Skip to main content

Reclamation of Saline and Sodic Soil Through Phytoremediation

  • Chapter
  • First Online:

Abstract

Agricultural productivity is threatened worldwide because of salt-affected soils. Various remediation techniques have been successfully developed and are being utilized, but still there is no proper technical method under different conditions. In different situations, phytoremediation technically as well as economically is the best available option. More focussed efforts are required to measure the contribution of phytoextraction to the remedial procedure because the main mechanism behind salt phytoremediation is still not known. To improve the effectiveness and quality of the treatment of salt-affected soils, many new methods are used like mixing of treatment types, mixed plant cultures, biostimulation, etc. which can be extended to new methods like co-treatment and salt flow control measures. The new methods are in preliminary stages that require further research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abideen Z, Ansari R, Khan MA (2011) Halophytes: potential source of ligno-cellulosic biomass for ethanol production. Biomass Bioenergy 35:1818–1822. https://doi.org/10.1016/j.biombioe.2011.01.023

    Article  CAS  Google Scholar 

  • Adams AA, Raman A, Hodgkins D (2013a) How do the plants used in phytoremediation in constructed wetlands, a sustainable remediation strategy, perform in heavy-metal-contaminated mine sites? Water Environ J27:373–386

    Google Scholar 

  • Adams AA, Raman A, Hodgkins D, Nicol HI (2013b) Accumulation of heavy metals by naturally colonizing Typha domingensis (Poales: Typhaceae) in waste-rock dump leachate storage ponds in a gold–copper mine in the central tablelands of New South Wales, Australia. Int J Min Reclam Environ 27:294–307

    Article  CAS  Google Scholar 

  • Ahmad N, Qureshi RH, Qadir M (1990) Amelioration of a calcareous saline-sodic soil by gypsum and forage plants. Land Degrad Rehabil 2(4):277–284

    Article  Google Scholar 

  • Allen RB, McIntosh PD, Wilson JB (1997) The distribution of plants in relation to pH and salinity on inland saline/alkaline soils in Central Otago, New Zealand. N Z J Bot 35:517–523

    Article  Google Scholar 

  • Ammari T, Tahboub AB, Saoub HM, Hattar BI, Al-Zubi YA (2008) Salt removal efficiency as influenced by phyto-amelioration of salt-affected soils. J Food Agric Environ 6:456–460

    Google Scholar 

  • Amer N, Chami ZA, Bitar LA, Mondelli D, Dumontet S (2013) Evaluation of Atriplex halimus, Medicago lupulina and Portulaca oleracea for phytoremediation of Ni, Pb, and Zn. Int J Phytorem 15:498–512

    Article  CAS  Google Scholar 

  • Ammari TG, Al-Hiary S, Al-Dabbas M (2011) Reclamation of saline calcareous soils using vegetative bioremediation as a potential approach. Arch Agron Soil Sci 59:1–9. https://doi.org/10.1080/03650340.2011.629813

    Article  CAS  Google Scholar 

  • Aprill W, Sims RC (1990) Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chemosphere 20:253–265

    Article  CAS  Google Scholar 

  • Arienzo M, Adamo P, Cozzolino V (2004) The potential of Lolium perenne for revegetation of contaminated soil from a metallurgical site. Sci Total Environ 319:13–25

    Article  CAS  Google Scholar 

  • Aslam M, Prathapar SA (2006) Strategies to mitigate secondary salinization in the Indus Basin of Pakistan: a selective review. Research Report 97. International Water Management Institute (IWMI), Colombo, Sri Lanka

    Google Scholar 

  • Aydemir S, Akıl HS (2012) Growth response and ameliorative effect of a forage plant (Festuca arundinacea) in calcareous saline-sodic soils. Afr J Agric Res 7(5):802–809

    Google Scholar 

  • Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1994) The possibility of in situ metal decontamination of polluted soils using crops of metal-accumulating plants – a feasibility study. Resour Conserv Recycl 11:41–49

    Article  Google Scholar 

  • Barbour MG, Burk JH, Pitts WD (1987) Terrestrial plant ecology, 2nd edn. Benjamin Cummings Publishing, Menlo Park

    Google Scholar 

  • Barrett-Lennard EG (1986) Effects of water logging on the growth and NaCl uptake by vascular plants under saline conditions. Reclam Reveg Res 5:245–261

