Skip to main content

Therapeutic Leishmaniasis: Recent Advancement and Developments in Nanomedicines

  • Chapter
  • First Online:
Book cover Nanotechnology in Modern Animal Biotechnology

Abstract

Leishmaniasis is a syndrome caused by the protozoan parasites which is transmitted by the bite of the female sand fly. The disease has three major forms: Cutaneous, Mucocutaneous and most fatal Visceral Leishmaniasis (VL) in affected individuals. Additionally, some of the VL patients (<1%) develop stigmatizing post-kala-azar dermal leishmaniasis (PKDL) characterized by skin lesions in which parasites can be identified, who is otherwise fully recovered from VL. On the Indian Sub-continent, a joint VL elimination initiative has been launched in 2005 by the Governments of India, Bangladesh and Nepal. The main strategy to achieve this is entrusted to the public sector primary health care (PHC) services that should ensure early diagnosis and treatment of the disease. However, the current therapeutic options for treatment remains limited and treatment of patients are complicated due to the paucity of effective drugs or due to the toxicity caused by the available anti-leishmanial drugs used. Other limitations are the duration of treatment and expenditure on hospitalisation. Besides this, drug resistance in clinical settings has further aggravated the problem to the next level. Therefore, there is a need for cost-effective therapeutic alternatives for an excellent leishmanicidal potential that can be conferred to the target cells with no side effects/toxicity to normal cells, higher efficacy and minimal cost. Nanoparticles, due to their outstanding physical and chemical properties, have shown effective environmental, biological and biomedical applications and could be helpful in the detection and elimination of vector-based infectious diseases. In this chapter, we have summarized the current challenges in diagnosis and treatment of leishmaniasis and discussed the wide range of nanomaterials showing promising applications in leishmaniasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DDT:

Dichlorodiphenyltrichloroethane

MDR1:

Multidrug resistance protein 1

MRPA:

Multi-drug resistance associated protein ABC transporter

P-gp:

P-glycoprotein

PRP1:

Pentamidine resistance protein 1

WHO:

World Health Organization

References

  • Akbari, M., Oryan, A., & Hatam, G. (2017). Application of nanotechnology in treatment of leishmaniasis: A review. Acta Tropica, 172, 86–90. https://doi.org/10.1016/j.actatropica.2017.04.029.

    Article  CAS  PubMed  Google Scholar 

  • Akhoundi, M., Downing, T., Votýpka, J., Kuhls, K., Lukeš, J., Cannet, A., et al. (2017). Leishmania infections: Molecular targets and diagnosis. Molecular Aspects of Medicine, 57, 1–29.

    Article  CAS  PubMed  Google Scholar 

  • Alam, M. Z., Yasin, G., Kato, H., Sakurai, T., & Katakura, K. (2012). PCR-based detection of Leishmania donovani DNA in a Stray dog from a visceral Leishmaniasis endemic focus in Bangladesh. The Journal of Veterinary Medical Science, 75(1), 75–78. doi: DN/JST.JSTAGE/jvms/12-0134 [pii].

    Article  PubMed  CAS  Google Scholar 

  • Alvar, J., Aparicio, P., Aseffa, A., Den Boer, M., Canavate, C., Dedet, J.-P., et al. (2008). The relationship between leishmaniasis and AIDS: The second 10 years. Clinical Microbiology Reviews, 21(2), 334–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvar, J., Velez, I. D., Bern, C., Herrero, M., Desjeux, P., Cano, J., et al. (2012). Leishmaniasis worldwide and global estimates of its incidence. PLoS One, 7(5), e35671. https://doi.org/10.1371/journal.pone.0035671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreadou, M., Liandris, E., Gazouli, M., Taka, S., Antoniou, M., Theodoropoulos, G., et al. (2014). A novel non-amplification assay for the detection of Leishmania spp. in clinical samples using gold nanoparticles. Journal of Microbiological Methods, 96, 56–61.

    Article  CAS  PubMed  Google Scholar 

  • Andreadou, M., Liandris, E., Gazouli, M., Mataragka, A., Tachtsidis, I., Goutas, N., et al. (2016). Detection of Leishmania-specific DNA and surface antigens using a combination of functionalized magnetic beads and cadmium selenite quantum dots. Journal of Microbiological Methods, 123, 62–67.

    Article  CAS  PubMed  Google Scholar 

  • Anfossi, L., Di Nardo, F., Profiti, M., Nogarol, C., Cavalera, S., Baggiani, C., et al. (2018). A versatile and sensitive lateral flow immunoassay for the rapid diagnosis of visceral leishmaniasis. Analytical and Bioanalytical Chemistry, 410, 1–12.

