 

  84. Harris, D., Loew, G.H., Komornicki, A.: Structure and relative spin-state ener-getics of [Fe(H2O)6]3+: a comparison of UHF, møller-plesset, nonlocal DFT, and semiempircal INDO/S calculations. J. Phys. Chem. A 101(21), 3959–3965 (1997)

    Article  CAS  Google Scholar 

  85. Jarzecki, A.A., Anbar, A.D., Spiro, T.G.: DFT analysis of [Fe(H2O)6]3+ and [Fe(H2O)6]2+ structure and vibrations; implications for isotope fractionation. J. Phys. Chem. A 108(14), 2726–2732 (2004)

    Article  CAS  Google Scholar 

  86. Collins, R.N., Rosso, K.M., Rose, A.L., et al.: An in situ XAS study of ferric iron hydrolysis and precipitation in the presence of perchlorate, nitrate, chloride and sulfate. Geochim. Cosmochim. Acta 177, 150–169 (2016)

    Article  CAS  Google Scholar 

  87. Sherman, D.M., Randall, S.R.: Surface complexation of arsenic (V) to iron(III) (hydr)oxides: structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochim. Cosmochim. Acta 67(22), 4223–4230 (2003)

    Article  CAS  Google Scholar 

  88. Waychunas, G.A., Rea, B.A., Fuller, C.C.: Surface chemistry of ferri-hydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim. Cosmochim. Acta 57(10), 2251–2269 (1993)

    Google Scholar 

  89. Kitahama, K., Kiriyama, R., Baba, Y.: Refinement of the crystal structure of scorodite. Acta Crystallogr. Sect. B 31(1), 322–324 (1975)

    Article  Google Scholar 

  90. Mikutta, C., Mandaliev, P.N., Kretzschmar, R.: New clues to the local atomic structure of short-range ordered ferric arsenate from extended X-ray absorption fine structure spectroscopy. Environ. Sci. Technol. 47(22), 13201–13202 (2013)

    Article  CAS  Google Scholar 

  91. Chen, N., Jiang, D.T., Cutler, J., et al.: Structural characterization of poorly-crystalline scorodite, iron(III) earsenate co-precipitates and uranium mill neutralized raffinate solids using X-ray absorption fine structure spectroscopy. Geochim. Cosmochim. Acta 73(11), 3260–3276 (2009)

    Article  CAS  Google Scholar 

  92. Mikutta, C., Michel, F.M., Mandaliev, P., et al.: Structure of Amorphous Ferric Arsenate from EXAFS Spectroscopy and Total X-ray Scattering. EGU General Assembly, Vienna (2013)

    Google Scholar 

  93. Guido, C.A., Cortona, P., Mennucci, B., et al.: On the metric of charge transfer molecular excitations: a simple chemical descriptor. J. Chem. Theory Comput. 9(7), 3118–3126 (2013)

    Article  CAS  Google Scholar 

  94. Goguel, R.: Direct spectrophotometric determination of sulfate in natural waters by formation of the ferric sulfate complex. Anal. Chem. 41(8), 1034–1038 (1969)

    Article  CAS  Google Scholar 

  95. Harharan, A., Sudhakar, C.H., Rao, B.V.: Studies on the solvent extraction of iron (III) with tri-iso-octylamine from aqueous mineral acid solutions. Orient. J. Chem. 28(4), 1785–1790 (2012)

    Article  Google Scholar 

  96. Sen, B., Mukherjee, M., Pal, S., et al.: A water soluble copper(II) complex as a HSO4 ion selective turn-on fluorescent sensor applicable in living cell imaging. RSC Adv. 5(62), 50532–50539 (2015)

    Article  CAS  Google Scholar 

  97. Drahota, P., Filippi, M.: Secondary arsenic minerals in the environment: a review. Environ. Int. 35(8), 1243–1255 (2009)

    Article  CAS  Google Scholar 

  98. Parker, V.B., Khodakovskii, I.L.: Thermodynamic properties of the aqueous ions (2+ and 3+) of iron and the key compounds of iron. J. Phys. Chem. Ref. Data 24(5), 1699 (1995)

    Google Scholar 

  99. Jia, Y.F., Xu, L.Y., Wang, X., et al.: Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite. Geochim. Cosmochim. Acta 71(7), 1643–1654 (2007)

    Article  CAS  Google Scholar 

  100. Le Berre, J.F., Gauvin, R., Demopoulos, G.P.: Characterization of poorly-crystalline ferric arsenate precipitated from equimolar Fe(III)-As(V) solutions in the pH range 2 to 8. Metall. Mater. Trans. B 38(5), 751–762 (2007)

    Article  CAS  Google Scholar 

  101. Roque-Malherbe, R., Polanco-Estrella, R., Marquez-Linares, F.: Study of the interaction between silica surfaces and the carbon dioxide molecule. J. Phys. Chem. C 114(41), 17773–17787 (2010)

    Article  CAS  Google Scholar 

  102. Zhu, H.F., Tang, P.G., Feng, Y.J., et al.: Intercalation of IR absorber into layered double hydroxides: preparation, thermal stability and selective IR absorption. Mater. Res. Bull. 47(3), 532–536 (2012)

    Article  CAS  Google Scholar 

  103. Kim, C.R., Noh, T.H., Yoo, K.H., et al.: Anionic indicators on the surface of submicrospheres consisting of ionic palladium(II) complex. Bull. Korean Chem. Soc. 30(12), 3057–3060 (2009)

    Article  CAS  Google Scholar 

  104. Yoon, S.H., Lee, S., Kim, T.H., et al.: Oxidation of methylated arsenic species by UV/S2O82−. Chem. Eng. J. 173(2), 290–295 (2011)