    Google Scholar 

  • Barrett-Lennard EG (2002) Restoration of saline land through revegetation. Agric Water Manag 53:213–226

    Article  Google Scholar 

  • Batra L, Kumar A, Manna MC, Chhabra R (1997) Microbiological and chemical amelioration of alkaline soil by growing Karnal grass and gypsum application. Exp Agric 33:389–397

    Article  Google Scholar 

  • Bhuiyan MSI, Raman A, Hodgkins DS (2017) Plants in remediating salinity-affected agricultural landscapes. Proc Indian Natl Sci Acad 83(1):51–66

    Google Scholar 

  • Bleby TM, Aucote M, Kennett-Smith AK, Walker GR, Schachtman DP (1997) Seasonal water use characteristics of tall wheatgrass [Agropyron elongatum (Host) Beauv.] in a saline environment. Plant Cell Environ 20:1361–1371

    Article  Google Scholar 

  • Brady NC, Weil RR (1996) The nature and properties of soils. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Cai X, McKinney DC, Rosegrant MW (2003) Sustainability analysis for irrigation water management in the Aral Sea region. Agric Syst 76:1043–1066

    Article  Google Scholar 

  • Chengrui M, Dregne HE (2001) Silt and the future development of China’s Yellow River. Geogr J 167:7–22

    Article  Google Scholar 

  • Cheraghi SAM (2001) Institutional and scientific profiles of organizations working on saline agriculture in Iran. In: Taha FK, Ismail S, Jaradat A (eds) Prospects of saline agriculture in the Arabian Peninsula. Proceedings of the International seminar on prospects of saline agriculture in the GCC countries 18. Dubai, United Arab Emirates, pp 399–412

    Google Scholar 

  • Chhabra R, Abrol IP (1977) Reclaiming effect of rice grown in sodic soils. Soil Sci 124:49–55

    Article  CAS  Google Scholar 

  • Dagar JC, Tomar OS, Kumar Y, Yadav RK (2004) Growing three aromatic grasses in different alkali soils in semi-arid regions of northern India. Land Degrad Dev 15:143–151

    Article  Google Scholar 

  • De Villiers AJ, Van Rooyen MW, Theron GK, Claassens AS (1995) Removal of sodium and chloride from a saline soil by Mesembryanthemum barklyi. J Arid Environ 29(3):325–330

    Article  Google Scholar 

  • deSigmond AAJ (1924) The alkali soils in Hungary and their reclamation. Soil Sci 18:379–381

    Article  Google Scholar 

  • Diaz DR, Presley D (2017) Management of saline and sodic soils. Kansas State University, Manhattan

    Google Scholar 

  • El-Shakweer MHA, El-Sayad EA, Ejes MSA (1998) Soil and plant analysis as a guide for interpretation of the improvement efficiency of organic conditioners added to different soils in Egypt. Commun Soil Sci Plant Anal 29:2067–2088

    Article  CAS  Google Scholar 

  • Fageria NK, Gheyi HR, Moreira A (2011) Nutrient bioavailability in salt affected soils. J Plant Nutr 34(7):945–962. https://doi.org/10.1080/01904167.2011.555578

    Article  CAS  Google Scholar 

  • Fitter AH, Nichols R, Harvey ML (1988) Root system architecture in relation to life history and nutrient supply. Funct Ecol 2:345–351

    Article  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  Google Scholar 

  • Frick CM, Germida JJ, Farrell RE (1999) Assessment of phytoremediation as an in-situ technique for cleaning oil-contaminated sites. Petroleum Technology Alliance of Canada Calgary Canada

    Google Scholar 

  • Gamalero E, Lingua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55(5):501–514. https://doi.org/10.1139/w09-010

    Article  CAS  Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77:229–236

    Article  CAS  Google Scholar 

  • Gaskin SE (2008) Rhizoremediation of hydrocarbon contaminated soil using Australian native grasses. PhD thesis, Flinders University of South Australia, Australia. http://flex.flinders.edu.au/file/6bbe0809-457c-4c15-8caf-ea59d4fea600/1/Thesis-Gaskin-2009-Abstract.pdf

  • Gatliff EG (1994) Vegetative remediation process offers advantages over traditional pump-and-treat technologies. Remediat J 4:343–352