    Article  CAS  Google Scholar 

  • Asthana, S., Gupta, P. K., Jaiswal, A. K., Dube, A., & Chourasia, M. K. (2015). Targeted chemotherapy of visceral leishmaniasis by lactoferrin-appended amphotericin B-loaded nanoreservoir: In vitro and in vivo studies. Nanomedicine, 10(7), 1093–1109.

    Article  CAS  PubMed  Google Scholar 

  • Blackwell, J. M. (1992). Leishmaniasis epidemiology: All down to the DNA. Parasitology, 104(Suppl), S19–S34.

    Article  PubMed  Google Scholar 

  • Boelaert, M., El-Safi, S., Hailu, A., Mukhtar, M., Rijal, S., Sundar, S., et al. (2008). Diagnostic tests for kala-azar: A multi-centre study of the freeze-dried DAT, rK39 strip test and KAtex in East Africa and the Indian subcontinent. Transactions of the Royal Society of Tropical Medicine and Hygiene, 102(1), 32–40. S0035-9203(07)00287-8 [pii]. https://doi.org/10.1016/j.trstmh.2007.09.003.

    Article  CAS  PubMed  Google Scholar 

  • Boelaert, M., Verdonck, K., Menten, J., Sunyoto, T., Chappuis, F., Rijal, S. (2014). Rapid tests for the diagnosis of visceral leishmaniasis in patients with suspected disease. Cochrane Database of Systematic Reviews, (6):CD009135. https://doi.org/10.1002/14651858.CD009135.pub2.

  • Bose, P. P., & Kumar, P. (2016). Visual assessment of parasitic burden in infected macrophage by plasmonic detection of leishmania specific marker RNA. Biochemical and Biophysical Research Communications, 480(1), 81–86.

    Article  CAS  PubMed  Google Scholar 

  • Bose, P. P., Kumar, P., & Munagala, N. (2015). Concurrent visual diagnosis and susceptibility profiling of the first line drug against visceral leishmaniasis by plasmonic detection of PCR amplified genetic biomarker. Acta Tropica, 152, 208–214.

    Article  CAS  PubMed  Google Scholar 

  • Brand, W., Noorlander, C. W., Giannakou, C., De Jong, W. H., Kooi, M. W., Park, M. V., et al. (2017). Nanomedicinal products: A survey on specific toxicity and side effects. International Journal of Nanomedicine, 12, 6107–6129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruni, N., Stella, B., Giraudo, L., Della Pepa, C., Gastaldi, D., & Dosio, F. (2017). Nanostructured delivery systems with improved leishmanicidal activity: A critical review. International Journal of Nanomedicine, 12, 5289–5311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brustoloni, Y. M., Lima, R. B., da Cunha, R. V., Dorval, M. E., Oshiro, E. T., de Oliveira, A. L., et al. (2007). Sensitivity and specificity of polymerase chain reaction in Giemsa-stained slides for diagnosis of visceral leishmaniasis in children. Memórias do Instituto Oswaldo Cruz, 102(4), 497–500. doi: S0074-02762007000400011 [pii].

    Article  CAS  PubMed  Google Scholar 

  • Burza, S., Mahajan, R., Sinha, P. K., van Griensven, J., Pandey, K., Lima, M. A., et al. (2014). Visceral leishmaniasis and HIV co-infection in Bihar, India: Long-term effectiveness and treatment outcomes with liposomal amphotericin B (AmBisome). PLoS Neglected Tropical Diseases, 8(8), e3053.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chakravarty, J., & Sundar, S. (2010). Drug resistance in leishmaniasis. Journal of Global Infectious Diseases, 2(2), 167–176.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaubey, P., & Mishra, B. (2014). Mannose-conjugated chitosan nanoparticles loaded with rifampicin for the treatment of visceral leishmaniasis. Carbohydrate Polymers, 101, 1101–1108.

    Article  CAS  PubMed  Google Scholar 

  • Chaubey, P., Mishra, B., Mudavath, S. L., Patel, R. R., Chaurasia, S., Sundar, S., et al. (2018). Mannose-conjugated curcumin-chitosan nanoparticles: Efficacy and toxicity assessments against Leishmania donovani. International Journal of Biological Macromolecules, 111, 109–120.

    Article  CAS  PubMed  Google Scholar 

  • Chaurasia, M., Pawar, V. K., Jaiswal, A. K., Dube, A., & Chourasia, M. K. (2015). Chondroitin nanocapsules enhanced doxorubicin induced apoptosis against leishmaniasis via Th1 immune response. International Journal of Biological Macromolecules, 79, 27–36.

