Skip to main content

Rhizospheric Microflora: A Natural Alleviator of Drought Stress in Agricultural Crops

  • Chapter
  • First Online:
Book cover Plant Growth Promoting Rhizobacteria for Sustainable Stress Management

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 12))

Abstract

Global climate change is one of the most serious challenges facing us today. Plant growth promotion and productivity are affected due to abiotic stresses which are specifically critical in arid and semiarid regions of the world. Abiotic stresses such as drought, salinity, metal toxicity, etc. are affecting adversely the agricultural crops. The major abiotic stresses in India are drought stress and soil moisture stress. Various abiotic stress management procedures are implemented to reduce these stresses. However, as such strategies are long and costly, there is a need to develop simple and low-cost biological methods for managing drought stress. Plant growth-promoting rhizobacteria (PGPR) manage these stresses by various mechanisms, viz., tolerance to stresses, adaptations, and response mechanisms that can be subsequently engineered into plants to deal with climate change-induced stresses. These affect almost two-thirds of the farming areas of the arid and semiarid ecosystems. Production of indole acetic acid (IAA), gibberellins, and certain unknown determining factors by rhizospheric microflora results in enhanced root length, surface area, and number of root tips, leading to improved uptake of nutrients, thereby enhancing plant health under drought environments. Rhizospheric microflora enhances plant stress tolerance through 1-aminocyclopropane-1-carboxylate (ACC) deaminase and provides protection to agricultural crops from the damage caused by drought stress. These rhizospheric bacteria enhance plant resistance to various biotic and abiotic stresses. Plant growth-promoting rhizobacteria mitigate the influence of drought on crops through a process called induced systemic resistance (ISR), which comprises (a) cytokinin production, (b) antioxidant production, and (c) ACC degradation by bacterial ACC deaminase. Implementation of the rhizospheric microorganisms together with novel technologies for their monitoring and risk assessments can contribute to solve food security problems caused by climate change. Present review captures the recent work on the function of microorganisms in helping plants to deal with drought stress which is the major stress caused by climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bano Q, Ilyas N, Bano A, Zafar N, Akram A, Hasan FUL (2013) Effect of Azospirillum inoculation on maize (Zea mays L.) under drought stress. Pak J Bot 45:13–20

    CAS  Google Scholar 

  • Berard A, Sassi MB, Kaisermann A, Renault P (2015) Soil microbial community responses to heat wave components: drought and high temperature. Clim Res 66(3):243–264

    Article  Google Scholar 

  • Blum A (2005) Drought resistance, water use efficiency and yield potential they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56(11):1159–1168

    Article  Google Scholar 

  • Calvo-Polanco M, Sanchez-Romera B, Aroca R, Asins MJ, Declerck S, Dodd IC, Martinez Andujar C, Albacete A, Ruiz-Lozano JM (2016) Exploring the use of recombinant inbred lines in combination with beneficial microbial inoculants(AM fungus and PGPR) to improve drought stress tolerance in tomato. Environ Exp Bot 131:47–57

    Article  CAS  Google Scholar 

  • Casanovas EM, Barassi CA, Sueldo RJ (2002) Azospirillum inoculation mitigates water stress effects in maize seedlings. Cereal Res Commun 30(3):343–350

    Google Scholar 

  • Cherif H, Marasco R, Rolli E, Ferjani R, Fusi M, Soussi A, Mapelli F, Blilou I, Borin S, Boudabous A, Cherif A, Daffonchio D, Ouzari H (2015) Oasis desert farming selects environment-specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought. Environ Microbiol Rep 7:668–678

    Article  CAS  PubMed  Google Scholar 

  • Chodak M, Golebiewski M, Morawska-Ploskonka J, Kuduk K, Niklinska M (2015) Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress. Ann Microbiol 65(3):1627–1637

    Article  CAS  PubMed  Google Scholar 

  • Cohen AC, Bottini R, Pontin M, Berli FJ, Moreno D, Boccanlandro H, Travaglia CN, Piccoli PN (2015) Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiol Plant 153(1):79–90

    Article  CAS  PubMed  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum- inoculated wheat exposed to drought in the field. Can J Bot 82(2):273–281

    Article  Google Scholar 

  • Dimpka C, Weinand T, Asch F (2009) Plant rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32(12):1682–1694