    Article  Google Scholar 

  • Ghaly FM (2002) Role of natural vegetation in improving salt affected soil in northern Egypt. Soil Tillage Res 64:173–178

    Article  Google Scholar 

  • Gharaibeh MA, Eltaif NI, Shra’ah SH (2010) Reclamation of a calcareous saline-sodic soil using phosphoric acid and by-product gypsum. Soil Use Manag 26(2):141–148

    Article  Google Scholar 

  • Gharaibeh MA, Eltaif NI, Albalasmeh AA (2011) Reclamation of highly calcareous saline sodic soil using Atriplex halimus and by-product gypsum. Int J Phytorem 13:873–883

    Article  CAS  Google Scholar 

  • Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources: human causes, extent, management and case studies. CABI Publishing, Wallingford

    Google Scholar 

  • Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18(2):227–255

    Article  Google Scholar 

  • Glenn EP, Anday T, Chaturvedi R, Martinez-Garcia R (2013) Three halophytes for saline-water agriculture: an oilseed, a forage and a grain crop. Environ Exp Bot 92:110–121. https://doi.org/10.1016/j.envexpbot.2012.05.002

    Article  Google Scholar 

  • Graifenberg A, Botrini L, Giustiniani L, Filippi F, Curadi M (2003) Tomato growing in saline conditions with biodesalinating plants: Salsola soda L. and Portulaca oleracea L. Acta Hortic 609:301–305

    Article  Google Scholar 

  • Grattan SR, Grieve CM, Poss JA, Robinson PH, Suarez DL, Benes SE (2004) Evaluation of salt-tolerant forages for sequential water reuse systems III Potential implications for ruminant mineral nutrition. Agric Water Manag 70:137–150

    Google Scholar 

  • Greenwood ME, MacFarlane GR (2006) Effects of salinity and temperature on the germination of Phragmites australis, Juncus kraussii, and Juncus acutus: implications for estuarine restoration initiatives. Wetlands 26:854–861

    Article  Google Scholar 

  • Guittonny-Philippe A, Masotti V, Höhener P, Boudenne JL, Viglione J, Laffont-Schwob I (2014) Constructed wetlands to reduce metal pollution from industrial catchments in aquatic Mediterranean ecosystems: a review to overcome obstacles and suggest potential solutions. Environ Int 64:1–16

    Article  Google Scholar 

  • Gul B, Weber DJ, Khan MA (2000) Effect of salinity and planting density on physiological responses of Allenrolfea occidentalis. West N Am Nat 60(2):188–197

    Google Scholar 

  • Gupta RK, Abrol IP (1990) Salt-affected soils: their reclamation and management for crop production. Adv Soil Sci 11:223–288

    Article  Google Scholar 

  • Gupta, RK, and Abrol IP. (2000). Salinity build-up and changes in the rice-wheat system of the Indo-Gangetic Plains. Exp. Agric. 36: 273–284.

    Article  Google Scholar 

  • Hameed M, Ashraf M (2008) Physiological and biochemical adaptations of Cynodon dactylon (L.) Pers. from the salt range (Pakistan) to salinity stress. Flora 203:683–694

    Article  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Bhowmik PC, Hossain MA, Rahman MM, Prasad MNV, Ozturk M, Fujita M (2014) Potential use of halophytes to remediate saline soils. Biomed Res Int 2014:58934112. https://doi.org/10.1155/2014/589341

    Article  Google Scholar 

  • Hayley K, Bentley LR, Gharibi M (2009) Time-lapse electrical resistivity monitoring of salt-affected soil and groundwater. Water Resour Res 45. https://doi.org/10.1029/2008WR007616

  • Herczeg AL, Dogramaci SS, Leany FWJ (2001) Origin of dissolved salts in a large, semi-arid groundwater system. Murray Basin, Australia. Mar Freshw Res 52:41–52

    Article  CAS  Google Scholar 

  • Horneck DA. Ellsworth JW, Hopkins BG, Sullivan DM, Stevens RG (2007) Managing salt-affected soils for crop production. PNW 601-E A Pacific Northwest Extension publication Oregon State University • University of Idaho • Washington State University