    Article  CAS  PubMed  Google Scholar 

  • Chawla, B., Jhingran, A., Panigrahi, A., Stuart, K. D., & Madhubala, R. (2011). Paromomycin affects translation and vesicle-mediated trafficking as revealed by proteomics of paromomycin -susceptible -resistant Leishmania donovani. PLoS One, 6(10), e26660. https://doi.org/10.1371/journal.pone.0026660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chunge, C., Owate, J., Pamba, H., & Donno, L. (1990). Treatment of visceral leishmaniasis in Kenya by aminosidine alone or combined with sodium stibogluconate. Transactions of the Royal Society of Tropical Medicine and Hygiene, 84(2), 221–225.

    Article  CAS  PubMed  Google Scholar 

  • Cortes, S., Rolao, N., Ramada, J., & Campino, L. (2004). PCR as a rapid and sensitive tool in the diagnosis of human and canine leishmaniasis using Leishmania donovani s.l.-specific kinetoplastid primers. Transactions of the Royal Society of Tropical Medicine and Hygiene, 98(1), 12–17. doi: S0035920303000026 [pii].

    Article  CAS  PubMed  Google Scholar 

  • Costa Lima, S. A., Resende, M., Silvestre, R., Tavares, J., Ouaissi, A., Lin, P. K. T., et al. (2012). Characterization and evaluation of BNIPDaoct-loaded PLGA nanoparticles for visceral leishmaniasis: In vitro and in vivo studies. Nanomedicine, 7(12), 1839–1849.

    Article  CAS  PubMed  Google Scholar 

  • Crist, R. M., Grossman, J. H., Patri, A. K., Stern, S. T., Dobrovolskaia, M. A., Adiseshaiah, P. P., et al. (2013). Common pitfalls in nanotechnology: Lessons learned from NCI’s Nanotechnology Characterization Laboratory. Integrative Biology, 5(1), 66–73.

    Article  CAS  PubMed  Google Scholar 

  • Das, V., Ranjan, A., Sinha, A., Verma, N., Lal, C., Gupta, A., et al. (2001). A randomized clinical trial of low dosage combination of pentamidine and allopurinol in the treatment of antimony unresponsive cases of visceral leishmaniasis. The Journal of the Association of Physicians of India, 49, 609–613.

    CAS  PubMed  Google Scholar 

  • Dedet, J., & Pratlong, F. (2008). Leishmaniasis. In G. C. Cook & A. I. Zumla (Eds.), Manson’s tropical diseases (22nd ed., pp. 1341–1365). London: Saunders.

    Google Scholar 

  • Diro, E., Techane, Y., Tefera, T., Assefa, Y., Kebede, T., Genetu, A., et al. (2007). Field evaluation of FD-DAT, rK39 dipstick and KATEX (urine latex agglutination) for diagnosis of visceral leishmaniasis in northwest Ethiopia. Transactions of the Royal Society of Tropical Medicine and Hygiene, 101(9), 908–914. S0035-9203(07)00143-5 [pii]. https://doi.org/10.1016/j.trstmh.2007.05.002.

    Article  PubMed  Google Scholar 

  • Dorlo, T. P., Balasegaram, M., Beijnen, J. H., & de Vries, P. J. (2012). Miltefosine: A review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. Journal of Antimicrobial Chemotherapy, 67(11), 2576–2597.

    Article  CAS  PubMed  Google Scholar 

  • Dumas, C., Ouellette, M., Tovar, J., Cunningham, M. L., Fairlamb, A. H., Tamar, S., et al. (1997). Disruption of the trypanothione reductase gene of Leishmania decreases its ability to survive oxidative stress in macrophages. The EMBO Journal, 16(10), 2590–2598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duong, A. D., Sharma, S., Peine, K. J., Gupta, G., Satoskar, A. R., Bachelder, E. M., et al. (2013). Electrospray encapsulation of toll-like receptor agonist resiquimod in polymer microparticles for the treatment of visceral leishmaniasis. Molecular Pharmaceutics, 10(3), 1045–1055.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira, A., Cemlyn-Jones, J., & Cordeiro, C. R. (2013). Nanoparticles, nanotechnology and pulmonary nanotoxicology. Revista Portuguesa de Pneumologia (English Edition), 19(1), 28–37.