    Article  CAS  Google Scholar 

  105. Chai, L., Yang, J., Liao, F., et al.: Kinetics and molecular mechanism of arsenite photochemical oxidation based on sulfate radical. Mol. Catal. 438, 113–130 (2017)

    Article  CAS  Google Scholar 

  106. Neppolian, B., Celik, E., Choi, H.: Photochemical oxidation of arsenic(III) to arsenic(V) using peroxydisulfate ions as an oxidizing agent. Environ. Sci. Technol. 42(16), 6179–6184 (2008)

    Article  CAS  Google Scholar 

  107. Zhou, L., Zheng, W., Ji, Y.F., et al.: Ferrous-activated persulfate oxidation of arsenic(III) and diuron in aquatic system. J. Hazard. Mater. 263(Part 2), 422–430 (2013)

    Google Scholar 

  108. Davies, M.J., Gilbert, B.C., Stell, J.K., et al.: Nucleophilic substitution reactions of spin adducts. Implications for the correct identification of reaction intermediates by EPR/spin trapping. J. Chem. Soc. Perkin Trans. 2(3), 333–335 (1992)

    Google Scholar 

  109. Mottley, C., Mason, R.P.: Sulfate anion free radical formation by the peroxidation of (Bi) sulfite and its reaction with hydroxyl radical scavengers. Arch. Biochem. Biophys. 267(2), 681–689 (1988)

    Article  CAS  Google Scholar 

  110. Wang, Z., Bush, R.T., Sullivan, L.A., et al.: Selective oxidation of arsenite by peroxymonosulfate with high utilization efficiency of oxidant. Environ. Sci. Technol. 48(7), 3978–3985 (2014)

    Article  CAS  Google Scholar 

  111. Buxton, G.V., Greenstock, C.L., Helman, W.P., et al.: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/·O in aqueous solution. J. Phys. Chem. Ref. Data 17(2), 513–886 (1988)

    Article  CAS  Google Scholar 

  112. Neta, P., Grodkowski, J., Ross, A.B.: Rate constants for reactions of aliphatic carbon-centered radicals in aqueous solution. J. Phys. Chem. Ref. Data 25(3), 709–1050 (1996)

    Article  CAS  Google Scholar 

  113. Klaening, U.K., Bielski, B.H.J., Sehested, K.: Arsenic(IV). A pulse-radiolysis study. Inorg. Chem. 28(14), 2717–2724 (1989)

    Article  CAS  Google Scholar 

  114. Yamazaki-Nishida, S., Kimura, M.: Kinetics of the oxidation reaction of arsenious acid by peroxodisulfate ion, induced by irradiation with visible light of aqueous solutions containing tris(2,2′-bipyridine) ruthenium(II) ion. Inorg. Chim. Acta 174(2), 231–235 (1990)

    Article  CAS  Google Scholar 

  115. Yoon, S.H., Lee, J.H., Oh, S.E., et al.: Photochemical oxidation of As(III) by vacuum-UV lamp irradiation. Water Res. 42(13), 3455–3463 (2008)

    Article  CAS  Google Scholar 

  116. Fan, Z.Y., Huang, J.L., Wang, P., et al.: Kinetics of aniline oxidation with chlorine dioxide. J. Environ. Sci. 16(2), 238–241 (2004)

    CAS  Google Scholar 

  117. Gomes, A.C., Nunes, J.C., Simões, R.M.S.: Determination of fast ozone oxidation rate for textile dyes by using a continuous quench-flow system. J. Hazard. Mater. 178(1–3), 57–65 (2010)

    Article  CAS  Google Scholar 

  118. Iwai, M., Majima, H., Awakura, Y.: Oxidation of As(III) with dissolved molecular oxygen in alkaline solutions. Trans. Jpn. Inst. Met. 26(7), 492–498 (1985)

    Article  Google Scholar 

  119. Pettine, M., Campanella, L.G., Millero, F.J.: Arsenite oxidation by H2O2 in aqueous solutions. Geochim. Cosmochim. Acta 63(18), 2727–2735 (1999)

    Article  CAS  Google Scholar 

  120. Lau, T.K., Chu, W., Graham, N.J.D.: The aqueous degradation of butylated hydroxyanisole by UV/S2O82-: study of reaction mechanisms via dimerization and mineralization. Environ. Sci. Technol. 41(2), 613–619 (2007)

    Article  CAS  Google Scholar 

  121. Chai, L., Yue, M., Yang, J., et al.: Formation of tooeleite and the role of direct removal of As(III) from high-arsenic acid wastewater. J. Hazard. Mater. 320, 620–627 (2016)

    Article  CAS  Google Scholar 

  122. Nishimura, T., Robins, R.G.: Confirmation that tooeleite is a ferric arsenite sulfate hydrate, and is relevant to arsenic stabilization. Miner. Eng. 21(4), 246–251 (2008)

    Article  CAS  Google Scholar 

  123. McLeod, J., Paterson, A.H.J., Jones, J.R., et al.: Primary nucleation of alpha-lactose monohydrate: the effect of supersaturation and temperature. Int. Dairy J. 21(7), 455–461 (2011)

    Article  CAS  Google Scholar 

  124. Dang, S.V., Kawasaki, J., Abella, L.C., et al.: Removal of arsenic from simulated groundwater by adsorption using iron-modified rice husk carbon. J. Water Environ. Technol. 7(2), 43–56 (2009)

    Article  Google Scholar 

  125. Mercer, K.L., Tobiason, J.E.: Removal of arsenic from high ionic strength solutions: effects of ionic strength, pH, and preformed versus in situ formed HFO. Environ. Sci. Technol. 42(10), 3797–3802 (2008)

    Article  CAS  Google Scholar 

  126. Wang, Y.X., Duan, J.M., Liu, S.X., et al.: Removal of As(III) and As(V) by ferric salts coagulation—implications of particle size and zeta potential of precipitates. Sep. Purif. Technol. 135, 64–71 (2014)