    Google Scholar 

  • Huang JW, Chen J (2005) Role of pH in phytoremediation of contaminated soils. In: Rengel Z (ed) Handbook of soil acidity. Mercel Dekker, New York, pp 449–472

    Google Scholar 

  • Hutchinson S, Schwab A, Banks M (2003) Biodegradation of petroleum hydrocarbons in the rhizosphere. In: McCutcheon S, Schnoor J (eds) Phytoremediation: transformation and control of contaminants. Wiley, New York, pp 355–386

    Chapter  Google Scholar 

  • Ilyas M, Miller RW, Qureshi RH (1993) Hydraulic conductivity of saline-sodic soil after gypsum application and cropping. Soil Sci Soc Am J 57:1580–1585

    Article  Google Scholar 

  • Ilyas M, Qureshi RH, Qadir M (1997) Chemical changes in a saline-sodic soil after gypsum application and cropping. Soil Technol 10:247–260

    Article  Google Scholar 

  • Imada S, Yamanaka N, Tamai S (2009) Effects of salinity on the growth, Na partitioning, and Na dynamics of a salt tolerant tree, Populus alba L. J Arid Environ 73:245–251

    Article  Google Scholar 

  • Jesus JM, Danko AS, Fiúza A, Borges M (2015) Phytoremediation of salt-affected soils: a review of processes, applicability, and the impact of climate change. Environ Sci Pollut Res 22(9):6511–6525

    Article  CAS  Google Scholar 

  • Jithesh MN, Prashanth SR, Sivaprakash KR, Parida AK (2006) Antioxidative response mechanisms in halophytes: their role in stress defence. J Genet 85(3):237–254

    Article  CAS  Google Scholar 

  • Kelley WP (1937) The reclamation of alkali soils. Calif Agric Exp Stn Bull 617:1–40

    Google Scholar 

  • Kelley WP (1951) Alkali soils: their formation, properties, and reclamation, vol 72. Reinhold, New York, p 403

    Google Scholar 

  • Kelley WP, Brown SM (1934) Principles governing the reclamation of alkali soils. Hilgardia 8:149–177

    Article  CAS  Google Scholar 

  • Khan AL, Hamayun M, Ahmad N, Hussain J, Kang SM, Kim YH, Adnan M, Tang DS, Waqas M, Radhakrishnan R, Hwang YH, Lee IJ (2011) Salinity stress resistance offered by endophytic fungal interaction between Penicillium minioluteum LHL09 and Glycine max L. J Microbiol Biotechnol 21:893–902

    Article  CAS  Google Scholar 

  • Knight EW (1935) Agricultural investigation on the Newlands (Nev.) reclamation project. USDA Res Tech Bull 464:1–35

    Google Scholar 

  • Kömives T, Gullner G (2000) Phytoremediation. In: Wilkinson RE (ed) Plant-environment interactions. Marcel Dekker, New York, pp 437–452

    Google Scholar 

  • Kumar A, Abrol IP (1984) Studies on the reclaiming effect of Karnal grass and para-grass grown in a highly sodic soil. Indian J Agric Sci 54:189–193

    Google Scholar 

  • Larcher W (1980) Physiological plant ecology, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    CAS  Google Scholar 

  • Liu X, Huang W, Niu Z, Mori S, Tadano T (2008) Interactive effect of moisture levels and salinity levels of soil on the growth and ion relations of halophyte. Commun Soil Sci Plant Anal 39:741–752

    Article  CAS  Google Scholar 

  • Maas EV, Grattan SR (1999) Crop yields as affected by salinity. In: Skaggs RW, van Schilfgaarde J (eds) Agricultural drainage. ASA-CSSA-SSSA, Madison, pp 55–108

    Google Scholar 

  • Maas EV, Hoffman GJ (1977) Crop salt tolerance – current assessment. J Irrig Drain Div 103:115–134

    Google Scholar 

  • Mace JE, Amrhein C, Oster JD (1999) Comparison of gypsum and sulfuric acid for sodic soil reclamation. Arid Soil Res Rehabil 13:171–188

    Article  CAS  Google Scholar 

  • Malik KA, Aslam Z, Naqvi M (1986) Kallar grass: a plant for saline land. Nuclear Institute of Agriculture and Biology, Faisalabad, Pakistan