    Article  CAS  Google Scholar 

  • Freitas-Junior, L. H., Chatelain, E., Kim, H. A., & Siqueira-Neto, J. L. (2012). Visceral leishmaniasis treatment: What do we have, what do we need and how to deliver it? International Journal for Parasitology: Drugs and Drug Resistance, 2, 11–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gannavaram, S., Bhattacharya, P., Ismail, N., Kaul, A., Singh, R., & Nakhasi, H. L. (2016). Modulation of innate immune mechanisms to enhance leishmania vaccine-induced immunity: Role of coinhibitory molecules. Frontiers in Immunology, 7, 187. https://doi.org/10.3389/fimmu.2016.00187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutiérrez, V., Seabra, A. B., Reguera, R. M., Khandare, J., & Calderón, M. (2016). New approaches from nanomedicine for treating leishmaniasis. Chemical Society Reviews, 45(1), 152–168.

    Article  PubMed  Google Scholar 

  • Haldar, A. K., Sen, P., & Roy, S. (2011). Use of antimony in the treatment of leishmaniasis: Current status and future directions. Molecular Biology International, 2011, 1–23.

    Article  Google Scholar 

  • Hasker, E., Kansal, S., Malaviya, P., Gidwani, K., Picado, A., Singh, R. P., et al. (2013). Latent infection with Leishmania donovani in highly endemic villages in Bihar, India. PLoS Neglected Tropical Diseases, 7(2), e2053. https://doi.org/10.1371/journal.pntd.0002053.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heli, H., Sattarahmady, N., Hatam, G., Reisi, F., & Vais, R. D. (2016). An electrochemical genosensor for Leishmania major detection based on dual effect of immobilization and electrocatalysis of cobalt-zinc ferrite quantum dots. Talanta, 156, 172–179.

    Article  PubMed  CAS  Google Scholar 

  • Hendrickx, S., Boulet, G., Mondelaers, A., Dujardin, J., Rijal, S., Lachaud, L., et al. (2014). Experimental selection of paromomycin and miltefosine resistance in intracellular amastigotes of Leishmania donovani and L. infantum. Parasitology Research, 113(5), 1875–1881.

    Article  CAS  PubMed  Google Scholar 

  • Hobson, D. W., Roberts, S. M., Shvedova, A. A., Warheit, D. B., Hinkley, G. K., & Guy, R. C. (2016). Applied nanotoxicology. International Journal of Toxicology, 35(1), 5–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Iqbal, H., Ishfaq, M., Wahab, A., Abbas, M. N., Ahmad, I., Rehman, A., et al. (2016). Therapeutic modalities to combat leishmaniasis, a review. Asian Pacific Journal of Tropical Disease, 6(1), 1–5.

    Article  CAS  Google Scholar 

  • Jacquet, D., Boelaert, M., Seaman, J., Rijal, S., Sundar, S., Menten, J., et al. (2006). Comparative evaluation of freeze-dried and liquid antigens in the direct agglutination test for serodiagnosis of visceral leishmaniasis (ITMA-DAT/VL). Tropical Medicine & International Health, 11(12), 1777–1784. TMI1743 [pii]. https://doi.org/10.1111/j.1365-3156.2006.01743.x.

    Article  CAS  Google Scholar 

  • Jha, P. K., Khan, M. I., Mishra, A., Das, P., & Sinha, K. K. (2017). HAT2 mediates histone H4K4 acetylation and affects micrococcal nuclease sensitivity of chromatin in Leishmania donovani. PLoS One, 12(5), e0177372.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kansal, S., Tandon, R., Verma, P. R. P., Dube, A., & Mishra, P. R. (2012). Development of doxorubicin loaded novel core shell structured nanocapsules for the intervention of visceral leishmaniasis. Journal of Microencapsulation, 30(5), 441–450.

    Article  CAS  Google Scholar 

  • Khatik, R., Dwivedi, P., Khare, P., Kansal, S., Dube, A., Mishra, P. R., et al. (2014). Development of targeted 1, 2-diacyl-sn-glycero-3-phospho-l-serine-coated gelatin nanoparticles loaded with amphotericin B for improved in vitro and in vivo effect in leishmaniasis. Expert Opinion on Drug Delivery, 11(5), 633–646.

    Article  CAS  PubMed  Google Scholar 

  • Kunjachan, S., Gupta, S., Dwivedi, A. K., Dube, A., & Chourasia, M. K. (2011). Chitosan-based macrophage-mediated drug targeting for the treatment of experimental visceral leishmaniasis. Journal of Microencapsulation, 28(4), 301–310.