    Article  CAS  Google Scholar 

  127. Li, X.F., Zhao, F.H., Deng, S.M.: The removal of arsenic(III) from acid mine drainage by mineral trap of tooeleite (Fe6(AsO3)4SO4(OH)4·4H2O). In: An Interdisciplinary Response to Mine Water Challenges, pp. 671–674 (2014)

    Google Scholar 

  128. Swash, P.M., Monhemius, A.J.: Comparison of the solubilities of arsenic-bearing wastes from hydrometallurgical and pyrometallurgical processes. GDMB 83, 141–152 (2000)

    Google Scholar 

  129. Paikaray, S., Göttlicher, J., Peiffer, S.: As(III) retention kinetics, equilibrium and redox stability on biosynthesized schwertmannite and its fate and control on schwertmannite stability on acidic (pH 3.0) aqueous exposure. Chemosphere 86, 557–564 (2012)

    Google Scholar 

  130. Rahman, N., Haseen, U.: Development of polyacrylamide chromium oxide as a new sorbent for solid phase extraction of As(III) from food and environmental water samples. RSC Adv. 5, 7311–7323 (2015)

    Article  CAS  Google Scholar 

  131. Tokoro, C., Yatsugi, Y., Koga, H., et al.: Sorption mechanisms of arsenate during coprecipitation with ferrihydrite in aqueous solution. Environ. Sci. Technol. 44, 638–643 (2010)

    Article  CAS  Google Scholar 

  132. Kaksonen, A.H., Riekkola-Vanhanen, M.L., Puhakka, J.A.: Optimization of metal sulfide precipitation in fluidized-bed treatment of acidic wastewater. Water Res. 37(2), 255–266 (2003)

    Article  CAS  Google Scholar 

  133. Mokone,Cas T.P., van Hille, R.P., Lewis, A.E.: Effect of solution chemistry on particle characteristics during metal sulfide precipitation. J. Colloid Interface Sci. 351(1), 10–18 (2010)

    Google Scholar 

  134. Long, G., Peng, Y.J., Bradshaw, D.: Flotation separation of copper sulfides from arsenic minerals at Rosebery copper concentrator. Miner. Eng. 66–68, 207–214 (2014)

    Article  CAS  Google Scholar 

  135. Padilla, R., Rodriguez, G., Ruiz, M.C.: Copper and arsenic dissolution from chalcopyrite–enargite concentrate by sulfidation and pressure leaching in H2SO4–O2. Hydrometallurgy 100(3–4), 152–156 (2010)

    Article  CAS  Google Scholar 

  136. Wang, T., Yang, W.C., Song, T.T., et al.: Cu doped Fe3O4 magnetic adsorbent for arsenic: synthesis, property, and sorption application. RSC Adv. 5(62), 50011–50018 (2015)

    Article  CAS  Google Scholar 

  137. Wang, Z.F., Cui, Z.J., Liu, L., et al.: Toxicological and biochemical responses of the earthworm eisenia fetida exposed to contaminated soil: effects of arsenic species. Chemosphere 154, 161–170 (2016)

    Article  CAS  Google Scholar 

  138. Yan, X., Li, Q.Z., Chai, L.Y., et al.: Formation of abiological granular sludge-A facile and bioinspired proposal for improving sludge settling performance during heavy metal wastewater treatment. Chemosphere 113, 36–41 (2014)

    Article  CAS  Google Scholar 

  139. Wang, T., Zhang, L.Y., Li, C.F., et al.: Synthesis of core-shell magnetic Fe3O4@poly(m-phenylenediamine) particles for chromium reduction and adsorption. Environ. Sci. Technol. 49(9), 5654–5662 (2015)

    Article  CAS  Google Scholar 

  140. Chai, L.Y., Wang, Q.W., Li, Q.Z., et al.: Enhanced removal of Hg(II) from acidic aqueous solution using thiol-functionalized biomass. Water Sci. Technol. 62(9), 2157–2165 (2010)

    Article  CAS  Google Scholar 

  141. Stalidis, G.A., Matis, K.A., Lazaridis, N.K.: Selective separation of Cu, Zn, and As from solution by flotation techniques. Sep. Sci. Technol. 24(1–2), 97–109 (1989)

    Article  CAS  Google Scholar 

  142. Alison Emslie Lewis: Review of metal sulfide precipitation. Hydrometallurgy 104(2), 222–234 (2010)

    Article  CAS  Google Scholar 

  143. Lian-hua, Z., Yu-lan, X.: Sulfide precipitation flotation for treatment of acidic mine waste water. Trans. Nonferrous Met. Soc. China 10, 106–109 (2000)

    Google Scholar 

  144. Huisman, J.L., Schouten, G., Schultz, C.: Biologically produced sulfide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry. Hydrometallurgy 83(1), 106–113 (2006)

    Article  CAS  Google Scholar 

  145. Bhattacharyya, D., Jumawan Jr., A.B., Grieves, R.B.: Separation of toxic heavy metals by sulfide precipitation. Sep. Sci. Technol. 14(5), 441–452 (1979)

    Article  CAS  Google Scholar 

  146. Veeken, A.H.M., de Vries, S., van Der Mark, A., et al.: Selective precipitation of heavy metals as controlled by a sulfide-selective electrode. Sep. Sci. Technol. 38(1), 1–19 (2003)

    Article  CAS  Google Scholar 

  147. Jiang, G.M., Peng, B., Chai, L.Y., et al.: Cascade sulfidation and separation of copper and arsenic from acidic wastewater via gas–liquid reaction. Trans. Nonferrous Met. Soc. China 27(4), 925–931 (2017)

    Article  CAS  Google Scholar 

  148. Zheng, J.X., Ye, H.Q., Huang, N.D., et al.: Selective separation of Hg(II) and Cd(II) from aqueous solutions by complexation-ultrafiltration process. Chemosphere 76(5), 706–710 (2009)

