Skip to main content

Dual-Feature Spectrum Sensing Exploiting Eigenvalue and Eigenvector of the Sampled Covariance Matrix

  • Conference paper
  • First Online:
Communications, Signal Processing, and Systems (CSPS 2018)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 516))

  • 2176 Accesses

Abstract

The signal can be charactered by both eigenvalues and eigenvectors of covariance matrix. However, the existing detection methods only exploit the eigenvalue or eigenvector. In this paper, we utilize both eigenvalues and eigenvectors of the sampled covariance matrix to perform spectrum sensing for improving the detection performance. The features of eigenvalues and eigenvectors are considered integratedly, and the relationship between the false-alarm probability and the decision threshold is offered. To testify this method, some simulations are carried out. The results demonstrate that the method shows some advantages in the detection performance over the conventional method only adapting eigenvalues or eigenvectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdelmohsen A, Hamouda W. Advances on spectrum sensing for cognitive radio networks: theory and applications. IEEE Commun Surv Tutorials. 2017;19(2):1277–304.

    Article  Google Scholar 

  2. Guo H, Jiang W, Luo W. Linear soft combination for cooperative spectrum sensing in cognitive radio networks. IEEE Commun Lett. 2017;21(7):1573–6.

    Article  Google Scholar 

  3. Wang B, Liu KJR. Advances in cognitive radio networks: a survey. IEEE J Sel Top Sig Process. 2011;5(1):5–23.

    Article  Google Scholar 

  4. Mitola J, Maguire GQ. Cognitive radio: making software radios more personal. IEEE Pers Commun. 1999;6(4):13–8.

    Article  Google Scholar 

  5. Mchenry M, Livsics E, Nguyen T, Majumdar N. XG dynamic spectrum access field test results [Topics in radio communications]. IEEE Commun Mag. 2007;45(6):51–7.

    Article  Google Scholar 

  6. Liu Chang, Li Ming, Jin Ming-Lu. Blind energy-based detection for spatial spectrum sensing. IEEE Wirel Commun Lett. 2015;4(1):91–8 Feb.

    Google Scholar 

  7. Cabric D, Brodersen RW. Physical layer design issues unique to cognitive radio systems. Proc IEEE Pimrc. 2005;2:759–63.

    Google Scholar 

  8. Cabric D, Tkachenko A, Brodersen R. Spectrum sensing measurements of pilot, energy, and collaborative detection. In: IEEE Conference on Military Communications; 2006. p. 1–7

    Google Scholar 

  9. Sonnenschein A, Fishman PM. Radiometric detection of spread-spectrum signals in noise of uncertain power. IEEE Trans Aerosp Electron Syst. 1992;28(3):654–60.

    Article  Google Scholar 

  10. Yucek T, Arslan H. A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Commun Surv Tutorials. 2009;11(1):116–30.

    Article  Google Scholar 

  11. An T, Kim D, Song I, et al. Cooperative spectrum sensing based on generalized likelihood ratio test under impulsive noise circumstances. In: 2012 IEEE military communications conference; 2012. p. 1–6

    Google Scholar 

  12. Cardoso LS, Debbah M, Bianchi P, et al. Cooperative spectrum sensing using random matrix theory. In: International symposium on wireless pervasive computing; 2008. p. 334–8

    Google Scholar 

  13. Zeng Y, Liang YC. Maximum-minimum eigenvalue detection for cognitive radio. In: IEEE international symposium on personal, indoor and mobile radio communications; 2007. p. 1–5

    Google Scholar 

  14. Zhang P, Qiu R, Guo N. Demonstration of spectrum sensing with blindly learned features. IEEE Commun Lett. 2011;15(5):548–50.

    Article  Google Scholar 

  15. Hou S, Qiu RC. Kernel feature template matching for spectrum sensing. IEEE Trans Veh Technol. 2014;63(5):2258–71.

    Article  Google Scholar 

  16. Eldar YC, Chan AM. On the asymptotic performance of the decorrelator. IEEE Trans Inf Theor. 2003;49(9):2309–13.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (NSFC) (Grant No. 61671176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulong Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Y., Gao, Y. (2020). Dual-Feature Spectrum Sensing Exploiting Eigenvalue and Eigenvector of the Sampled Covariance Matrix. In: Liang, Q., Liu, X., Na, Z., Wang, W., Mu, J., Zhang, B. (eds) Communications, Signal Processing, and Systems. CSPS 2018. Lecture Notes in Electrical Engineering, vol 516. Springer, Singapore. https://doi.org/10.1007/978-981-13-6504-1_103

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6504-1_103

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6503-4

  • Online ISBN: 978-981-13-6504-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics