We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Arithmetic of Cuspidal Representations | SpringerLink

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Arithmetic of Cuspidal Representations

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Here, F is a non-Archimedean local field of residual characteristic p. We are concerned with the irreducible, cuspidal representations of the general linear groups \(\mathrm {GL}(n, F)\). A complete classification of these representations has been known for a long time. It is achieved using rather complicated objects, the simple types and simple characters. The methods it requires have been useful more widely, and the general scheme is now known to apply to many more groups, including \(\mathrm {GL}(m, D)\) (where D is a central F-division algebra), orthogonal groups \(\mathrm {SO}(n)\), symplectic groups \(\mathrm {Sp}(2n)\), (both for p not equal to 2) and even a couple of exceptional groups. In some cases, it is known that the common classification conforms to the requirements of Functoriality. The most interesting, and presently the most difficult, instance of Functoriality is the basic connection between the irreducible cuspidal representations of \(\mathrm {GL}(n, F)\) and the irreducible, n-dimensional representations of the Weil group of F. These notes describe the classification of the cuspidal representations, introducing the results and techniques currently necessary for making this connection more explicit, given that it is known to exist.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    When speaking of a representation, I invariably mean a smooth complex representation.

References

  1. J. Arthur, L. Clozel, Simple algebras, base change, and the advanced theory of the trace formula. Ann. Math. Stud. 120 (1989) Princeton University Press

    Google Scholar 

  2. C. Blondel, G. Henniart, S.A.R. Stevens, Jordan blocks of cuspidal representations of symplectic groups. arXiv:1704.03545v1

  3. P. Broussous, Extension du formalisme de Bushnell-Kutzko au cas d’une algèbre à division. Proc. Lond. Math. Soc. 77(3), 292–326 (1998)

    Article  MathSciNet  Google Scholar 

  4. P. Broussous, B. Lemaire, Building of \(GL(m, D)\) and centralizers. Transform. Groups 7(1), 15–50 (2002)

    Article  MathSciNet  Google Scholar 

  5. F. Bruhat, J. Tits, Groupes réductifs sur un corps local. I, Données radicielles valuées. Publ. Math. Inst. Hautes Etudes Scientifiques 41, 5–251 (1972)

    Article  Google Scholar 

  6. C.J. Bushnell, Hereditary orders, Gauss sums and supercuspidal representations of \(GL_N\). J. reine angew. Math. 375(376), 184–210 (1987)

    MathSciNet  MATH  Google Scholar 

  7. C.J. Bushnell, A. Fröhlich, Non-abelian congruence Gauss sums and \(p\)-adic simple algebras. Proc. Lond. Math. Soc. 50(3), 207–264 (1985)

    Google Scholar 

  8. C.J. Bushnell, G. Henniart, Local tame lifting for GL(n) I: simple characters. Publ. Math. Inst. Hautes Etudes Scientifiques 83, 105–233 (1996)

    Article  MathSciNet  Google Scholar 

  9. C.J. Bushnell, G. Henniart, Local tame lifting for GL(n) II: wildly ramified supercuspidals. Astérisque 254 (1999)

    Google Scholar 

  10. C.J. Bushnell, G. Henniart, Local Rankin-Selberg convolution for \(GL(n)\): divisibility of the conductor. Math. Ann. 321, 455–461 (2001)

    Article  MathSciNet  Google Scholar 

  11. C.J. Bushnell, G. Henniart, Local tame lifting for GL(n) III: explicit base change and Jacquet-Langlands correspondence. J. reine angew. Math. 508, 39–100 (2005)

    Article  MathSciNet  Google Scholar 

  12. C.J. Bushnell, G. Henniart, Local tame lifting for GL(n) IV: simple characters and base change. Proc. Lond. Math. Soc. (3) 87, 337–362 (2003)

    Article  MathSciNet  Google Scholar 

  13. C.J. Bushnell, G. Henniart, The essentially tame local Langlands correspondence, I. J. Am. Math. Soc. 18, 685–710 (2005)

    Article  MathSciNet  Google Scholar 

  14. C.J. Bushnell, G. Henniart, The essentially tame local Langlands correspondence, II: totally ramified representations. Compos. Math. 141, 979–1011 (2005)