    Article  CAS  Google Scholar 

  • Dos Reis SP, Marques DN, Lima AM, De Souza CR (2016) Plant molecular adaptations and strategies under drought stress. In: Drought stress tolerance in plants, vol 2, pp 91–122

    Chapter  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms, and management. Agron Sustain Dev 29(1):185–212

    Article  Google Scholar 

  • Fathi A, Barari D (2016) Effect of drought stress and its mechanism in plants. Int J Life Sci 10(1):1–6

    Article  Google Scholar 

  • German MA, Burdman S, Okon Y, Kigel J (2000) Effects of Azospirillum brasilense on root morphology of common bean (Phaseolus vulgaris L.) under different water regimes. Biol Fert Soils 32(2):259–264

    Article  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21(5):383–393

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2013) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39

    Article  PubMed  CAS  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5(151):1–10

    Google Scholar 

  • Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140

    Article  PubMed  Google Scholar 

  • Hardoim PR, Van-Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16(10):463–471

    Article  CAS  PubMed  Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 42(10):1825–1831

    CAS  Google Scholar 

  • Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39(2):969–987

    Article  PubMed  CAS  Google Scholar 

  • Huang B, DaCosta M, Jiang Y (2014) Research advances in mechanisms of turf grass tolerance to abiotic stresses: from physiology to molecular biology. Critic Rev Plant Sci 33(2–3):141–189

    Article  CAS  Google Scholar 

  • Hui JH, Kim SD (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol J 29(2):201–208

    Article  Google Scholar 

  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Al-Juburi HJ, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11(1):100–105

    Google Scholar 

  • Jha CK, Annapurna K, Saraf M (2012) Isolation of Rhizobacteria from Jatropha curcas and characterization of produced ACC deaminase. J Basic Microbiol 52(3):285–295

    Article  CAS  PubMed  Google Scholar 

  • Kaushal M, Wani SP (2016) Rhizobacterial plant interactions: strategies ensuring plant growth promotion under drought and salinity stress. Agric Ecosys Environ 231:68–78

    Article  CAS  Google Scholar 

  • Khan N, Bano A, Shahid MA, Nasim W, Babar MDA (2018) Interaction between PGPR and PGR for water conservation and plant growth attributes under drought condition. Biol 73(11):1083–1098

    CAS  Google Scholar 

  • Kim YC, Glick BR, Bashan Y, Ryu CM (2012) Enhancement of plant drought tolerance by microbes. In: Plant responses to drought stress. Springer, Berlin/Heidelberg, pp 383–413

    Chapter  Google Scholar 

  • Kiranmai K, Rao GL, Pandurangaiah M, Nareshkumar A, Amaranatha Reddy V, Lokesh U, Venkatesh B, Anthony Johnson AM, Sudhakar C (2018) A novel WRKY Transcription Factor, MuWRKY3 (Macrotylomauniflorum Lam. Verdc.) Enhances Drought Stress Tolerance in Transgenic Groundnut (Arachis hypogaea L.) Plants

    Google Scholar 

  • Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529(7584):84–87

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Xia Z, Wang M, Zhang X, Yang T, Wu J (2013) Overexpression of a maize E3 ubiquitin ligase gene enhances drought tolerance through regulating stomatal aperture and antioxidant system in transgenic tobacco. Plant Physiol Biochem 73:114–120

    Article  CAS  PubMed  Google Scholar 

  • Mancosu N, Snyder RL, Kyriakakis G, Spano D (2015) Water scarcity and future challenges for food production. Water 7(3):975–992

    Article  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166(2):525–530

    Article  CAS  Google Scholar 

  • Nascimento FX, Rossi MJ, Soares CRFS, McConkey BJ, Glick BR (2014) New insights into 1-Aminocyclopropane-1-carboxylate (ACC) deaminase phylogeny, evolution and ecological significance. PLoS One 9(6):e99168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ngumbi E, Kloepper J (2016) Bacterial-mediated drought tolerance: current and future prospects. Appl Soil Ecol 105:109–125

    Article  Google Scholar 

  • Placella SA, Brodie EL, Firestone MK (2012) Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups. Proc Natl Acad Sci 109(27):10931–10936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahdari P, Hosseini SM (2012) Drought stress, a review. Int J Plant Prod 3:443–446

    Google Scholar 

  • Rahdari P, Hosseini SM, Tavakoli S (2012) The studying effect of drought stresson germination, proline, sugar, lipid, protein and chlorophyll content in Purslane (Portulacaoleraceae L.) leaves. J Med Plants Res 6:1539–1547

    CAS  Google Scholar 

  • Sarma RK, Saikia R (2014) Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant Soil 377(1–2):111–126

    Article  CAS  Google Scholar 

  • Schimel JP, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88(6):1386–1394

    Article  PubMed  Google Scholar 

  • Schmidt R, Koberl M, Mostafa A, Ramadan EM, Monschein M, Jensen KB, Bauer R, Berg G (2014) Effects of bacterial inoculants on the indigenous microbiome and secondary metabolites of chamomile plants. Front Microbiol 5(64):1–11

    CAS  Google Scholar 

  • Selvakumar G, Panneerselvam P, Ganeshamurthy AN (2012) Bacterial mediated alleviation of abiotic stress in crops. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin/Heidelberg, pp 205–224

    Chapter  Google Scholar 

  • Shakir MA, Bano A, Arshad M (2012) Rhizosphere bacteria containing ACC deaminase conferred drought tolerance in wheat grown under semi-arid climate. Soil Environ 31(1):108–112

    CAS  Google Scholar 

  • Singh JS (2013) Plant growth promoting rhizobacteria: potential microbes for sustainable agriculture. Resonance:275–281

    Google Scholar 

  • Timmusk S, EL-Daim IAA, Copolovici L, Tanilas T, Kannaste A, Behers L, Nevo E, Seisenbaeva G, Stenstrom E, Niinemets U (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9(5):1–13

    Article  CAS  Google Scholar 

  • Tiwari S, Singh P, Tiwari R, Meera KK, Yandigeri M, Singh DP, Arora DK (2011) Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol Fert Soils 47(8):907–916

    Article  CAS  Google Scholar 

  • Tiwari S, Lata C, Chauhan PS, Nautiyal CS (2016) Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L during drought stress and recovery. Plant Physiol Biochem 99:108–117

    Article  CAS  PubMed  Google Scholar 

  • Trenberth KE, Dai A, Schrier GV, Jones PD, Barichivich J, BriffaKR SJ (2014) Global warming and changes in drought. Nat Clim Chang 4(1):17–22

    Article  Google Scholar 

  • Vardharajula S, Ali SZ, Grover M, Reddy G, Bandi V (2011) Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes and antioxidant status of maize under drought stress. J Plant Interact 6(1):1–14

    Article  CAS  Google Scholar 

  • Venkateswarlu B, Shanker AK (2009) Climate change and agriculture: adaptation and mitigation strategies. Ind J Agron 54(2):226–230

    Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16(2):123–132

    Article  CAS  PubMed  Google Scholar 

  • Vurukonda SSKP, Vardharajula S, Shrivastava M, Ali SZ (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24

    Article  PubMed  Google Scholar 

  • Wang CJ, Yang W, Wang C, Gu C, Niu DD, Liu HX, Wang YP, Guo JH (2012) Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS One 7(12):1–10

    Article  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Yuwono T, Handayani D, Soedarsono J (2005) The role of osmotolerant rhizobacteria in rice growth under different drought conditions. Aust J Agric Res 56(7):715–721

    Article  Google Scholar 

  • Zhang H, Murzello C, Sun Y, Kim MS, Xie X, Jeter RM, Zak JC, Dowd SE, Pare PW (2010a) Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Mol Plant-Microbe Interact 23(8):1097–1104

    Article  CAS  PubMed  Google Scholar 

  • Zhang JL, Flowers TJ, Wang SM (2010b) Mechanisms of sodium uptake by roots of higher plants. Plant Soil 326(1–2):45–60

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to our guide professor, Dr. Meenu Saraf, and the Department of Microbiology and Biotechnology, Gujarat University, for encouraging us.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel Priyanka, J., Trivedi Goral, R., Shah Rupal, K., Saraf, M. (2019). Rhizospheric Microflora: A Natural Alleviator of Drought Stress in Agricultural Crops. In: Sayyed, R., Arora, N., Reddy, M. (eds) Plant Growth Promoting Rhizobacteria for Sustainable Stress Management . Microorganisms for Sustainability, vol 12. Springer, Singapore. https://doi.org/10.1007/978-981-13-6536-2_6

Download citation

Publish with us

Policies and ethics