Skip to main content

Interplay Between Antioxidant Enzymes and Brassinosteroids in Control of Plant Development and Stress Tolerance

  • Chapter
  • First Online:
Book cover Brassinosteroids: Plant Growth and Development

Abstract

Brassinosteroids (BRs) is a naturally occurring phytohormone of steroidal nature, which take part in the regulation of growth and development of plants through their life cycle. In the present era, availability of a larger number of biotic and abiotic factors restrict the gross production of principal crops. Handful of literature revealed that BRs play vital role in modulating the plant response to various abiotic stresses through alteration in the activities of antioxidant enzymes and proline metabolism by inducing expression of genes involved in defense and antioxidant responses in plants. This plant steroid also found to be very successful in mitigating the damage caused by the oxidative stress under varied unfavorable environmental conditions. These days most debatable part in the BRs research field is the molecular mechanisms associated with the enhanced activities of antioxidant enzymes and proline accumulation in plants under various developmental and environmental cues. Here, we will shed lights on the action mechanisms by which BRs enhanced the activities of antioxidant enzymes and proline accumulation under both stress and stress-free conditions and cross talk with other plant hormones. Therefore, understanding the physiological, biochemical and molecular aspects of BRs would help in developing abiotic stress tolerance in plants in a more significant manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas, S., Latif, H. H., & Elsherbiny, E. A. (2013). Effect of 24-epibrassinolide on the physiological and genetic changes on two varieties of pepper under salt stress conditions. Pakistan Journal of Botany, 45, 1273–1284.

    Google Scholar 

  • Aghdam, M. S., & Mohammadkhani, N. (2014). Enhancement of chilling stress tolerance of tomato fruit by postharvest brassinolide treatment. Food and Bioprocess Technology, 7, 909–914.

    Article  CAS  Google Scholar 

  • Akram, A. A., & Abdel-Fattah, R. I. (2006). Osmolytes-antioxidant behaviour in Phaseolus vulgaris and Hordeum vulgare with Brassinosteroid under salt stress. Journal of Agronomy, 5(1), 167–174.

    Article  Google Scholar 

  • Ali, B., Hayat, S., & Ahmad, A. (2007). 28-Homobrassinolide ameliorates the saline stress in Cicer arietinum L. Environmental and Experimental Botany, 59, 217–223.

    Article  CAS  Google Scholar 

  • Ali, B., Hayat, S., Fariduddin, Q., & Ahmad, A. (2008). 24-Epibrassinolide protects against the stress generated by salinity and nickel in Brassica juncea. Chemosphere, 72, 1387–1392.

    Article  CAS  PubMed  Google Scholar 

  • Anjum, S. A., Wang, L. C., Farooq, M., Hussain, M., Xue, L. L., & Zou, C. M. (2011). Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. Journal of Agronomy and Crop Science, 197, 177–185.

    Article  CAS  Google Scholar 

  • Anuradha, S., & Rao, S. S. R. (2001). Effect of brassinosteroids on salinity stress induced inhibition of germination and seedling growth of rice (Oryza sativa L.). Plant Growth Regulation, 33, 151–153.

    Article  CAS  Google Scholar 

  • Anuradha, S., & Rao, S. S. R. (2003). Application of brassinosteroids to rice seeds (Oryza sativa L.) reduced the impact of salt stress on growth, prevented photosynthetic pigment loss and increased nitrate reductase activity. Plant Growth Regulation, 40, 29–32.

    Article  CAS  Google Scholar 

  • Anuradha, S., & Rao, S. S. R. (2007). Effect of 24-epibrassinolide on the growth and antioxidant enzyme activities in radish seedlings under lead toxicity. Indian Journal of Plant Physiology, 12, 396–400.

    CAS  Google Scholar 

  • Arora, N., Bhardwaj, R., Sharma, P., & Arora, H. K. (2008). Effects of 28-homobrassinolide on growth, lipid peroxidation and antioxidative enzyme activities in seedlings of Zea mays L. under salinity stress. Acta Physiologiae Plantarum, 30, 833–839.

    Article  CAS  Google Scholar 

  • Arteca, R. N. (1995). In P. J. Davies (Ed.), Brassinosteroids in plant hormones: Physiology, biochemistry, and molecular biology (pp. 206–213). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Bajguz, A. (2000). Effect of brassinosteroids on nucleic acid and protein content in cultured cell of Chlorella vulgaris. Plant Physiology and Biochemistry, 38, 209–215.

    Article  CAS  Google Scholar 

  • Bajguz, A. (2007). Metabolism of brassinosteroids in plants. Plant Physiology and Biochemistry, 45, 95–107.

    Article  CAS  PubMed  Google Scholar 

  • Bajguz, A., & Hayat, S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiology and Biochemistry, 47, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Bajguz, A., & Piotrowska-Niczyporuk, A. (2014). Interactive effect of brassinosteroids and cytokinins on growth, chlorophyll, monosaccharide and protein content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiology and Biochemistry, 80, 176–183.

    Article  CAS  PubMed  Google Scholar 

  • Cao, Y. Y., & Zhao, H. (2007). Protective roles of brassinolide in rice seedlings under heat stress. Zhongguo Shuidao Kexue (China Rice Science), 21, 525–529.

    CAS  Google Scholar 

  • Cao, S., Xu, Q., Cao, Y., Qian, K., An, K., Zhu, Y., Hu, B. Z., Zhao, H. F., & Kuai, B. K. (2005). Loss-of-function mutations in DET2 gene lead to an enhanced resistance to oxidative stress in Arabidopsis. Physiologia Plantarum, 123, 57–66.