    Article  CAS  PubMed  Google Scholar 

  • Lamotte, S., Späth, G. F., Rachidi, N., & Prina, E. (2017). The enemy within: Targeting host–parasite interaction for antileishmanial drug discovery. PLoS Neglected Tropical Diseases, 11(6), e0005480.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lima, S. A. C., Silvestre, R., Barros, D., Cunha, J., Baltazar, M. T., Dinis-Oliveira, R. J., et al. (2014). Crucial CD8+ T-lymphocyte cytotoxic role in amphotericin B nanospheres efficacy against experimental visceral leishmaniasis. Nanomedicine: Nanotechnology, Biology and Medicine, 10(5), e1021–e1030.

    Article  CAS  Google Scholar 

  • Manandhar, K. D., Yadav, T. P., Prajapati, V. K., Kumar, S., Rai, M., Dube, A., et al. (2008). Antileishmanial activity of nano-amphotericin B deoxycholate. Journal of Antimicrobial Chemotherapy, 62(2), 376–380.

    Article  PubMed  CAS  Google Scholar 

  • Marinho, F. D. A., Gonçalves, K. C. D. S., Oliveira, S. S. D., Oliveira, A.-C. D. S. C., Bellio, M., d’Avila-Levy, C. M., et al. (2011). Miltefosine induces programmed cell death in Leishmania amazonensis promastigotes. Memórias do Instituto Oswaldo Cruz, 106(4), 507–509.

    Article  CAS  Google Scholar 

  • Markle, W., & Makhoul, K. (2004). Cutaneous leishmaniasis: Recognition and treatment. American Family Physician, 69(6), 1455–1460.

    PubMed  Google Scholar 

  • Mathis, A., & Deplazes, P. (1995). PCR and in vitro cultivation for detection of Leishmania spp. in diagnostic samples from humans and dogs. Journal of Clinical Microbiology, 33(5), 1145–1149.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mauël, J., & Ransijn, A. (1997). Leishmaniaspp.: Mechanisms of toxicity of nitrogen oxidation products. Experimental Parasitology, 87(2), 98–111.

    Article  PubMed  Google Scholar 

  • Maurya, R., Singh, R. K., Kumar, B., Salotra, P., Rai, M., & Sundar, S. (2005). Evaluation of PCR for diagnosis of Indian kala-azar and assessment of cure. Journal of Clinical Microbiology, 43(7), 3038–3041. 43/7/3038 [pii]. https://doi.org/10.1128/JCM.43.7.3038-3041.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra, J., & Singh, S. (2013). Miltefosine resistance in Leishmania donovani involves suppression of oxidative stress-induced programmed cell death. Experimental Parasitology, 135(2), 397–406.

    Article  CAS  PubMed  Google Scholar 

  • Mohamed-Ahmed, A. H., Seifert, K., Yardley, V., Burrell-Saward, H., Brocchini, S., & Croft, S. L. (2013). Antileishmanial activity, uptake, and biodistribution of an amphotericin B and poly (α-glutamic acid) complex. Antimicrobial Agents and Chemotherapy, 57(10), 4608–4614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohan, S., Srivastava, P., Maheshwari, S., Sundar, S., & Prakash, R. (2011). Nano-structured nickel oxide based DNA biosensor for detection of visceral leishmaniasis (Kala-azar). Analyst, 136(13), 2845–2851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moradi, M., Sattarahmady, N., Rahi, A., Hatam, G., Sorkhabadi, S. R., & Heli, H. (2016). A label-free, PCR-free and signal-on electrochemical DNA biosensor for Leishmania major based on gold nanoleaves. Talanta, 161, 48–53.

    Article  CAS  PubMed  Google Scholar 

  • Mudavath, S. L., Talat, M., Rai, M., Srivastava, O. N., & Sundar, S. (2014). Characterization and evaluation of amine-modified graphene amphotericin B for the treatment of visceral leishmaniasis: In vivo and in vitro studies. Drug Design, Development and Therapy, 8, 1235–1247.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mudavath, S. L., Talat, M., Rai, M., Srivastava, O. N., & Sundar, S. (2016). An oral formulation of amphotericin B for the treatment of visceral Leishmaniasis: f-Gr-AmB. International Journal of Infectious Diseases, 45, 367. https://doi.org/10.1016/j.ijid.2016.02.790.

    Article  Google Scholar 

  • Mukherjee, A., Padmanabhan, P. K., Sahani, M. H., Barrett, M. P., & Madhubala, R. (2006). Roles for mitochondria in pentamidine susceptibility and resistance in Leishmania donovani. Molecular and Biochemical Parasitology, 145(1), 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay, D., Dalton, J. E., Kaye, P. M., & Chatterjee, M. (2014). Post kala-azar dermal leishmaniasis: An unresolved mystery. Trends in Parasitology, 30(2), 65–74.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagill, R., & Kaur, S. (2011). Vaccine candidates for leishmaniasis: A review. International Immunopharmacology, 11(10), 1464–1488. https://doi.org/10.1016/j.intimp.2011.05.008.