    Google Scholar 

  • Manousaki E, Kalogerakis N (2011) Halophytes – an emerging trend in phytoremediation. Int J Phytorem 13:959–969

    Article  CAS  Google Scholar 

  • Marcum KB, Murdoch CL (1994) Salinity tolerance mechanisms of six C4turf grasses. J Am Soc Hortic Sci 119:779–784

    Article  CAS  Google Scholar 

  • Marion GM, Babcock KL (1976) Predicting specific conductance and salt concentration in dilute aqueous solutions. Soil Sci 122:181–187

    Article  CAS  Google Scholar 

  • McGrath SP, Zhao FJ, LombiE (2002) Phytoremediation of metals, metalloids, and radionuclides. Adv Agron 75:1–56

    Article  CAS  Google Scholar 

  • Minhas PS, Dubey SK, Sharma DR (2007) Effects on soil and paddy–wheat crops irrigated with waters containing residual alkalinity. Soil Use Manag 23:254–261. https://doi.org/10.1111/j.1475-2743.2007.00090.x

    Article  Google Scholar 

  • Mishra A, Sharma SD, Khan GH (2002) Rehabilitation of degraded sodic lands during a decade of Dalbergia sissoo plantation in Sultanpur district of Uttar Pradesh, India. Land Degrad Dev 13:375–386

    Article  Google Scholar 

  • Mubarak AR, Nortcliff S (2010) Calcium carbonate solubilization through H proton release from some legumes grown in calcareous saline-sodic soils. Land Degrad Dev 21:24–31

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Naidu R, Rengasamy P (1993) Ion interactions and constraints to plant nutrition in Australian sodic soils. Aust J Soil Res 31:801–819

    Article  CAS  Google Scholar 

  • Okeke BC, Giblin T, Frankenberger WT Jr (2002) Reduction of perchlorate and nitrate by salt tolerant bacteria. Environ Pollut 118:a357–a363

    Article  Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348

    CAS  Google Scholar 

  • Oster JD (1982) Gypsum usage in irrigated agriculture: a review. Fertil Res 3:73–89

    Article  CAS  Google Scholar 

  • Oster JD, Wichelns D (2003) Economic and agronomic strategies to achieve sustainable irrigation. Irrig Sci 22:107–120

    Article  Google Scholar 

  • Oster JD, Shainberg J, Abrol JP (1999) Reclamation of salt-affected soils. In: Skaggs RW, Van Schilfgaarde G (eds) Agricultural drainage, Agronomy monograph no. 38. Agronomy Society of America, Madison, pp 659–694

    Google Scholar 

  • Overstreet R, Martin JC, Schulz RK, McCutcheon OD (1955) Reclamation of an alkali soil of the Hacienda series. Hilgardia 24:53–68

    Article  CAS  Google Scholar 

  • Parthasarathy M, Pemaiah B, Natesan R, Padmavathy SR, Pachiappan J (2015) Real-time mapping of salt glands on the leaf surface of Cynodon dactylon L. using scanning electrochemical microscopy. Bioelectrochemistry 101:159–164

    Article  CAS  Google Scholar 

  • Paul EA, Clark FE (1996) Soil microbiology and biochemistry. Academic, San Diego

    Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  Google Scholar 

  • Pitman MG, Läuchli A (2002) Global impact of salinity and agricultural ecosystems. In: Läuchli A, Lüttge U (eds) Salinity: environment–plants–molecules. Kluwer Academic, Dordrecht, pp 3–20

    Google Scholar 

  • Qadir M, Oster JD (2002) Vegetative bioremediation of calcareous sodic soils: history, mechanisms, and evaluation. Irrig Sci 21:91–101

    Article  Google Scholar 

  • Qadir M, Schubert S (2002) Degradation processes and nutrient constraints in sodic soils. Land Degrad Dev 13:275–294

    Article  Google Scholar 

  • Qadir M, Qureshi RH, Ahmad N (1996a) Reclamation of a saline-sodic soil by gypsum and Leptochloa fusca. Geoderma 74(3–4):207–217

    Article  Google Scholar 

  • Qadir M, Qureshi RH, Ahmad N, Ilyas M (1996b) Salt-tolerant forage cultivation on a saline-sodic field for biomass production and soil reclamation. Land Degrad Dev 7:11–18