    Article  MathSciNet  Google Scholar 

  15. C.J. Bushnell, G. Henniart, The Local Langlands Conjecture for GL(2), Grundlehren der mathematischen Wissenschaften, vol. 335 (Springer, 2006)

    Google Scholar 

  16. C.J. Bushnell, G. Henniart, The essentially tame local Langlands correspondence, III: the general case. Proc. Lond. Math. Soc. 101(3), 497-553 (2010)

    Article  MathSciNet  Google Scholar 

  17. C.J. Bushnell, G. Henniart, Intertwining of simple characters in GL(n). Int. Math. Res. Not. (2012). https://doi.org/10.1093/imrn/rns162

    Article  MathSciNet  Google Scholar 

  18. C.J. Bushnell, G. Henniart, Langlands parameters for epipelagic representations of GL\(_n\). Math. Ann. 358, 433–463 (2014)

    Google Scholar 

  19. C.J. Bushnell, G. Henniart, To an effective local Langlands correspondence. Memoirs Am. Math. Soc. 231(1087), v+88 (2014)

    Google Scholar 

  20. C.J. Bushnell, G. Henniart, Modular local Langlands correspondence for GL\(_n\). Int. Math. Res. Not. (2014). https://doi.org/10.1093/imrn/rnt063

    Article  Google Scholar 

  21. C.J. Bushnell, G. Henniart, Higher ramification and the local Langlands correspondence. Ann. Math. 185(2)(3), 919–955 (2017)

    Article  MathSciNet  Google Scholar 

  22. C.J. Bushnell, G. Henniart, Local Langlands correspondence and ramification for Carayol representations. arXiv: 1611.09258v2

  23. C.J. Bushnell, G. Henniart, P.C. Kutzko, Local Rankin-Selberg convolutions for GL\(_n\): explicit conductor formula. J. Am. Math. Soc. 11, 703–730 (1998)

    Google Scholar 

  24. C.J. Bushnell, G. Henniart, P.C. Kutzko, Correspondance de Langlands locale pour GL(n) et conducteurs de paires. Ann. Scient. École Norm. Sup. 31(4), 537–560 (1998)

    Article  MathSciNet  Google Scholar 

  25. C.J. Bushnell, P.C. Kutzko, The admissible dual of \(GL(N)\) via compact open subgroups. Ann. Math. Stud. 129 (1993) Princeton University Press

    Google Scholar 

  26. C.J. Bushnell, P.C. Kutzko, The admissible dual of \(SL(N)\) I. Ann. Scient. École Normale Sup. 26(4), 261–279 (1993)

    Google Scholar 

  27. C.J. Bushnell, P.C. Kutzko, The admissible dual of \(SL(N)\) II. Proc. Lond. Math. Soc. 68(3), 317–379 (1994)

    Google Scholar 

  28. C.J. Bushnell, P.C. Kutzko, Smooth representations of \(p\)-adic reductive groups; structure theory via types. Proc. Lond. Math. Soc. 77(3), 582–634 (1998)

    Google Scholar 

  29. C.J. Bushnell, P.C. Kutzko, Semisimple types for \(GL(N)\). Compos. Math. 119, 53–97 (1999)

    Article  Google Scholar 

  30. H. Carayol, Représentations cuspidales du groupe linéaire. Ann. Scient. École Norm. Sup. 17(4), 191–225 (1984)

    Article  MathSciNet  Google Scholar 

  31. P. Deligne, Les corps locaux de caractéristique \(p\), limite de corps locaux de caractéristique \(0\). Appendice: théorie de la ramification, et fonctions de Herbrand, pour des extensions non galoisiennes (Représentations des groupes réductifs sur un corps local, Hermann, Paris, 1984), pp. 150–157

    Google Scholar 

  32. G. Glauberman, Correspondences of characters for relatively prime operator groups. Can. J. Math. 20, 1465–1488 (1968)

    Article  MathSciNet  Google Scholar 

  33. R. Godement, H. Jacquet, Zeta Functions of Simple Algebras. Lecture Notes in Mathematics, vol. 260 (Springer, 1972)

    Google Scholar 

  34. J.A. Green, The characters of the finite general linear groups. Trans. Am. Math. Soc. 80, 402–447 (1955)

    Article  MathSciNet  Google Scholar 

  35. V. Heiermann, Sur l’espace des représentations irréductibles du groupe de Galois d’un corps local. C. R. Acad. Sci. Paris Sér. I Math. 323(6), 571–576 (1996)