    Article  CAS  PubMed  Google Scholar 

  • NIu, M., & Pershin, G. (1966). Comparative study of the chemotherapeutic effect of paromomycin and monomycin in experimental cutaneous leischmaniasis in albino mice. Farmakologiia i Toksikologiia, 29(1), 90–94.

    Google Scholar 

  • No, J. H. (2016). Visceral leishmaniasis: Revisiting current treatments and approaches for future discoveries. Acta Tropica, 155, 113–123.

    Article  PubMed  Google Scholar 

  • Ostyn, B., Gidwani, K., Khanal, B., Picado, A., Chappuis, F., Singh, S. P., et al. (2011). Incidence of symptomatic and asymptomatic Leishmania donovani infections in high-endemic foci in India and Nepal: A prospective study. PLoS Neglected Tropical Diseases, 5(10), e1284. https://doi.org/10.1371/journal.pntd.0001284.

    Article  PubMed  PubMed Central  Google Scholar 

  • Palumbo, E. (2010). Treatment strategies for mucocutaneous leishmaniasis. Journal of Global Infectious Diseases, 2(2), 147–150.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paris, C., Loiseau, P. M., Bories, C., & Bréard, J. (2004). Miltefosine induces apoptosis-like death in Leishmania donovani promastigotes. Antimicrobial Agents and Chemotherapy, 48(3), 852–859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson, R., & Sousa, A. (1996). Clinical spectrum of leishmaniasis. Clinical Infectious Diseases, 22(1), 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Peine, K. J., Gupta, G., Brackman, D. J., Papenfuss, T. L., Ainslie, K. M., Satoskar, A. R., et al. (2013). Liposomal resiquimod for the treatment of Leishmania donovani infection. Journal of Antimicrobial Chemotherapy, 69(1), 168–175.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perinoto, A. C., Maki, R. M., Colhone, M. C., Santos, F. R., Migliaccio, V., Daghastanli, K. R., et al. (2010). Biosensors for efficient diagnosis of leishmaniasis: Innovations in bioanalytics for a neglected disease. Analytical Chemistry, 82(23), 9763–9768.

    Article  CAS  PubMed  Google Scholar 

  • Pham, T., Barratt, G., Michel, J., Loiseau, P., & Saint-Pierre-Chazalet, M. (2013). Interactions of antileishmanial drugs with monolayers of lipids used in the development of amphotericin B–miltefosine-loaded nanocochleates. Colloids and Surfaces B: Biointerfaces, 106, 224–233.

    Article  CAS  PubMed  Google Scholar 

  • Poland, C. A., Duffin, R., Kinloch, I., Maynard, A., Wallace, W. A., Seaton, A., et al. (2008). Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotechnology, 3(7), 423–428.

    Article  CAS  PubMed  Google Scholar 

  • Prajapati, V. K., Awasthi, K., Gautam, S., Yadav, T. P., Rai, M., Srivastava, O. N., et al. (2011a). Targeted killing of Leishmania donovani in vivo and in vitro with amphotericin B attached to functionalized carbon nanotubes. Journal of Antimicrobial Chemotherapy, 66(4), 874–879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prajapati, V. K., Awasthi, K., Yadav, T. P., Rai, M., Srivastava, O. N., & Sundar, S. (2011b). An oral formulation of amphotericin B attached to functionalized carbon nanotubes is an effective treatment for experimental visceral leishmaniasis. Journal of Infectious Diseases, 205(2), 333–336.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rahman, L., Jacobsen, N. R., Aziz, S. A., Wu, D., Williams, A., Yauk, C. L., et al. (2017). Multi-walled carbon nanotube-induced genotoxic, inflammatory and pro-fibrotic responses in mice: Investigating the mechanisms of pulmonary carcinogenesis. Mutation Research, Genetic Toxicology and Environmental Mutagenesis, 823, 28–44.

    Article  CAS  PubMed  Google Scholar 

  • Reithinger, R., & Dujardin, J. C. (2007). Molecular diagnosis of leishmaniasis: Current status and future applications. Journal of Clinical Microbiology, 45(1), 21–25. JCM.02029-06 [pii]. https://doi.org/10.1128/JCM.02029-06.

    Article  CAS  PubMed  Google Scholar 

  • Reithinger, R., Dujardin, J.-C., Louzir, H., Pirmez, C., Alexander, B., & Brooker, S. (2007). Cutaneous leishmaniasis. The Lancet Infectious Diseases, 7(9), 581–596.