    Article  CAS  Google Scholar 

  149. Yavuz, C.T., Mayo, J., Yu, W.W., et al.: Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314(5801), 964–967 (2006)

    Article  Google Scholar 

  150. Zeng, H., Singh, A., Basak, S., et al.: Nanoscale size effects on uranium(VI) adsorption to hematite. Environ. Sci. Technol. 43(5), 1373–1378 (2009)

    Article  CAS  Google Scholar 

  151. Yean, S., Cong, L., Yavuz, C.T., et al.: Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate. J. Mater. Res. 20(12), 3255–3264 (2005)

    Article  CAS  Google Scholar 

  152. Cotten, G.B., Eldredge, H.B.: Nanolevel magnetic separation model considering flow limitations. Sep. Sci. Technol. 37(16), 3755–3779 (2002)

    Article  CAS  Google Scholar 

  153. Kelland, D.R.: Magnetic separation of nanoparticles. IEEE Trans. Magn. 34(4), 2123–2125 (1998)

    Article  Google Scholar 

  154. Mou, F.Z., Guan, J.G., Ma, H., et al.: Magnetic iron oxide chestnutlike hierarchical nanostructures: preparation and their excellent arsenic removal capabilities. ACS Appl. Mater. Interfaces 4(8), 3987–3993 (2012)

    Article  CAS  Google Scholar 

  155. Ge, J.P., Huynh, T., Hu, Y.X., et al.: Hierarchical magnetite/silica nanoassemblies as magnetically recoverable catalyst–supports. Nano Lett. 8(3), 931–934 (2008)

    Article  CAS  Google Scholar 

  156. Wei, Z.H., Xing, R., Zhang, X., et al.: Facile template-free fabrication of hollow nestlike α-Fe2O3 nanostructures for water treatment. ACS Appl. Mater. Interfaces 5(3), 598–604 (2013)

    Article  CAS  Google Scholar 

  157. Wang, T., Zhang, L., Li, C., et al.: Synthesis of core–shell magnetic Fe3O4@ poly (m-phenylenediamine) particles for chromium reduction and adsorption. Environ. Sci. Technol. 49(9), 5654–5662 (2012)

    Article  CAS  Google Scholar 

  158. Mou, F.Z., Guan, J.G., Xiao, Z.D., et al.: Solvent-mediated synthesis of magnetic Fe2O3 chestnut-like amorphous-core/γ-phase-shell hierarchical nanostructures with strong As(V) removal capability. J. Mater. Chem. 21(14), 5414–5421 (2011)

    Article  CAS  Google Scholar 

  159. Wang, P., Lo, I.M.C.: Synthesis of mesoporous magnetic γ-Fe2O3 and its application to Cr(VI) removal from contaminated water. Water Res. 43(15), 3727–3734 (2009)

    Article  CAS  Google Scholar 

  160. Wang, T., Zhang, L.Y., Wang, H.Y., et al.: Controllable synthesis of hierarchical porous Fe3O4 particles mediated by Poly(diallyldimethylammonium chloride) and their application in arsenic removal. ACS Appl. Mater. Interfaces 5(23), 12449–12459 (2013)

    Article  CAS  Google Scholar 

  161. Jia, B.P., Gao, L.: Morphological transformation of Fe3O4 spherical aggregates from solid to hollow and their self-assembly under an external magnetic field. J. Phys. Chem. C 112(3), 666–671 (2008)

    Article  CAS  Google Scholar 

  162. Fan, T., Pan, D., Zhang, H., et al.: Study on formation mechanism by monitoring the morphology and structure evolution of nearly monodispersed Fe3O4 submicroparticles with controlled particle sizes. Ind. Eng. Chem. Res. 50(15), 9009–9018 (2011)

    Article  CAS  Google Scholar 

  163. Liu, Z.H., Yang, X.J., Makita, Y., et al.: Preparation of a polycation-intercalated layered manganese oxide nanocomposite by a delamination/reassembling process. Chem. Mater. 14(11), 4800–4806 (2002)

    Article  CAS  Google Scholar 

  164. Liu, K.P., Zhang, J.J., Yang, G.H., et al.: Direct electrochemistry and electrocatalysis of hemoglobin based on poly(diallyldimethylammonium chloride) functionalized graphene sheets/room temperature ionic liquid composite film. Electrochem. Commun. 12(3), 402–405 (2010)

    Article  CAS  Google Scholar 

  165. Yu, X.Y., Luo, T., Jia, Y., et al.: Porous hierarchically micro-/nanostructured MgO: morphology control and their excellent performance in As(III) and As(V) removal. J. Phys. Chem. C 115(45), 22242–22250 (2011)

    Google Scholar 

  166. Hang, C., Li, Q., Gao, S.A., et al.: As(III) and As(V) adsorption by hydrous zirconium oxide nanoparticles synthesized by a hydrothermal process followed with heat treatment. Ind. Eng. Chem. Res. 51(1), 353–361 (2012)

    Article  CAS  Google Scholar 

  167. Zhong, L.S., Hu, J.S., Liang, H.P., et al.: Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv. Mater. 18(18), 2426–2431 (2006)

    Article  CAS  Google Scholar 

  168. Zhu, H., Hou, C., Li, Y.J., et al.: One-pot solvothermal synthesis of highly water-dispersible size-tunable functionalized magnetite nanocrystal clusters for lipase immobilization. Chem. Asian J. 8(7), 1447–1454 (2013)

    Article  CAS  Google Scholar 

  169. Cao, C.Y., Qu, J., Yan, W.S., et al.: Low-cost synthesis of flowerlike α-Fe2O3 nanostructures for heavy metal ion removal: adsorption property and mechanism. Langmuir 28(9), 4573–4579 (2012)