    Article  Google Scholar 

  • Qadir M, Qureshi RH, Ahmad N (1997) Nutrient availability in a calcareous saline-sodic soil during vegetative bioremediation. Arid Soil Res Rehabil 11:343–352

    Article  CAS  Google Scholar 

  • Qadir M, Ghafoor A, Murtaza G (2000) Amelioration strategies for saline soils: a review. Land Degrad Dev 11:501–521. https://doi.org/10.1002/1099-145x(200011/12)11:6<501::aid-ldr405>3.0.co;2-s

    Article  Google Scholar 

  • Qadir M, Schubert S, Ghafoor A, Murtaza G (2001) Amelioration strategies for sodic soils: a review. Land Degrad Dev 12:357–386

    Article  Google Scholar 

  • Qadir M, Qureshi RH, Ahmad N (2002) Amelioration of calcareous saline–sodic soils through phytoremediation and chemical strategies. Soil Use Manag 18:381–385

    Article  Google Scholar 

  • Qadir M, Noble AD, Oster JD, Schubert S, Ghafoor A (2005) Driving forces for sodium removal during phytoremediation of calcareous sodic and saline-sodic soils: a review. Soil Use Manag 21:173–180

    Article  Google Scholar 

  • Qadir M, Noble AD, Schubert S, Thomas RJ, Arslan A (2006) Sodicity induced land degradation and its sustainable management: problems and prospects. Land Degrad Dev 17:661–676

    Article  Google Scholar 

  • Qadir M, Oster JD, Schubert S, Noble AD, Sahrawat KL (2007) Phytoremediation of sodic and saline-sodic soils. Advances in agronomy, vol 96. Elsevier, Amsterdam, pp 197–247

    Google Scholar 

  • Qadir M, Tubeileh A, Akhtar J, Larbi A, Minhas PS, Khan MA (2008) Productivity enhancement of salt-affected environments through crop diversification. Land Degrad Dev 19:429–453

    Article  Google Scholar 

  • Rabhi M, Hafsi C, Lakhdar A, Barhoumi Z, Hamrouni MH, Abdelly C, Smauoi A (2009) Evaluation of the capacity of three halophytes to desalinize their rhizosphere as grown on saline soils under non leaching conditions. Afr J Ecol 47:463–468

    Article  Google Scholar 

  • Rabhi M, Ferchichi S, Jouini J, Hamrouni MH, Koyro HW, Ranieri A, Smaoui A (2010) Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Bioresour Technol 101(17):6822–6828

    Article  CAS  Google Scholar 

  • Rasouli F, Kiani Pouya A, Karimian N (2013) Wheat yield and physico-chemical properties of a sodic soil from semi-arid area of Iran as affected by applied gypsum. Geoderma 193–194:246–255. https://doi.org/10.1016/j.geoderma.2012.10.001

    Article  CAS  Google Scholar 

  • Ravindran KC, Venkatesan K, Balakrishnan V, Chellappan KP, Balasubramanian T (2007) Restoration of saline land by halophytes for Indian soils. Soil Biol Biochem 39(10):2661–2664

    Article  CAS  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    Article  CAS  Google Scholar 

  • Rich SM, Ludwig M, Colmer TD (2008) Photosynthesis in aquatic adventitious roots of the halophytic stem succulent Tecticornia pergranulata (formerly Halosarcia pergranulata). Plant Cell Environ 31:1007–1016

    Article  CAS  Google Scholar 

  • Ridley AM, Christy B, Dunin FX, Haines PJ, Wilson KF, Ellington A (2001) Lucerne in crop rotations on the Riverina Plains. 1. The soil water balance. Crop Past Sci 52:263–277

    Article  Google Scholar 

  • Robbins CW (1986a) Sodic calcareous soil reclamation as affected by different amendments and crops. Agron J 78:916–920

    Article  CAS  Google Scholar 

  • Robbins CW (1986b) Carbon dioxide partial pressure in lysimeter soils. Agron J 78:151–158

    Article  Google Scholar 

  • Robson DB (2003) Phytoremediation of hydrocarbon contaminated soil using plants adapted to the western Canadian climate. PhD thesis, University of Saskatchewan, Saskatchewan, Canada