    Article  CAS  Google Scholar 

  • Choudhary, S. P., Kanwar, M., Bhardwaj, R., Yu, J. Q., & Tran, L. S. (2012a). Chromium stress mitigation by polyamine–brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS One, 7, 33210.

    Article  CAS  Google Scholar 

  • Choudhary, S. P., Yu, J. Q., Yamaguchi-Shinozaki, K., Shinozaki, K., & Tran, L. S. (2012b). Benefits of brassinosteroid crosstalk. Trends in Plant Science, 17, 594–605.

    Article  CAS  PubMed  Google Scholar 

  • Clouse, S. D., & Sasse, J. M. (1998). Brassinosteroids: Essential regulators of plant growth and development. Annual Review of Plant Physiology and Plant Molecular Biology, 49, 427–451.

    Article  CAS  PubMed  Google Scholar 

  • Clouse, S. D., Langford, M., & McMorris, T. C. (1996). A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiology, 111, 671–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui, J. X., Zhou, Y. H., Ding, J. G., Xia, X. J., Shi, K., Chen, S. C., Asami, T., Chen, Z., & Yu, J. Q. (2011). Role of nitric oxide in hydrogen peroxide-dependent induction of abiotic stress tolerance by brassinosteroids in cucumber. Plant, Cell & Environment, 34, 347–358.

    Article  CAS  Google Scholar 

  • De Vleesschauwer, D., Van Buyten, E., Satoh, K., Balidion, J., Mauleon, R., Choi, I. R., Vera-Cruz, C., Kikuchi, S., & Hofte, M. (2012). Brassinosteroids antagonize gibberellin– and salicylate-mediated root immunity in rice. Plant Physiology, 158, 1833–1846.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deng, X. G., Zhu, T., Zhang, D. W., & Lin, H. H. (2015). The alternative respiratory pathway is involved in brassinosteroid-induced environmental stress tolerance in Nicotiana benthamiana. Journal of Experimental Botany, 66, 6219–6232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhaubhadel, S., Chaundhary, S., Dobinson, K. F., & Krishna, P. (1999). Treatment with 24-epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomato seedlings. Plant Molecular Biology, 40, 333–342.

    Article  CAS  PubMed  Google Scholar 

  • Diener, A. C., Li, H., Zhou, W. X., Whoriskey, W. J., Nes, W. D., & Fink, G. R. (2000). Sterol methyltransferase 1 controls the level of cholesterol in plants. Plant Cell, 12, 853–870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding, H. D., Zhu, X. H., Zhu, Z. W., Yang, S. J., Zha, D. S., & Wu, X. X. (2012). Amelioration of salt-induced oxidative stress in eggplant by application of 24-epibrassinolide. Biologia Plantarum, 56, 767–770.

    Article  CAS  Google Scholar 

  • Divi, U. K., Rahman, T., & Krishna, P. (2010). Research article Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biology, 10, 151.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duan, J. J., Lundgren, J. G., Naranjo, S., & Marvier, M. (2010). Extrapolating non-target risk of Bt crops from laboratory to field. Biology Letters, 6, 74–77.

    Article  PubMed  Google Scholar 

  • Duan, Y., Shi, X., Li, S., Sun, X., & He, X. (2014). Nitrogen use efficiency as affected by phosphorus and potassium in long-term rice and wheat experiments. Journal of Integrative Agriculture, 13, 588–596.

    Article  CAS  Google Scholar 

  • El-Khallal, S. M., Hathout, T. A., Ashour, A. E. R. A., & Kerrit, A. A. A. (2009). Brassinolide and salicylic acid induced antioxidant enzymes, hormonal balance and protein profile of maize plants grown under salt stress. Research Journal of Agriculture and Biological Sciences, 5, 391–402.

    CAS  Google Scholar 

  • El-Mashad, A., & Mohamed, H. (2012). Brassinolide alleviates salt stress and increases antioxidant activity of cowpea plants (Vigna sinensis). Protoplasma, 249, 625–635.

    Article  CAS  PubMed  Google Scholar 

  • Fariduddin, Q., Khanam, S., Hasan, S. A., Ali, B., Hayat, S., & Ahmad, A. (2009). Effect of 28-homobrassinolide on drought stress induced changes in photosynthesis and antioxidant system of Brassica juncea L. Acta Physiologiae Plantarum, 31, 889–897.

    Article  CAS  Google Scholar 

  • Fariduddin, Q., Yusuf, M., Chalkoo, S., Hayat, S., & Ahmad, A. (2011). 28-Homobrassinolide improves growth and photosynthesis in Cucumis sativus L. through an enhanced antioxidant system in the presence of chilling stress. Photosynthetica, 49, 55–64.

    Article  CAS  Google Scholar 

  • Fariduddin, Q., Khalil, R. R., Mir, B. A., Yusuf, M., & Ahmad, A. (2013). 24-Epibrassinolide regulates photosynthesis, antioxidant enzyme activities and proline content of Cucumis sativus under salt and/or copper stress. Environmental Monitoring and Assessment, 185, 7845–7856.

    Article  CAS  PubMed  Google Scholar 

  • Fariduddin, Q., Mir, B. A., Yusuf, M., & Ahmad, A. (2014). 24-epibrassinolide and/or putrescine trigger physiological and biochemical responses for the salt stress mitigation in Cucumis sativus L. Photosynthetica, 52, 464–474.

    Article  CAS  Google Scholar 

  • Fariduddin, Q., Ahmed, M., Mir, B. A., Yusuf, M., & Khan, T. A. (2015). 24-Epibrassinolide mitigates the adverse effects of manganese induced toxicity through improved antioxidant system and photosynthetic attributes in Brassica juncea. Environmental Science and Pollution Research, 22, 11349–11359.

    Article  CAS  PubMed  Google Scholar 

  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 29, 185–212.

    Article  Google Scholar 

  • Farooq, M., Wahid, A., Lee, D. J., Cheema, S. A., & Aziz, T. (2010). Comparative time course action of the foliar applied glycinebetaine, salicylic acid, nitrous oxide, brassinosteroids and spermine in improving drought resistance of rice. Journal of Agronomy and Crop Science, 196, 336–345.

    Article  CAS  Google Scholar 

  • Gendron, J. M., & Wang, Z. Y. (2007). Multiple mechanisms modulate brassinosteroid signaling. Current Opinion in Plant Biology, 10, 436–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goda, H., Shimada, Y., Asami, T., Fujioka, S., & Yoshida, S. (2002). Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiology, 130, 1319–1334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes, M. M. A. (2011). Physiological effects related to brassinosteroid application in plants. In S. Hayat & A. Ahmad (Eds.), Brassinosteroids: A class of plant hormones (pp. 193–242). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Gomes, M. M. A., Torres Netto, A., Campostrini, E., Bressan-Smith, R., Zullo, M. A. T., Ferraz, T. M., Siqueira, L. N., Leal, N. R., & Nunez-Vazquez, M. (2013). Brassinosteroid analogue affects the senescence in two papaya genotypes submitted to drought stress. Theoretical and Experimental Plant Physiology, 25, 186–195.

    Google Scholar 

  • Gratao, P. L., Gomes-Junior, R. A., Delite, F. S., Lea, P. J., & Azevedo, R. A. (2006). Antioxidants stress responses of plants to cadmium. In N. A. Khan & Samiullah (Eds.), Cadmium toxicity and tolerance in plants (pp. 1–34). Oxford: Alpha Science International.

    Google Scholar 

  • Grove, M. D., Spencer, G. F., Rohwedder, W. K., Mandava, N., Worley, J. F., Warthen, J. D., Steffens, G. L., Flippen-Anderson, J. L., & Cook, J. C. (1979). Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature, 281(5728), 216–217.

    Article  CAS  Google Scholar 

  • Hansen, M., Chae, H. S., & Kieber, J. (2009). Regulation of ACS protein stability by cytokinin and brassinosteroid. The Plant Journal, 57, 606–614.

    Article  CAS  PubMed  Google Scholar 

  • Hasan, S. A., Hayat, S., & Ahmad, A. (2011). Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars. Chemosphere, 84, 1446–1451.

    Article  CAS  PubMed  Google Scholar 

  • Hayat, S., Ali, B., Hasan, S. A., & Ahmad, A. (2007). Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environmental and Experimental Botany, 60, 33–41.

    Article  CAS  Google Scholar 

  • Hayat, S., Hasan, S. A., Hayat, Q., & Ahmad, A. (2010). Brassinosteroids protect Lycopersicon esculentum from cadmium toxicity applied as shotgun approach. Protoplasma, 239, 3–14.

    Article  CAS  PubMed  Google Scholar 

  • Hayat, S., Alyemini, M. N., & Hasan, S. A. (2012). Foliar application of brassinosteroids enhances yield and quality of Solanum lycopersicum under cadmium stress. Saudi Journal of Biological Sciences, 19, 325–335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayat, S., Khalique, G., Wani, A. S., Alyemeni, M. N., & Ahmad, A. (2014). Protection of growth in response to 28-homobrassinolide under the stress of cadmium and salinity in wheat. International Journal of Biological Macromolecules, 64, 130–136.

    Article  CAS  PubMed  Google Scholar 

  • Houimli, S. I. M., Denden, M., & Mouhandes, B. D. (2010). Effects of 24-epibrassinolide on growth, chlorophyll, electrolyte leakage and proline by pepper plants under NaCl-stress. European Asian Journal of Biosciences, 4, 96–104.

    Article  CAS  Google Scholar 

  • Hu, Y. L., Hu, D. N., Xing, X. X., & Guo, X. M. (2011). Effects of different BRs treatments on growth of young forest in Camellia oleifera [J]. Nonwood Forest Research, 1, 10.

    Google Scholar 

  • Hu, W. H., Yan, X. H., Xiao, Y. A., Zeng, J. J., Qi, H. J., & Ogweno, J. O. (2013). 24-Epibrassinosteroid alleviate drought-induced inhibition of photosynthesis in Capsicum annuum. Scientia Horticulturae, 150, 232–237.

    Article  CAS  Google Scholar 

  • Jakubowska, D., & Janicka, M. (2017). The role of brassinosteroids in the regulation of the plasma membrane H+- ATPase and NADPH oxidase under cadmium stress. Plant Science: An International Journal of Experimental Botany, 264, 37–47.

    Article  CAS  Google Scholar 

  • Janeczko, A., Gullner, G., Skoczowski, A., Dubert, F., & Barna, B. (2007). Effects of brassinosteroid infiltration prior to cold treatment on ion leakage and pigment contents in rape leaves. Biologia Plantarum, 51, 355–358.

    Article  CAS  Google Scholar 

  • Jian, Y. P., Cheng, F., Zhou, Y. H., Xia, X. J., Shi, K., & Yu, J. Q. (2012). Interactive effects of CO2 enrichment and brassinosteroids on CO2 assimilation and photosynthetic electron transport in Cucumis sativus. Environmental and Experimental Botany, 75, 98–106.

    Article  CAS  Google Scholar 

  • Jiang, Y. P., Huang, L. F., Cheng, F., Zhou, Y. H., Xia, X. J., Mao, W. H., Shi, K., & Yu, J. Q. (2013). Brassinosteroids accelerate recovery of photosynthetic apparatus from cold stress by balancing the electron partitioning, carboxylation and redox homeostasis in cucumber. Physiologia Plantarum, 148, 133–145.

    Article  CAS  PubMed  Google Scholar 

  • Kagale, S., Divi, U. K., Krochko, J. E., Keller, W. A., & Krishna, P. (2007). Brassinosteroids confer resistance to Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta, 225, 353–364.

    Article  CAS  PubMed  Google Scholar 

  • Kanwar, M. K., Bhardwaj, R., Arora, P., Chowdhary, S. P., Sharma, P., & Kumar, S. (2012). Plant steroid hormones produced under Ni stress are involved in the regulation of metal uptake and oxidative stress in Brassica juncea L. Chemosphere, 86, 41–49.

    Article  CAS  PubMed  Google Scholar 

  • Kanwar, M. K., Bhardwaj, R., Chowdhary, S. P., Arora, P., Sharma, P., & Kumar, S. (2013). Isolation and characterization of 24-epibrassinolide from Brassica juncea L. and its effects on growth, Ni ion uptake, antioxidant defense of Brassica plants and in vitro cytotoxicity. Acta Physiologiae Plantarum, 35, 1351–1362.

    Article  CAS  Google Scholar 

  • Kapoor, D., Rattan, A., Gautam, V., Kapoor, N., & Bharadwaj, R. (2014). 24-Epibrassinolide mediated photosynthetic pigments and antioxidative defense systems of radish seedling under cadmium and mercury stress. Journal of Stress Physiology & Biochemistry, 10, 110–121.

    Google Scholar 

  • Khan, T. A., Fariduddin, Q., & Yusuf, M. (2015). Lycopersicon esculentum under low temperature stress: An approach toward enhanced antioxidants and yield. Environmental Science and Pollution Research, 22, 14178–14188.

    Article  CAS  PubMed  Google Scholar 

  • Kim, T. W., Chang, S. C., Lee, J. S., Hwang, B., Takatsuto, S., Yokota, T., & Kim, S. K. (2004). Cytochrome P450-catalyzed brassinosteroid pathway activation through synthesis of castasterone in Phaseolus vulgaris. Phytochemistry, 65, 679–689.

    Article  CAS  PubMed  Google Scholar 

  • Kitanaga, Y., Jian, C., Hasegawa, M., Yazaki, J., Kishimoto, N., Kikuchi, S., Nukamura, H., Chikawa, H., Asami, T., Yoshida, S., Yamaguchi, I., & Suzuk, Y. (2006). Sequential regulation of gibberellin, brassinosteroid, and jasmonic acid biosynthesis occurs in rice coleoptiles to control the transcript levels of anti-microbial thionin genes. Bioscience, Biotechnology, and Biochemistry, 70, 2410–2419.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, M., Sirhindi, G., Bhardwaj, R., Kumar, S., & Jain, G. (2010). Effect of exogenous H2O2 on antioxidant enzymes of Brassica juncea L. seedlings in relation to 24-epibrassinolide under chilling stress. Indian Journal of Biochemistry & Biophysics, 47, 378–382.

    CAS  Google Scholar 

  • Kurepin, L. V., Qaderi, M. M., Back, T. G., Reid, D. M., & Pharis, R. P. (2008). A rapid effect of applied brassinolide on abscisic acid concentrations in Brassica napus leaf tissue subjected to short-term heat stress. Plant Growth Regulation, 55, 165–167.

    Article  CAS  Google Scholar 

  • Kutschera, U., & Wang, Z. Y. (2012). Brassinosteroid action in flowering plants: A Darwinian perspective. Journal of Experimental Botany, 63, 3511–3522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanza, M., Garcia-Ponce, B., Castrillo, G., Catrecha, P., Sauer, M., Rodriguez-Serrano, M., Paez-Garcia, A., Sanchez-Bermejo, T., T C M, Leo del Puerto, Y., Sandalio, L. M., Paz-Ares, J., & Leyva, A. (2012). Role of actin cytoskeleton in brassinosteroid signaling and in its integration with the auxin response in plants. Developmental Cell, 22, 1275–1285.

    Article  CAS  PubMed  Google Scholar 

  • Li, L., & Van Staden, J. (1998). Effects of plant growth regulators on drought resistance of two maize cultivars. South Afican Journal of Botany, 64, 116–120.

    Article  CAS  Google Scholar 

  • Li, J., Nagpal, P., Vitart, V., McMorris, T. C., & Chory, J. (1996). A role for brassinosteroids in light-dependent development of Arabidopsis. Science, 2721, 398–401.

    Article  Google Scholar 

  • Li, K. R., Wang, H. H., Han, G., Wang, Q. J., & Fan, J. (2008). Effects of brassinolide on the survival, growth and drought resistance of Robinia pseudoacacia seedlings under water-stress. New Forests, 35, 255–266.

    Article  Google Scholar 

  • Li, Y. H., Liu, Y. J., Xu, X. L., Jin, M., An, L. Z., & Zhang, H. (2012). Effect of 24-epibrassinolide on drought stress-induced changes in Chorispora bungeana. Biologia Plantarum, 56, 192–196.

    Article  CAS  Google Scholar 

  • Lin, D., Nagawa, S., Chen, J., Cao, L., Chen, X., Xu, T., Li, H., Dhonukshe, P., Yamamuro, C., Friml, J., Scheres, B., Fu, Y., & Yand, Z. (2012). A ROP GTPase-dependent auxin signaling pathway regulates the subcellular distribution of PIN2 in Arabidopsis roots. Current Biology, 22, 1319–1325.

    Article  CAS  PubMed  Google Scholar 

  • Lindsey, K., Pullen, M. L., & Topping, J. F. (2003). Importance of plant sterols in pattern formation and hormone signaling. Trends in Plant Science, 8, 521–525.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J. H., & Moriguchi, T. (2007). Changes in free polyamines titers and expression of polyamines biosynthesis genes during growth of peach in vitro callus. Cell Biology Morphology, 26, 125–131.

    CAS  Google Scholar 

  • Lu, X. M., & Yang, W. (2013). Alleviation effects of brassinolide on cucumber seedlings under NaCl stress. Ying Yong Sheng Tai Xue Bao, 24, 1409–1414.

    CAS  PubMed  Google Scholar 

  • Mahesh, B., Parshavaneni, B., Ramakrishna, B., & Rao, S. S. R. (2013). Effect of brassinosteroids on germination and seedling growth of radish (Raphanus sativus L.) under PEG-6000 induced water stress. American Journal of Plant Sciences, 4, 2305–2313.

    Article  CAS  Google Scholar 

  • Marquardt, V., & Adam, G. (1991). Recent advances in brassinosteroid research. In H. Boerner, D. Martin, V. Sjut, H. J. Stan, & J. Stetter (Eds.), Chemistry of plant protection, herbicide resistance-brassinosteroids, gibberellins, plant growth regulators (Vol. 7, pp. 103–139). Berlin: Springer.

    Chapter  Google Scholar 

  • Mazorra, L. M., Nunez, M., Hechavarria, M., Coll, F., & Sanchez-Blanco, M. J. (2002). Influence of brassinosteroids on antioxidant enzymes activity in tomato under different temperatures. Biologia Plantarum, 45, 593–596.

    Article  CAS  Google Scholar 

  • Meudt, W. J. (1987). Investigations on the mechanism of the brassinosteroid response: VI. Effect of brassinolide on gravitropism of bean hypocotyls. Plant Physiology, 83, 195–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell, J. W., Mandava, N., Worley, J. F., Plimmer, J. R., & Smith, M. V. (1970). Brassins: A new family of plant hormones from rape pollen. Nature, 225, 1065–1066.

    Article  CAS  PubMed  Google Scholar 

  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405–410.

    Article  CAS  PubMed  Google Scholar 

  • Mittler, R., Vanderauwera, S., Suzuki, N., Miller, G., Tognetti, V. B., Vandepoele, K., Gollery, M., Shulaev, V., & Van Breusegem, F. (2011). ROS signaling: The new wave. Trends in Plant Science, 16, 300–309.

    Article  CAS  PubMed  Google Scholar 

  • Muday, G. K., Rahman, A., & Binder, B. M. (2012). Auxin and ethylene: Collaborators or competitors? Trends in Plant Science, 17, 181–195.

    Article  CAS  PubMed  Google Scholar 

  • Mussig, C., Fischer, S., & Altamann, T. (2002). Brassinosteroid-regulated gene expression. Plant Physiology, 129, 1241–1251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nahar, K., Kyndt, T., Hause, B., Höfte, M., & Gheysen, G. (2013). Brassinosteroids suppress rice defense against root-knot nematodes through antagonism with the jasmonate pathway. Molecular Plant-Microbe Interactions, 26, 106–115.

    Article  CAS  PubMed  Google Scholar 

  • Nakashita, H., Yasuda, M., Nitta, T., Asami, T., Fujioka, S., Arai, Y., Sekimata, K., Takatsuto, S., Yamaguchi, I., & Yoshida, S. (2003). Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. The Plant Journal, 33, 887–898.

    Article  CAS  PubMed  Google Scholar 

  • Nawaz, F., Naeem, M., Zulfiqar, B., Akram, A., Ashraf, M. Y., Raheel, M., Shabbir, R. N., Hussain, R. A., Anwar, I., & Aurangzaib, M. (2017). Understanding brassinosteroid-regulated mechanisms to improve stress tolerance in plants: A critical review. Environmental Science and Pollution Research International, 24, 15959–15975.

    Article  PubMed  Google Scholar 

  • Nemhauser, J. L., Mockler, C. T., & Chory, J. (2004). Independency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biology, 2, 258.

    Article  CAS  Google Scholar 

  • Nie, W. F., Wang, M. M., Xia, X. J., Zhou, Y. H., Shi, K., Chen, Z. X., & Yu, J. Q. (2013). Silencing of tomato RBOH1 and MPK2 abolishes brassinosteroid-induced H2O2 generation and stress tolerance. Plant, Cell & Environment, 36, 789–803.