    Article  PubMed  Google Scholar 

  • Rijal, S., Boelaert, M., Regmi, S., Karki, B. M., Jacquet, D., Singh, R., et al. (2004). Evaluation of a urinary antigen-based latex agglutination test in the diagnosis of kala-azar in eastern Nepal. Tropical Medicine & International Health, 9(6), 724–729. https://doi.org/10.1111/j.1365-3156.2004.01251.xTMI1251[pii].

    Article  CAS  Google Scholar 

  • Rodrigues, V., Cordeiro-da-Silva, A., Laforge, M., Silvestre, R., & Estaquier, J. (2016). Regulation of immunity during visceral Leishmania infection. Parasites & Vectors, 9(1), 118. https://doi.org/10.1186/s13071-016-1412-x.

  • Sadat, S. M., Jahan, S. T., & Haddadi, A. (2016). Effects of size and surface charge of polymeric nanoparticles on in vitro and in vivo applications. Journal of Biomaterials and Nanobiotechnology, 7(02), 91–108.

    Article  CAS  Google Scholar 

  • Salotra, P., Sreenivas, G., Pogue, G. P., Lee, N., Nakhasi, H. L., Ramesh, V., et al. (2001). Development of a species-specific PCR assay for detection of Leishmania donovani in clinical samples from patients with kala-azar and post-kala-azar dermal leishmaniasis. Journal of Clinical Microbiology, 39(3), 849–854. https://doi.org/10.1128/JCM.39.3.849-854.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarwar, H. S., Akhtar, S., Sohail, M. F., Naveed, Z., Rafay, M., Nadhman, A., et al. (2017). Redox biology of Leishmania and macrophage targeted nanoparticles for therapy. Nanomedicine, 12(14), 1713–1725.

    Article  CAS  PubMed  Google Scholar 

  • Sarwar, H. S., Ashraf, S., Akhtar, S., Sohail, M. F., Hussain, S. Z., Rafay, M., et al. (2018). Mannosylated thiolated polyethylenimine nanoparticles for the enhanced efficacy of antimonial drug against Leishmaniasis. Nanomedicine, 13(1), 25–41.

    Article  CAS  PubMed  Google Scholar 

  • Sattarahmady, N., Movahedpour, A., Heli, H., & Hatam, G. (2016). Gold nanoparticles-based biosensing of Leishmania major kDNA genome: Visual and spectrophotometric detections. Sensors and Actuators B: Chemical, 235, 723–731.

    Article  CAS  Google Scholar 

  • Savaliya, R., Singh, P., & Singh, S. (2016). Pharmacological drug delivery strategies for improved therapeutic effects: Recent advances. Current Pharmaceutical Design, 22(11), 1506–1520.

    Article  CAS  PubMed  Google Scholar 

  • Schonian, G., Nasereddin, A., Dinse, N., Schweynoch, C., Schallig, H. D., Presber, W., et al. (2003). PCR diagnosis and characterization of Leishmania in local and imported clinical samples. Diagnostic Microbiology and Infectious Disease, 47(1), 349–358. doi: S0732889303000932 [pii].

    Article  CAS  PubMed  Google Scholar 

  • Shahnaz, G., Edagwa, B. J., McMillan, J., Akhtar, S., Raza, A., Qureshi, N. A., et al. (2017). Development of mannose-anchored thiolated amphotericin B nanocarriers for treatment of visceral leishmaniasis. Nanomedicine, 12(2), 99–115.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, S., Zapatero-Rodríguez, J., Estrela, P., & O’Kennedy, R. (2015). Point-of-care diagnostics in low resource settings: Present status and future role of microfluidics. Biosensors, 5(3), 577–601.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shirkhani, K., Teo, I., Armstrong-James, D., & Shaunak, S. (2015). Nebulised amphotericin B-polymethacrylic acid nanoparticle prophylaxis prevents invasive aspergillosis. Nanomedicine: Nanotechnology, Biology and Medicine, 11(5), 1217–1226.

    Article  CAS  Google Scholar 

  • Singh, B., & Sundar, S. (2012). Leishmaniasis: Vaccine candidates and perspectives. Vaccine, 30(26), 3834–3842.