    Google Scholar 

  36. G. Henniart, Représentations du groupe de Weil d’un corps local. L’Ens. Math. Sér II(26), 155–172 (1980)

    MATH  Google Scholar 

  37. G. Henniart, Correspondance de Langlands-Kazhdan explicite dans le cas non ramifié. Math. Nachr. 158, 7–26 (1992)

    Article  MathSciNet  Google Scholar 

  38. G. Henniart, Caractérisation de la correspondance de Langlands par les facteurs \(\varepsilon \) de paires. Invent. Math. 113, 339–350 (1993)

    Article  MathSciNet  Google Scholar 

  39. G. Henniart, R. Herb, Automorphic induction for \(GL(n)\) (over local non archimedean fields). Duke Math. J. 78, 131–192 (1995)

    Article  MathSciNet  Google Scholar 

  40. G. Henniart, B. Lemaire, Formules de caractères pour l’induction automorphe. J. reine angew. Math. 645, 41–84 (2010)

    MathSciNet  MATH  Google Scholar 

  41. G. Henniart, B. Lemaire, Changement de base et induction automorphe pour GL\(_n\) en caractéristique non nulle. Mém. Soc. Math. France 108 (2010)

    Google Scholar 

  42. R.E. Howe, Tamely ramified supercuspidal representations of \(GL_n\). Pac. J. Math. 73, 437–460 (1977)

    Article  Google Scholar 

  43. R.E. Howe, Some qualitative results on the representation theory of \(GL_n\) over a \(p\) -adic field. Pac. J. Math. 73, 479–538 (1977)

    Article  Google Scholar 

  44. R.E. Howe, A. Moy, Hecke algebra isomorphisms for \(GL(n)\) over a \(p\) -adic field. J. Alg. 131, 388–424 (1990)

    Article  MathSciNet  Google Scholar 

  45. I.M. Isaacs, Character Theory of Finite Groups (A.M.S. Chelsea Publishing, 2006)

    Google Scholar 

  46. H. Jacquet, B. Liu, On the local converse theorem for \(p\)-adic \(GL(n)\). Am. J. Math. arXiv:1601.03656

  47. H. Jacquet, I. Piatetski-Shapiro, J. Shalika, Rankin-Selberg convolutions. Am. J. Math. 105, 367–483 (1983)

    Article  MathSciNet  Google Scholar 

  48. J.-L. Kim, Supercuspidal representations: an exhaustion theorem. J. Am. Math. Soc. 20, 273–320 (2007)

    Article  MathSciNet  Google Scholar 

  49. T. Kondo, On Gaussian sums attached to the general linear groups over finite fields. J. Math. Soc. Jap. 15, 244–255 (1963)

    Article  MathSciNet  Google Scholar 

  50. P.C. Kutzko, On the supercuspidal representations of \(GL_2\), I. Am. J. Math. 100, 43–60 (1978)

    Article  Google Scholar 

  51. P.C. Kutzko, On the supercuspidal representations of \(GL_2\), II. Am. J. Math. 100, 705–716 (1978)

    Article  Google Scholar 

  52. P.C. Kutzko, The Langlands conjecture for \(GL_2\) of a local field. Ann. Math. 112, 381–412 (1980)

    Article  MathSciNet  Google Scholar 

  53. P.C. Kutzko, The exceptional representations of \(GL_2\). Compos. Math. 51, 3–14 (1984)

    Google Scholar 

  54. P.C. Kutzko, Towards a classification of the supercuspidal representations of \(GL_N\). J. Lond. Math. Soc. 37(2), 265–274 (1988)