    Article  CAS  Google Scholar 

  • Nishiyama, A. (2012). NG2 cells (Polydendrocytes). Chapter 10. In H. Kettenmann & B. R. Ransom (Eds.), Neuroglia (3rd ed.). New York: Oxford University Press.

    Google Scholar 

  • Nunez, M., Mazzafera, P., Mazorra, L. M., Siqueira, W. J., & Zullo, M. A. T. (2003). Influence of a brassinosteroid analog on antioxidant enzymes in rice grown in culture medium with NaCl. Biologia Plantarum, 47, 67–70.

    Article  CAS  Google Scholar 

  • Ogweno, J. O., Song, X. S., Shi, K., Hu, W. H., Mao, W. H., Zhou, Y. H., Yu, J. Q., & Nogues, S. (2008). Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. Journal of Plant Growth Regulation, 27, 49–57.

    Article  CAS  Google Scholar 

  • Ozdemir, F., Bor, M., Demiral, T., & Turkan, I. (2004). Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regulation, 42, 203–211.

    Article  Google Scholar 

  • Qayyum, B., Shahbaz, M., & Akram, N. A. (2007). Interactive effect of foliar application of 24-epibrassinolide and root zone salinity on morpho-physiological attributes of wheat (Triticum aestivum L.). International Journal of Agriculture and Biology, 9, 584–589.

    CAS  Google Scholar 

  • Rady, M. M. (2011). Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Scientia Horticulturae, 129, 232–237.

    Article  CAS  Google Scholar 

  • Rady, M. M., & Osman, A. S. (2012). Response of growth and antioxidative system of heavy metal contaminated tomato plants 24-epibrassinolide. African Journal of Agricultural Research, 7, 3249–3254.

    Google Scholar 

  • Raghu, K., Mahesh, K., Divya Sri, N., & Rao, S. S. R. (2014). Effect of brassinosteroids on the seed germination and seedling growth of radish (Raphanus sativus L.) under arsenic toxicity stress. International Journal of Development Research, 9, 1929–1933.

    Google Scholar 

  • Rajewska, I., Talarek, M., & Bajguz, A. (2016). Brassinosteroids and response of plants to heavy metal action. Frontiers in Plant Science, 7, 629.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramakrishna, B., & Rao, S. S. R. (2013). Preliminary studies on the involvement of glutathione metabolism and redox status against zinc toxicity in radish seedlings by 28-homobrassinolide. Environmental and Experimental Botany, 96, 52–58.

    Article  CAS  Google Scholar 

  • Ren, C., Han, C., Peng, W., Huang, Y., Peng, Z., Xiong, X., Zhu, Q., Gao, B., & Xie, D. (2009). A leaky mutation in DWARF4 reveals an antagonistic role of brassinosteroid in the inhibition of root growth by jasmonate in Arabidopsis. Plant Physiology, 151, 1412–1420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruley, A. T., Sharma, N. C., & Sahi, S. V. (2004). Antioxidant defense in a lead accumulating plant, Sesbania drummondii. Plant Physiology and Biochemistry, 42, 899–906.

    Article  CAS  PubMed  Google Scholar 

  • Saini, S., Sharma, I., & Pati, P. K. (2015). Versatile roles of brassinosteroid in plants in the context of its homoeostasis, signaling and crosstalk. Frontiers in Plant Science, 6, 950.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sasse, J. M. (1991). The case for brassinosteroids as endogenous plant hormones. In H. G. Cutler, T. Yokota, & G. Adam (Eds.), Brassinosteroids: Chemistry, bioactivity and applications (ACS Symposium Series) (Vol. 474, pp. 158–166). Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  • Savaliya, D. D., Mandavia, C. K., & Mandavia, M. K. (2013). Role of brassinolide on enzyme activities in groundnut under water deficit stress. Indian Journal of Agricultural Biochemistry, 26, 92–96.

    CAS  Google Scholar 

  • Saygideger, S., & Deniz, F. (2008). Effect of 24-epibrassinolide on biomass, growth and free proline concentration in Spirulina platensis (Cyanophyta) under NaCl stress. Plant Growth Regulation, 56, 219–223.

    Article  CAS  Google Scholar 

  • Shahbaz, M., Ashraf, M., & Athar, H. (2008). Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L.). Plant Growth Regulation, 55, 51–64.

    Article  CAS  Google Scholar 

  • Shang, Q., Song, S., Zhang, Z., & Guo, S. (2006). Exogenous brassinosteroid induced salt resistance of cucumber (Cucumis sativus L.) seedlings. Scientia Agricultura Sinica, 39, 1872–1877.

    CAS  Google Scholar 

  • Sharma, P., & Dubey, R. S. (2005). Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: Role of osmolytes as enzyme protectant. Journal of Plant Physiology, 162, 854–864.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, N., Hundal, G. S., Sharma, I., & Bharadwaj, R. (2012). Effect of 24-epibrssinolide on protein content and activities of glutathione-S-transferase and poly phenol oxidase in Raphanus sativus L. plants under cadmium and mercury metal stress. Terrestrial and Aquatic Toxicology, 6, 1–7.

    Google Scholar 

  • Sharma, I., Ching, E., Saini, S., Bhardwaj, R., & Pati, P. K. (2013). Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiology and Biochemistry, 69, 17–26.

    Article  CAS  PubMed  Google Scholar 

  • Shimada, Y., Goda, H., Nakamura, A., Takatsuto, S., Fujioka, S., & Yoshida, S. (2003). Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiology, 131, 287–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simonovicova, M., Tamas, L., Huttova, J., & Mistrik, I. (2004). Effect of aluminum on oxidative stress related enzymes activities in barley roots. Biologia Plantarum, 48, 261–266.

    Article  CAS  Google Scholar 

  • Steber, C. M., & McCourt, P. (2001). A role for brassinosteroids in germination in Arabidopsis. Plant Physiology, 125, 76.

    Article  Google Scholar 

  • Szekeres, M., Nemeth, K., Koncz-kalman, Z., Mathur, J., Kauschmann, A., Altmann, T., Redei, G. P., Nagy, F., Schell, J., & Koncz, C. (1996). Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell, 851, 171–182.

    Article  Google Scholar 

  • Taiz, L., & Zeiger, E. (2006). Plant physiology (4th ed.). Sunderland: Sinauer Associates.

    Google Scholar 

  • Takahashi, T., & Kakehi, J. I. (2010). Polyamines: Ubiquitous polycations with unique roles in growth and stress responses. Annals of Botany, 105, 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Upreti, K. K., & Murti, G. S. R. (2004). Effects of brassinosteroids on growth, nodulation, phytohormone content and nitrogenase activity in French bean under water stress. Biologia Plantarum, 48, 407–411.

    Article  CAS  Google Scholar 

  • Vardhini, B. V. (2011). Studies on the effect of brassinolide on the antioxidative system of two varieties of sorghum grown in saline soils of Karaikal. Asian and Australasian Journal of Plant Science and Biotechnology, 5, 31–34.

    Google Scholar 

  • Vardhini, B. V., & Rao, S. S. R. (2003). Amelioration of osmotic stress by brassinosteroids on seed germination and seedling growth of three varieties of sorghum. Plant Growth Regulation, 41, 21–31.

    Google Scholar 

  • Vercruyssen, L., Gonzalez, N., Werner, T., Schmülling, T., & Inze, D. (2011). Combining enhanced root and shoot growth reveals cross talk between pathways that control plant organ size in Arabidopsis. Plant Physiology, 155, 1339–1352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Q., Lai, T. F., Qin, G. Z., & Tian, S. P. (2009). Response of jujube fruits to exogenous oxalic acid treatment based on proteomic analysis. Plant & Cell Physiology, 50, 230–242.

    Article  CAS  Google Scholar 

  • Wang, Q., Ding, T., Gao, L., Pang, J., & Yang, N. (2012). Effect of brassinolide on chilling injury of green bell pepper in storage. Scientia Horticulturae, 144, 195–200.

    Article  CAS  Google Scholar 

  • Wang, X. H., Shu, C., Li, H. Y., Hu, X. Q., & Wang, Y. X. (2014). Effects of 0.01% brassinolide solution application on yield of rice and its resistance to autumn low-temperature damage. Acta Agriculturae Jiangxi, 26, 36–38.

    CAS  Google Scholar 

  • Wani, A. S., Hayat, S., Ahmad, A., & Tahir, I. (2017). Efficacy of brassinosteroid analogues in the mitigation of toxic effects of salt stress in Brassica juncea plants. Journal of Environmental Botany, 38, 27–36.

    Google Scholar 

  • Werner, T., Nehnevajova, E., Kollmer, I., Novak, O., Strnad, M., Kramer, U., & Schmulling, T. (2010). Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell, 22, 3905–3920.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, C. Y., Trieu, A., Radhakrishnan, P., Kwok, S. F., Harris, S., Zhang, K., Wang, J. L., Wan, J. M., Zhai, H. Q., Takatsuto, S., Matsumoto, S., Fujioka, S., Feldmann, K. A., & Pennell, R. I. (2008). Brassinosteroids regulate grain filling in rice. Plant Cell, 20, 2130–2145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xi, Z., Wang, Z., Fang, Y., Hu, Z., Hu, Y., Deng, M., & Zhang, Z. (2013). Effects of 24- epibrassinolide on antioxidation defense and osmoregulation systems of young grapevines (V. vinifera L.) under chilling stress. Plant Growth Regulation, 71, 57–65.

    Article  CAS  Google Scholar 

  • Xia, X. J., Huang, L. F., Zhou, Y. H., Mao, W. H., Shi, K., Wu, J. X., Asami, T., Chen, Z., & Yu, J. Q. (2009). Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. Planta, 230, 1185–1196.

    Article  CAS  PubMed  Google Scholar 

  • Xia, X. J., Zhou, Y. H., Ding, J., Shi, K., Asami, T., Chen, Z., & Yu, J. Q. (2011). Induction of systemic stress tolerance by brassinosteroid in Cucumis sativus. The New Phytologist, 191, 706–720.

    Article  CAS  PubMed  Google Scholar 

  • Xu, W., Bak, S., Decker, A., Paquette, S. M., Feyereisen, R., & Galbraith, D. W. (2002). Microarray-based analysis of gene expression in very large gene families: The cytochrome P450 gene super family of Arabidopsis thaliana. Gene, 272, 61–74.

    Article  Google Scholar 

  • Yan, J., Guan, L., Sun, Y., Zhu, Y., Liu, L., Lu, R., Jiang, M., Tan, M., & Zhang, A. (2015). Calcium and ZmCCaMK are involved in brassinosteroid-induced antioxidant defense in maize leaves. Plant & Cell Physiology, 56, 883–896.

    Article  CAS  Google Scholar 

  • Yu, J. Q., Zhou, Y. H., Huang, L. F., & Allen, D. J. (2002). Chill induced inhibition of photosynthesis: Genotype variation within Cucumis sativus. Plant & Cell Physiology, 43, 1182–1188.

    Article  CAS  Google Scholar 

  • Yuan, G. F., Jia, C. G., Li, Z., Sun, B., Zhang, L. P., Liu, N., & Wang, Q. M. (2010). Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress. Scientia Horticulturae, 126, 103–108.

    Article  CAS  Google Scholar 

  • Yuan, L. B., Peng, Z. H., Zhi, T. T., Zho, Z., Liu, Y., Zhu, Q., Xiong, X. Y., & Ren, C. M. (2015). Brassinosteroid enhances cytokinin-induced anthocyanin biosynthesis in Arabidopsis seedlings. Biologia Plantarum, 59, 99–105.

    Article  CAS  Google Scholar 

  • Yuldashev, R., Avalbaev, A., Bezrukova, M., Vysotskaya, L., Khripach, V., & Shakirova, F. (2012). Cytokinin oxidase is involved in the regulation of cytokinin content by 24-epibrassinolide in wheat seedlings. Plant Physiology and Biochemistry, 55, 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Yusuf, M., Fariduddin, Q., Hayat, S., Hasan, S. A., & Ahmad, A. (2011). Protective responses of 28 homobrassinolide in cultivars of Triticum aestivum with different levels of nickel. Archives of Environmental Contamination and Toxicology, 60, 68–76.

    Article  CAS  PubMed  Google Scholar 

  • Yusuf, M., Fariduddin, Q., & Ahmad, A. (2012). 24-epibrassinolide modulates growth, nodulation, antioxidant system and osmolyte in tolerant and sensitive varieties of Vigna radiata under different levels of nickel: A shotgun approach. Plant Physiology and Biochemistry, 57, 143–153.

    Article  CAS  PubMed  Google Scholar 

  • Yusuf, M., Fariduddin, Q., Ahmad, I., & Ahmad, A. (2014). Brassinosteroid-mediated evaluation of antioxidant system and nitrogen metabolism in two contrasting cultivars of Vigna radiata under different levels of nickel. Physiology and Molecular Biology of Plants, 20, 449–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yusuf, M., Fariduddin, Q., Khan, T. A., & Hayat, S. (2017a). Epibrassinolide reverses the stress generated by combination of excess aluminum and salt in two wheat cultivars through altered proline metabolism and antioxidants. South African Journal of Botany, 112, 391–398.

    Article  CAS  Google Scholar 

  • Yusuf, M., Khan, T. A., & Fariduddin, Q. (2017b). Brassinosteroids: Physiological roles and its signalling in plants. In M. Sarwat, A. Ahmad, M. Z. Abdin, & M. M. Ibrahim (Eds.), Stress signaling in plants: Genomics and proteomics perspective (Vol. 2, pp. 241–260). Berlin: Springer International Publishing.

    Chapter  Google Scholar 

  • Zhang, S., Hu, J., Zhang, Y., Xie, X. J., & Knapp, A. (2007). Seed priming with brassinolide improves lucerne (Medicago sativa L.) seed germination and seedling growth in relation to physiological changes under salinity stress. Australian Journal of Agricultural Research, 58, 811–815.

    Article  CAS  Google Scholar 

  • Zhang, M. C., Zhai, Z. X., Tian, X. L., Duan, L. S., & Li, Z. H. (2008). Brassinolide alleviated the adverse effect of water deficits on photosynthesis and the antioxidant of soybean (Glycine max L.). Plant Growth Regulation, 56, 257–264.

    Article  CAS  Google Scholar 

  • Zhang, J., Li, W., Xiang, T., Liu, Z., Laluk, K., Ding, X., Zou, Y., Gao, M., Zhang, X., Chen, S., Mengiste, T., Zhang, Y., & Zhou, J. M. (2010). Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host & Microbe, 7, 290–301.

    Article  CAS  Google Scholar 

  • Zhang, Y. P., Zhu, X. H., Ding, H. D., Yang, S. J., & Chen, Y. Y. (2013). Foliar application of 24-epibrassinolide alleviates high-temperature-induced inhibition of photosynthesis in seedlings of two melon cultivars. Photosynthetica, 51, 341–349.

    Article  CAS  Google Scholar 

  • Zhu, J. Y., Sae-Seaw, J., & Wang, Z. Y. (2013). Brassinosteroid signalling. Development, 140, 1615–1620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zurek, D. M., & Clouse, S. D. (1994). Molecular cloning and characterization of a brassinosteroid-regulated gene from elongating soybean epicotyls. Plant Physiology, 104, 161–170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

MY is very grateful to Chair, Biology Department, College of Science, UAE University, Al Ain, UAE for providing all the necessary facilities to compile this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Yusuf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yusuf, M., Fariduddin, Q., Khan, T.A., Faizan, M., Faraz, A. (2019). Interplay Between Antioxidant Enzymes and Brassinosteroids in Control of Plant Development and Stress Tolerance. In: Hayat, S., Yusuf, M., Bhardwaj, R., Bajguz, A. (eds) Brassinosteroids: Plant Growth and Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-6058-9_11

Download citation

Publish with us

Policies and ethics