    Article  CAS  Google Scholar 

  170. Kanel, S.R., Greneche, J.M., Choi, H.: Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ. Sci. Technol. 40(6), 2045–2050 (2006)

    Article  CAS  Google Scholar 

  171. Nesbitt, H.W., Muir, I.J.: Oxidation states and speciation of secondary products on pyrite and arsenopyrite reacted with mine waste waters and air. Mineral. Petrol. 62(1–2), 123–144 (1998)

    Article  CAS  Google Scholar 

  172. Gomes, J.A.G., Daida, P., Kesmez, M., et al.: Arsenic removal by electrocoagulation using combined Al–Fe electrode system and characterization of products. J. Hazard. Mater. 139(2), 220–231 (2007)

    Article  CAS  Google Scholar 

  173. Chen, B., Zhu, Z.L., Ma, J., et al.: Surfactant assisted Ce–Fe mixed oxide decorated multiwalled carbon nanotubes and their arsenic adsorption performance. J. Mater. Chem. A 1(37), 11355–11367 (2013)

    Article  CAS  Google Scholar 

  174. Wielant, J., Hauffman, T., Blajiev, O., et al.: Influence of the iron oxide acid-base properties on the chemisorption of model epoxy compounds studied by XPS. J. Phys. Chem. C 111(35), 13177–13184 (2007)

    Article  CAS  Google Scholar 

  175. Ramos, M.A.V., Yan, W.L., Li, X.Q., et al.: Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core-shell structure. J. Phys. Chem. C 113(33), 14591–14594 (2009)

    Article  CAS  Google Scholar 

  176. Lim, S.F., Zheng, Y.M., Chen, J.P. Organic arsenic adsorption onto a magnetic sorbent. Langmuir 25(9), 4973–4978 (2009)

    Google Scholar 

  177. Manning, B.A., Hunt, M.L., Amrhein, C., et al.: Arsenic (III) and arsenic (V) reactions with zerovalent iron corrosion products. Environ. Sci. Technol. 36(24), 5455–5461 (2002)

    Article  CAS  Google Scholar 

  178. Pena, M., Meng, X., Koratis, G.P., et al.: Adsorption mechanism of arsenic on nanocrystalline titanium dioxide. Environ. Sci. Technol. 40(4), 1257–1262 (2006)

    Article  CAS  Google Scholar 

  179. Sandoval, R., Cooper, A.M., Aymar, K., et al.: Removal of arsenic and methylene blue from water by granular activated carbon media impregnated with zirconium dioxide nanoparticles. J. Hazard. Mater. 193, 296–303 (2011)

    Article  CAS  Google Scholar 

  180. Xu, W.H., Wang, J., Wang, L., et al.: Enhanced arsenic removal from water by hierarchically porous CeO2–ZrO2 nanospheres: role of surface-and structure-dependent properties. J. Hazard. Mater. 260, 498–507 (2013)

    Article  CAS  Google Scholar 

  181. Lv, X.J., Yang, W.G., Quan, Z.W., et al.: Enhanced electron transport in Nb-Doped TiO2 nanoparticles via pressure-induced phase transitions. J. Am. Chem. Soc. 136(1), 419–426 (2014)

    Article  CAS  Google Scholar 

  182. Li, H., Zhang, L.Z.: Oxygen vacancy induced selective silver deposition on the 001 facets of BiOCl single-crystalline nanosheets for enhanced Cr(VI) and sodium pentachlorophenate removal under visible light. Nanoscale 6(14), 7805–7810 (2014)

    Article  CAS  Google Scholar 

  183. Zhang, Y., Yang, M., Dou, X.M., et al.: Arsenate adsorption on an Fe-Ce bimetal oxide adsorbent: Role of surface properties. Environ. Sci. Technol. 39(18), 7246–7253 (2005)

    Article  CAS  Google Scholar 

  184. Warner, C.L., Chouyyok, W., Mackie, K.E., et al.: Manganese doping of magnetic iron oxide nanoparticles: tailoring surface reactivity for a regenerable heavy metal sorbent. Langmuir 28(8), 3931–3937 (2012)

    Article  CAS  Google Scholar 

  185. Wang, Y.J., Chen, D.G., Wang, Y.D., et al.: Tunable surface charge of ZnS: Cu nano-adsorbent induced the selective preconcentration of cationic dyes from wastewater. Nanoscale 4(12), 3665–3668 (2012)

    Article  CAS  Google Scholar 

  186. Neagu, D., Irvine, J.T.: Enhancing electronic conductivity in strontium titanates through correlated A and B-site doping. Chem. Mater. 23(6), 1607–1617 (2011)

    Article  CAS  Google Scholar 

  187. Norris, D.J., Efros, A.L., Erwin, S.C.: Doped nanocrystals. Science 319(5871), 1776–1779 (2008)

    Article  CAS  Google Scholar 

  188. Chen, Z., Pina, C.D., Falletta, E., et al.: A green route to conducting polyaniline by copper catalysis. J. Catal. 267(2), 93–96 (2009)

    Article  CAS  Google Scholar 

  189. Chai, L.Y., Wang, T., Zhang, L.Y., et al.: A Cu–m-phenylenediamine complex induced route to fabricate poly(m-phenylenediamine)/reduced graphene oxide hydrogel and its adsorption application. Carbon 81, 748–757 (2015)

    Article  CAS  Google Scholar 

  190. Deng, H., Li, X.L., Peng, Q., et al.: Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. 117(18), 2842–2845 (2005)

    Article  Google Scholar 

  191. Yin, A.Y., Guo, X.Y., Dai, W.L., et al.: The nature of active copper species in Cu-HMS catalyst for hydrogenation of dimethyl oxalate to ethylene glycol: new insights on the synergetic effect between Cu0 and Cu+. J. Phys. Chem. C 113(25), 11003–11013 (2009)

    Article  CAS  Google Scholar 

  192. Derrouiche, S., Lauron-Pernot, H., Louis, C.: Synthesis and Treatment Parameters For Controlling Metal Particle Size And Composition in Cu/ZnO materials first evidence of Cu3Zn alloy formation. Chem. Mater. 24(12), 2282–2291 (2012)

    Article  CAS  Google Scholar 

  193. McFarland, E.W., Metiu, H.: Catalysis by doped oxides. Chem. Rev. 113(6), 4391–4427 (2013)

    Article  CAS  Google Scholar 

  194. Aldon, L., Kubiak, P., Picard, A., et al.: Size particle effects on lithium insertion into Sn-doped TiO2 anatase. Chem. Mater. 18(6), 1401–1406 (2006)

    Article  CAS  Google Scholar 

  195. Deiana, C., Fois, E., Coluccia, S., et al.: Surface structure of TiO2 P25 nanoparticles: infrared study of hydroxy groups on coordinative defect sites. J. Phys. Chem. C 114(49), 21531–21538 (2010)

    Article  CAS  Google Scholar 

  196. Chai, L.Y., Wang, Y.Y., Zhao, N., et al.: Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water. Water Res. 47(12), 4040–4049 (2013)

    Article  CAS  Google Scholar 

  197. Mohapatra, M., Sahoo, S.K., Anand, S., et al.: Removal of As(V) by Cu(II)-, Ni(II)-, or Co(II)-doped goethite samples. J. Colloid Interface Sci. 298(1), 6–12 (2006)

    Article  CAS  Google Scholar 

  198. Yu, X.Y., Luo, T., Jia, Y., et al.: Porous hierarchically micro-/nanostructured MgO: morphology control and their excellent performance in As (III) and As (V) removal. J. Phys. Chem. C 115(45), 22242–22250 (2011)

    Article  CAS  Google Scholar 

  199. Xu, W.H., Wang, L., Wang, J., et al.: Superparamagnetic mesoporous ferrite nanocrystal clusters for efficient removal of arsenite from water. CrystEngComm 15(39), 7895–7903 (2013)

    Article  CAS  Google Scholar 

  200. Couture, R.M., Rose, J., Kumar, N., et al.: Sorption of arsenite, arsenate, and thioarsenates to iron oxides and iron sulfides: a kinetic and spectroscopic investigation. Environ. Sci. Technol. 47(11), 5652–5659 (2013)

    Article  CAS  Google Scholar 

  201. Can, M., Uzun, S.: Oxidizing effect of the Cu(ClO4)2 on chemical polymerization of aniline in anhydrous media. Asian J. Chem. 22, 867–872 (2010)

    CAS  Google Scholar 

  202. Izumi, C.M.S., Constantino, V.R.L., Temperini, M.L.A.: Spectroscopic characterization of polyaniline formed by using copper (II) in homogeneous and MCM-41 molecular sieve media. J. Phys. Chem. B 109(47), 22131–22140 (2005)

    Article  CAS  Google Scholar 

  203. Mou, F.Z., Guan, J.G., Ma, H.R., et al.: Magnetic iron oxide chestnutlike hierarchical nanostructures: preparation and their excellent arsenic removal capabilities. ACS Appl. Mater. Interfaces 4(8), 3987–3993 (2012)

    Article  CAS  Google Scholar 

  204. Toulemon, D., Pichon, B.P., Cattoen, X., et al.: 2D assembly of non-interacting magnetic iron oxide nanoparticles via “click” chemistry. Chem. Commun. 47(43), 11954–11956 (2011)

    Article  CAS  Google Scholar 

  205. Feng, L.Y., Cao, M.H., Ma, X.Y., et al.: Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal. J. Hazard. Mater. 217–218, 439–446 (2012)

    Article  CAS  Google Scholar 

  206. Saiz, J., Bringas, E., Ortiz, I.: Functionalized magnetic nanoparticles as new adsorption materials for arsenic removal from polluted waters. J. Chem. Technol. Biotechnol. 89(6), 909–918 (2014)

    Article  CAS  Google Scholar 

  207. Chen, B., Zhu, Z.L., Ma, J., et al.: One-pot, solid-phase synthesis of magnetic multiwalled carbon nanotube/iron oxide composites and their application in arsenic removal. J. Colloid Interface Sci. 434, 9–17 (2014)

    Article  CAS  Google Scholar 

  208. Li, H., Yu, S., Han, X.X.: Fabrication of CuO hierarchical flower-like structures with biomimetic superamphiphobic, self-cleaning and corrosion resistance properties. Chem. Eng. J. 283, 1443–1454 (2016)

    Article  CAS  Google Scholar 

  209. Meshram, S.P., Adhyapak, P.V., Mulik, U.P., et al.: Facile synthesis of CuO nanomorphs and their morphology dependent sunlight driven photocatalytic properties. Chem. Eng. J. 204–206, 158–168 (2012)

    Article  CAS  Google Scholar 

  210. Peng, B., Song, T., Wang, T., et al.: Facile synthesis of Fe3O4@Cu(OH)2 composites and their arsenic adsorption application. Chem. Eng. J. 299, 15–22 (2016)

    Article  CAS  Google Scholar 

  211. Escudero, C., Fiol, N., Villaescusa, I., et al.: Arsenic removal by awaste metal (hydr)oxide entrapped into calcium alginate beads. J. Hazard. Mater. 164(2–3), 533–541 (2009)

    Article  CAS  Google Scholar 

  212. Li, Z.J., Deng, S.B., Yu, G., et al.: As(V) and As(III) removal from water by a Ce–Ti oxide adsorbent: behavior and mechanism. Chem. Eng. J. 161(1–2), 106–113 (2010)