    Google Scholar 

  55. B. Lemaire, Comparison of lattice filtrations and Moy-Prasad filtrations. J. Lie Theory 19, 29–54 (2009)

    MathSciNet  MATH  Google Scholar 

  56. I.G. Macdonald, Symmetric Functions and Hall Polynomials (Oxford University Press, 1979)

    Google Scholar 

  57. I.G. Macdonald, Zeta functions attached to finite general linear groups. Math. Ann. 249, 1–15 (1980)

    Article  MathSciNet  Google Scholar 

  58. C. Mœglin, Sur la correspondance de Langlands-Kazhdan. J. Math. Pures et Appl. 69(9), 175–226 (1990)

    Google Scholar 

  59. L.E. Morris, Tamely ramified intertwining algebras. Invent. Math. 114, 1–54 (1993)

    Article  MathSciNet  Google Scholar 

  60. A. Moy, G. Prasad, Unrefined minimal \(K\)-types for \(p\)-adic groups. Invent. Math. 116, 393–408 (1994)

    Article  MathSciNet  Google Scholar 

  61. A. Moy, G. Prasad, Jacquet functors and unrefined minimal \(K\)-types. Comment. Math. Helv. 71, 98–121 (1996)

    Article  MathSciNet  Google Scholar 

  62. V. Paskunas, Unicity of types for supercuspidal representations of GL\(_N\). Proc. Lond. Math. Soc. (3) 91, 623–654 (2005)

    Google Scholar 

  63. I. Reiner, Maximal Orders, London Mathematical Society Monographs (New Series), vol. 28 (Oxford University Press, 2003)

    Google Scholar 

  64. V. Sécherre, Représentations lisses de GL(m,D) I. Caractères simples. Bull. Soc. Math. Fr. 132(3), 327–396 (2004)

    Google Scholar 

  65. V. Sécherre, Représentations lisses de GL(m,D) II. \(\beta \)-extensions. Compos. Math. 141(6), 1531–1550 (2005)

    Google Scholar 

  66. V. Sécherre, Représentations lisses de GL(m,D) III : types simples. Ann. Scient. Éc. Norm. Sup. 38(4), 951–977 (2005)

    Google Scholar 

  67. V. Sécherre, S. Stevens, Représentations lisses de GL\(_m(D)\). IV. Représentations supercuspidales. J. Inst. Math. Jussieu 7(3), 527–574 (2008)

    Google Scholar 

  68. V. Sécherre, S. Stevens, Towards an explicit local Jacquet-Langlands correspondence beyond the cuspidal case. arXiv: 1611.04317

  69. J-P. Serre, Corps Locaux (Hermann, Paris, 1968)

    Google Scholar 

  70. F. Shahidi, On certain \(L\)-functions. Am. J. Math. 103, 297–355 (1981)

    Article  Google Scholar 

  71. F. Shahidi, Fourier transforms of intertwining operators and Plancherel measures for \(GL(n)\). Am. J. Math. 106, 67–111 (1984)

    Article  MathSciNet  Google Scholar 

  72. S. Stevens, Semisimple characters for \(p\)-adic classical groups. Duke Math. J. 127(1), 123–173 (2005)

    Article  MathSciNet  Google Scholar 

  73. S. Stevens, The supercuspidal representations of \(p\)-adic classical groups. Invent. Math. 172(2), 289–352 (2008)

    Article  MathSciNet  Google Scholar 

  74. J. Tate, Number theoretic background, in Automorphic forms, representations and \(L\)-functions ed. by A. Borel, W. Casselman. Proceedings of Symposia in Pure Mathematics, vol. 33, No. 2 (American Mathematical Society, Providence RI, 1979), pp. 3–26

    Google Scholar 

  75. J. Tits, Reductive groups over local fields, in Automorphic forms, representations and \(L\)-functions, ed. by A. Borel, W. Casselman. Proceedings of Symposia in Pure Mathematics, vol. 33, No. 1 (American Mathematical Society, Providence RI, 1979), pp. 29–69

    Google Scholar 

  76. J.-L. Waldspurger, Algèbres de Hecke et induites de représentations cuspidales, pour \(GL(N)\). J. reine angew. Math. 370, 127–191 (1986)

    MathSciNet  MATH  Google Scholar 

  77. J.-K. Yu, Construction of tame supercuspidal representations. J. Am. Math. Soc. 14, 579–622 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin J. Bushnell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bushnell, C.J. (2019). Arithmetic of Cuspidal Representations. In: Aubert, AM., Mishra, M., Roche, A., Spallone, S. (eds) Representations of Reductive p-adic Groups. Progress in Mathematics, vol 328. Birkhäuser, Singapore. https://doi.org/10.1007/978-981-13-6628-4_2

Download citation

Publish with us

Policies and ethics