    Google Scholar 

  • Saboora A, Kiarostami K, Behroozbayati F, Hashemi SH (2006) Salinity (NaCl) tolerance of wheat genotypes at germination and early seedling growth. Pak J Biol Sci 9(11):2009–2021

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  CAS  Google Scholar 

  • Sarraf M (2004) Assessing the costs of environmental degradation in the Middle East and North Africa countries. Environment Strategy Notes 9, Environment Department World Bank, Washington, DC

    Google Scholar 

  • Setia R, Marschner P, Baldock J, Chittleborough D, Smith P, Smith J (2011) Salinity effects on carbon mineralization in soils of varying texture. Soil Biol Biochem 43:1908–1916

    Article  CAS  Google Scholar 

  • Shainberg I, Letey J (1984) Response of soils to sodic and saline conditions. Hilgardia 52:1–57

    Article  Google Scholar 

  • Shainberg I, Sumner ME, Miller WP, Farina MPW, Pavan MA, Fey MV (1989) Use of gypsum on soils: a review. Adv Soil Sci 9:1–111

    Google Scholar 

  • Shannon MC (1997) Adaptation of plants to salinity. Adv Agron 60:76–120

    Google Scholar 

  • Shekhawat VPS, Kumar A, Neumann KH (2006) Bio-reclamation of secondary salinized soils using halophytes. In: Öztürk M, Waisel Y, Khan MA, Görk G (eds) Biosaline agriculture and salinity tolerance in plants. Birkhäuser, Basel, pp 147–154. https://doi.org/10.1007/3-7643-7610-4-16

    Chapter  Google Scholar 

  • Shelef O, Gross A, Rachmilevitch S (2012) The use of Bassia indica for salt phytoremediation in constructed wetlands. Water Res 46:3967–3976. https://doi.org/10.1016/j.watres.2012.05.020

    Article  CAS  Google Scholar 

  • Siciliano SD, Germida JJ (1998) Biolog analysis and fatty acid methyl ester profiles indicate that pseudomonad inoculants that promote phytoremediation alter the rootassociated microbial community of Bromus biebersteinii. Soil Biol Biochem 30:1717–1723

    Article  CAS  Google Scholar 

  • Singh OV, Jain RK (2003) Phytoremediation of toxic aromatic pollutants from soil. Appl Microbiol Biotechnol 63:128–135

    Article  CAS  Google Scholar 

  • Singh MV, Singh KN (1989) Reclamation techniques for improvement of sodic soils and crop yield. Indian J Agric Sci 59:495–500

    Google Scholar 

  • Singh K, Chauhan HS, Rajput DK, Singh DV (1989) Report of a 60 month study on litter production, changes in soil chemical properties and productivity under Poplar (P. deltoides) and Eucalyptus (E. hybrid) interplanted with aromatic grasses. Agrofor Syst 9(1):37–45

    Article  Google Scholar 

  • Soil Science Society of America (2006) Internet glossary of soil science terms. Available at: http://www.soils.org/sssagloss/

  • Suarez DL (2001) Sodic soil reclamation: modelling and field study. Aust J Soil Res 39:1225–1246

    Article  CAS  Google Scholar 

  • Suer P, Andersson-Sköld Y (2011) Biofuel or excavation? – Life cycle assessment (LCA) of soil remediation options. Biomass Bioenergy 35:969–981

    Article  CAS  Google Scholar 

  • Sumner ME (1993) Sodic soils: new perspectives. Aust J Soil Res 31:683–750

    Article  Google Scholar 

  • Sumner ME, Rengasamy P, Naidu R (1998) Sodic soils: a reappraisal. In: Sumner ME, Naidu R (eds) Sodic soil: distribution, management and environmental consequences. Oxford University Press, New York, pp 3–17

    Google Scholar 

  • Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18:647–658

    Article  Google Scholar 

  • Szabolcs I (1994) Soils and salinization. In: Pessarakli M (ed) Handbook of plant and crop stress, 1st edn. Marcel Dekker, New York, pp 3–11

    Google Scholar 

  • Tanji KK (1990) Nature and extent of agricultural salinity. In: Tanji KK (ed) Agricultural salinity assessment and management, Manuals and reports on engineering practices no. 71. American Society of Civil Engineers, New York, pp 1–17

    Google Scholar 

  • Teakle NL, Bowman S, Barrett-Lennard EG, Real D, Colmer TD (2012) Comparisons of annual pasture legumes in growth, ion regulation and root porosity demonstrate that Melilotus siculus has exceptional tolerance to combinations of salinity and waterlogging. Environ Exp Bot 77:175–184

    Article  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  CAS  Google Scholar 

  • Tipirdamaz R, Gagneul D, Duhazé C, Aïnouche A, Monnier C, Özkum D, Larher F (2006) Clustering of halophytes from an inland salt marsh in Turkey according to their ability to accumulate sodium and nitrogenous osmolytes. Environ Exp Bot 57:139–153. https://doi.org/10.1016/j.envexpbot.2005.05.007

    Article  CAS  Google Scholar 

  • U.S. Salinity Laboratory Staff (1954) Diagnosis and improvement of saline and alkali soils, USDA handbook no. 60. U.S. Government Printing Office, Washington, DC

    Google Scholar 

  • US-EPA [United States-Environmental Protection Agency] (2000) Introduction to Phytoremediation. Office of Research & Development (EPA), Washington, DC

    Google Scholar 

  • Van-Camp L, Bujarrabal B, Gentile A-R, Jones RJA, Montanarella L,Olazabal C, Selvaradjou S-K (2004) Reports of the Technical Working Groups established under the thematic strategy for soil protection EUR 21319 EN/2, 872 pp Office for Official Publications of the European Communities, Luxembourg:192

    Google Scholar 

  • van der Moezel PG, Watson LE, Pearce-Pinto GVN, Bell DT (1988) The response of six Eucalyptus species and Casuarina obesa to the combined effect of salinity and water logging. Aust J Plant Physiol 15:465–474

    Google Scholar 

  • Walker DJ, Lutts S, Sánchez-García M, Correal E (2013) Atriplex halimus L.: its biology and uses. J Arid Environ 100–101:111–121. https://doi.org/10.1016/j.jaridenv.2013.09.004

    Article  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14. https://doi.org/10.1007/s00425-003-1105-5

    Article  CAS  Google Scholar 

  • Wang YC, Ko CH, Chang FC, Chen PY, Liu TF, Sheu YS, Teng CJ (2011) Bioenergy production potential for aboveground biomass from a subtropical constructed wetland. Biomass Bioenergy 35(1):50–58

    Article  CAS  Google Scholar 

  • Wicke B, Smeets E, Dornburg V, Vashev B, Gaiser T, Turkenburg W, Faaij A (2011) The global technical and economic potential of bioenergy from salt-affected soils. Energy Environ Sci 4:2669–2681. https://doi.org/10.1039/c1ee01029h

    Article  Google Scholar 

  • Wong VN, Greene RSB, Dalal RC, Murphy BW (2010) Soil carbon dynamics in saline and sodic soils: a review. Soil Use Manag 26(1):2–11

    Article  Google Scholar 

  • Wright DA, Wellbourn P (2002) Environmental toxicology, vol 11. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wu SS (2009) Enhanced phytoremediation of salt-impacted soils using plant growthpromoting rhizobacteria (PGPR). MSc thesis. University of Waterloo, Waterloo, ON

    Google Scholar 

  • Wu YQ, Taliaferro CM, Martin DL, Goad CL, Anderson JA (2006) Genetic variability and relationships for seed yield and its components in Chinese Cynodon accessions. Field Crop Res 98:245–252

    Article  Google Scholar 

  • Wursten JL, Powers WL (1934) Reclamation of virgin black alkali soils. J Am Soc Agron 26:752–762

    Article  CAS  Google Scholar 

  • Yensen NP, Biel KY (2006) Soil remediation via salt-conduction and the hypotheses of halosynthesis and photoprotection ecophysiology of high salinity tolerant plants. In: Khan MA, Weber DJ (eds) Tasks for vegetation science 34, vol 40. Springer, Dordrecht, pp 313–344. https://doi.org/10.1007/1-4020-4018-0_21

    Chapter  Google Scholar 

  • Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, N. (2020). Reclamation of Saline and Sodic Soil Through Phytoremediation. In: Shukla, V., Kumar, N. (eds) Environmental Concerns and Sustainable Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-6358-0_11

Download citation

Publish with us

Policies and ethics