    Article  CAS  Google Scholar 

  213. Yang, Y., Yang, M., Dou, X.M., et al.: Arsenate adsorption on an Fe-Ce bimetal oxide adsorbent: role of surface properties. Environ. Sci. Technol. 39(18), 7246–7253 (2005)

    Article  CAS  Google Scholar 

  214. Zhang, S.W., Li, J.X., Wen, T., et al.: Magnetic Fe3O4@NiO hierarchical structures: preparation and their excellent As(V) and Cr(VI) removal capabilities. RSC Adv. 3(8), 2754–2764 (2013)

    Article  CAS  Google Scholar 

  215. Wang, T., Zhang, L.Y., Li, C.F., et al.: Synthesis of core-shell magnetic Fe3O4 @poly(m-phenylenediamine) particles for chromium reduction and adsorption. Environ. Sci. Technol. 49(9), 5654–5662 (2015)

    Article  CAS  Google Scholar 

  216. Xu, L.J., Wang, J.L.: Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient fenton-like heterogeneous catalyst for degradation of 4-chlorophenol. Environ. Sci. Technol. 46(18), 10145–10153 (2012)

    Article  CAS  Google Scholar 

  217. Gai, L.G., Li, Z.L., Hou, Y.H., et al.: Preparation of core–shell Fe3O4/SiO2 microspheres as adsorbents for purification of DNA. J. Phys. D Appl. Phys. 43, 445001 (2010)

    Article  CAS  Google Scholar 

  218. Ma, Z.Y., Guan, Y.P., Liu, H.Z.: Synthesis and characterization of micron-sized monodisperse superparamagnetic polymer particles with amino groups. J. Polym. Sci. Part A Polym. Chem. 43(15), 3433–3439 (2005)

    Article  CAS  Google Scholar 

  219. Lu, C.H., Qi, L.M., Yang, J.H., et al.: Simple template-free solution route for the controlled synthesis of Cu(OH)2 and CuO nanostructures. J. Phys. Chem. B 108(46), 17825–17831 (2004)

    Google Scholar 

  220. Hua, R., Li, Z.K.: Sulfhydryl functionalized hydrogel with magnetism: synthesis, characterization, and adsorption behavior study for heavy metal removal. Chem. Eng. J. 249, 189–200 (2014)

    Article  CAS  Google Scholar 

  221. Martinson, C.A., Reddy, K.J.: Adsorption of arsenic(III) and arsenic(V) by cupric oxide nanoparticles. J. Colloid Interface Sci. 336(2), 406–411 (2009)

    Article  CAS  Google Scholar 

  222. Wang, X.L., Liu, Y.K., Zheng, J.T.: Removal of As(III) and As(V) from water by chitosan and chitosan derivative: a review. Environ. Sci. Pollut. Res. 23(14), 13789–13801 (2016)

    Article  CAS  Google Scholar 

  223. Zhang, G.S., Ren, Z.M., Zhang, X.W., et al.: Nanostructured iron(III)-copper(II) binary oxide: a novel adsorbent for enhanced arsenic removal from aqueous solutions. Water Res. 47(12), 4022–4031 (2013)

    Article  CAS  Google Scholar 

  224. Maeda, K., Domen, K.: New non-oxide photocatalysts designed for overall water splitting under visible light. J. Phys. Chem. C 111(22), 7851–7861 (2007)

    Article  CAS  Google Scholar 

  225. Huang, M.R., Ding, Y.B., Li, X.G.: Lead-ion potentiometric sensor based on electrically conducting microparticles of sulfonic phenylenediamine copolymer. Analyst 138(13), 3820–3829 (2013)

    Article  CAS  Google Scholar 

  226. Huang, M.R., Rao, X.W., Li, X.G., et al.: Lead ion-selective electrodes based on polyphenylenediamine as unique solid ionophores. Talanta 85(3), 1575–1584 (2011)

    Article  CAS  Google Scholar 

  227. Huang, J.Y., Li, S.H., Ge, M.Z., et al.: Robust superhydrophobic TiO2@fabrics for UV shielding, self-cleaning and oil–water separation. J. Mater. Chem. A 3(6), 2825–2832 (2015)

    Article  CAS  Google Scholar 

  228. Li, X.G., Ma, X.L., Sun, J., et al.: Powerful reactive sorption of silver(I) and mercury(II) onto poly(o-phenylenediamine) microparticles. Langmuir 25(3), 1675–1684 (2009)

    Article  CAS  Google Scholar 

  229. Wang, J.J., Jiang, J., Hu, B., et al.: Uniformly shaped poly(p-phenylenediamine) microparticles: shape-controlled synthesis and their potential application for the removal of lead ions from water. Adv. Func. Mater. 18(7), 1105–1111 (2008)

    Article  CAS  Google Scholar 

  230. Huang, M.R., Lu, H.J., Song, W.D., et al.: Dynamic reversible adsorption and desorption of lead ions through a packed column of poly(m-phenylenediamine) spheroids. Soft Mater. 8(2), 149–163 (2010)

    Google Scholar 

  231. Zhang, L.Y., Wang, T., Wang, H.Y., et al.: Graphene@poly(m-phenylenediamine) hydrogel fabricated by a facile post-synthesis assembly strategy. Chem. Commun. 49(85), 9974–9976 (2013)

    Article  CAS  Google Scholar 

  232. Yu, W.T., Zhang, L.Y., Meng, Y., et al.: High conversion synthesis of functional poly(m-phenylenediamine) nanoparticles by Cu-OH-assisted method and its superior ability toward Ag+ adsorption. Synth. Met. 176, 78–85 (2013)

    Article  CAS  Google Scholar 

  233. Wang, H.Y., Chai, L.Y., Hu, A.J., et al.: Self-assembly microstructures of amphiphilic polyborate in aqueous solutions. Polymer 50(13), 2976–2980 (2009)

    Article  CAS  Google Scholar 

  234. Harris, J.K., Rose, G.D., Bruening, M.L.: Spontaneous generation of multilamellar vesicles from ethylene oxide/butylene oxide diblock copolymers. Langmuir 18(14), 5337–5342 (2002)

    Article  CAS  Google Scholar 

  235. Li, H.Q., Lai, Y.K., Huang, J.Y., et al.: Multifunctional wettability patterns prepared by laser processing on superhydrophobic TiO2 nanostructured surfaces. J. Mater. Chem. B 3(3), 342–347 (2015)

    Article  CAS  Google Scholar 

  236. Dey, J., Kumar, S., Nath, S., et al.: Additive induced core and corona specific dehydration and ensuing growth and interaction of Pluronic F127 micelles. J. Colloid Interface Sci. 415, 95–102 (2014)

    Article  CAS  Google Scholar 

  237. Sang, P.L., Wang, Y.Y., Zhang, L.Y., et al.: Effective adsorption of sulfate ions with poly(m-phenylenediamine) in aqueous solution and its adsorption mechanism. Trans. Nonferrous Met. Soc. China 23(1), 243–252 (2013)

    Article  CAS  Google Scholar 

  238. Li, X.G., Wang, L.X., Jin, Y., et al.: Preparation and identification of a soluble copolymer from pyrrole and o-toluidine. J. Appl. Polym. Sci. 82(2), 510–518 (2001)

    Article  CAS  Google Scholar 

  239. Chai, L.Y., Zhang, L.Y., Wang, H.Y., et al.: An effective and scale-up self-assembly route to prepare the rigid and smooth oligo(o-phenylenediamine) microfibers in acidic solution by NaClO2. Mater. Lett. 64(21), 2302–2305 (2010)

    Article  CAS  Google Scholar 

  240. Li, X.G., Huang, M.R., Duan, W.: Novel multifunctional polymers from aromatic diamines by oxidative polymerizations. Chem. Rev. 102(9), 2925–3030 (2002)

    Article  CAS  Google Scholar 

  241. Liu, M.L., Ye, M., Yang, Q., et al.: A new method for characterizing the growth and properties of polyaniline and poly(aniline-co-o-aminophenol) films with the combination of EQCM and in situ FTIR spectroelectrochemisty. Electrochim. Acta 52(1), 342–352 (2006)

    Article  CAS  Google Scholar 

  242. Huang, M.R., Li, X.G., Yang, Y.L.: Oxidative polymerization of o-phenylenediamine and pyrimidylamine. Polym. Degrad. Stab. 71(1), 31–38 (2000)

    Article  Google Scholar 

  243. Yu, W.T., Zhang, L.Y., Wang, H.Y., et al.: Adsorption of Cr(VI) using synthetic poly(m-phenylenediamine). J. Hazard. Mater. 260, 789–795 (2013)

    Article  CAS  Google Scholar 

  244. Zhang, L.Y., Chai, L.Y., Liu, J., et al.: pH manipulation: a facile method for lowering oxidation state and keeping good yield of poly(m-phenylenediamine) and its powerful Ag+ adsorption ability. Langmuir 27(22), 13729–13738 (2011)

    Article  CAS  Google Scholar 

  245. Losito, I., Malitesta, C., De Bari, I., et al.: X-ray photoelectron spectroscopy characterization of poly(2,3-diaminophenazine) films electrosynthesised on platinum. Thin Solid Films 473(1), 104–113 (2005)

    Article  CAS  Google Scholar 

  246. Frost, R.L., Xi, Y.F., Wood, B.J.: Thermogravimetric analysis, PXRD, EDX and XPS study of chrysocolla (Cu, Al)2H2Si2O5(OH)4·nH2O-structural implications. Thermochim. Acta 545, 157–162 (2012)

    Article  CAS  Google Scholar 

  247. Pelissier, B., Beaurain, A., Fontaine, H., et al.: Investigations on HCl contaminated Cu 200 mm wafers using parallel angle resolved XPS. Micro Microelectron. Eng. 86(4–6), 1013–1016 (2009)

    Article  CAS  Google Scholar 

  248. Ayad, M.M., Amer, W.A., Stejskal, J.: Effect of iodine solutions on polyaniline films. Thin Solid Films 517(21), 5969–5973 (2009)

    Article  CAS  Google Scholar 

  249. Han, J., Dai, J., Guo, R.: Highly efficient adsorbents of poly(o-phenylenediamine) solid and hollow sub-microspheres towards lead ions: a comparative study. J. Colloid Interface Sci. 356(2), 749–756 (2011)

    Article  CAS  Google Scholar 

  250. Stejskal, J., Trchová, M., Brožová, L., et al.: Reduction of silver nitrate by polyaniline nanotubes to produce silver-polyaniline composites. Chem. Pap. 63(1), 77–83 (2009)

    Article  CAS  Google Scholar 

  251. Izumi, C.M.S., Brito, H.F., Ferreira, A.M.D.C., et al.: Spectroscopic investigation of the interactions between emeraldine base polyaniline and Eu(III) ions. Synth. Met. 159(5–6), 377–384 (2009)

    Google Scholar 

  252. Huang, M.R., Huang, S.J., Li, X.G.: Facile synthesis of polysulfoaminoanthraquinone nanosorbents for rapid removal and ultrasensitive fluorescent detection of heavy metal ions phys. J. Phys. Chem. C 115(13), 5301–5315 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Yuan Chai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chai, LY., Li, QZ., Wang, QW., Wang, YY., Yang, WC., Wang, HY. (2019). Arsenic Behaviors and Pollution Control Technologies in Aqueous Solution. In: Chai, LY. (eds) Arsenic Pollution Control in Nonferrous Metallurgy. Springer, Singapore. https://doi.org/10.1007/978-981-13-6721-2_3

Download citation

Publish with us

Policies and ethics