    Article  CAS  PubMed  Google Scholar 

  • Singh, O. P., & Sundar, S. (2015). Developments in diagnosis of visceral Leishmaniasis in the elimination era. Journal of Parasitology Research, 2015, 239469. https://doi.org/10.1155/2015/239469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, S., Sharma, A., & Robertson, G. P. (2012). Realizing the clinical potential of cancer nanotechnology by minimizing toxicologic and targeted delivery concerns. Cancer Research, 72, 5663–5668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, N., Mishra, B. B., Bajpai, S., Singh, R. K., & Tiwari, V. K. (2014). Natural product based leads to fight against leishmaniasis. Bioorganic & Medicinal Chemistry, 22(1), 18–45. https://doi.org/10.1016/j.bmc.2013.11.048.

    Article  CAS  Google Scholar 

  • Singh, O. P., Hasker, E., Boelaert, M., & Sundar, S. (2016a). Elimination of visceral leishmaniasis on the Indian subcontinent. The Lancet Infectious Diseases, 16(12), e304–e309.

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh, O. P., Singh, B., Chakravarty, J., & Sundar, S. (2016b). Current challenges in treatment options for visceral leishmaniasis in India: A public health perspective. Infectious Diseases of Poverty, 5, 19. https://doi.org/10.1186/s40249-016-0112-2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Souto, D. E., Fonseca, A. M., Barragan, J. T., de CS Luz, R., Andrade, H. M., Damos, F. S., et al. (2015). SPR analysis of the interaction between a recombinant protein of unknown function in Leishmania infantum immobilised on dendrimers and antibodies of the visceral leishmaniasis: A potential use in immunodiagnosis. Biosensors and Bioelectronics, 70, 275–281.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava, P., Dayama, A., Mehrotra, S., & Sundar, S. (2010). Diagnosis of visceral leishmaniasis. Transactions of the Royal Society of Tropical Medicine and Hygiene, 105(1), 1–6. S0035-9203(10)00219-1 [pii]. https://doi.org/10.1016/j.trstmh.2010.09.006.

    Article  PubMed  Google Scholar 

  • Srivastava, P., Mehrotra, S., Tiwary, P., Chakravarty, J., & Sundar, S. (2011). Diagnosis of Indian visceral leishmaniasis by nucleic acid detection using PCR. PLoS One, 6(4), e19304. https://doi.org/10.1371/journal.pone.0019304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srividya, G., Kulshrestha, A., Singh, R., & Salotra, P. (2011). Diagnosis of visceral leishmaniasis: Developments over the last decade. Parasitology Research, 110(3), 1065–1078. https://doi.org/10.1007/s00436-011-2680-1.

    Article  PubMed  Google Scholar 

  • Sudarshan, M., Weirather, J. L., Wilson, M. E., & Sundar, S. (2011). Study of parasite kinetics with antileishmanial drugs using real-time quantitative PCR in Indian visceral leishmaniasis. The Journal of Antimicrobial Chemotherapy, 66(8), 1751–1755. doi: dkr185 [pii]. https://doi.org/10.1093/jac/dkr185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudarshan, M., Singh, T., Singh, A. K., Chourasia, A., Singh, B., Wilson, M. E., et al. (2014). Quantitative PCR in epidemiology for early detection of visceral leishmaniasis cases in India. PLoS Neglected Tropical Diseases, 8(12), e3366. https://doi.org/10.1371/journal.pntd.0003366.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sundar, S., & Rai, M. (2002). Laboratory diagnosis of visceral leishmaniasis. Clinical and Diagnostic Laboratory Immunology, 9(5), 951–958.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sundar, S., & Singh, A. (2016). Recent developments and future prospects in the treatment of visceral leishmaniasis. Therapeutic Advances in Infectious Sdisease, 3(3–4), 98–109.

    Article  CAS  Google Scholar 

  • Sundar, S., Agrawal, S., Pai, K., Chance, M., & Hommel, M. (2005). Detection of leishmanial antigen in the urine of patients with visceral leishmaniasis by a latex agglutination test. The American Journal of Tropical Medicine and Hygiene, 73(2), 269–271. doi: 73/2/269 [pii].

    Article  PubMed  Google Scholar 

  • Sundar, S., Singh, A., Chakravarty, J., & Rai, M. (2015). Efficacy and safety of miltefosine in treatment of post-kala-azar dermal leishmaniasis. The Scientific World Journal, 2015, 414378. https://doi.org/10.1155/2015/414378. Epub 2015 Jan 1.

  • Tiwari, N., Gedda, M. R., Tiwari, V. K., Singh, S. P., & Singh, R. K. (2018). Limitations of current therapeutic options, possible drug targets and scope of natural products in control of leishmaniasis. Mini Reviews in Medicinal Chemistry, 18(1), 26–41.

    CAS  PubMed  Google Scholar 

  • Torres-Guerrero, E., Quintanilla-Cedillo, M. R., Ruiz-Esmenjaud, J., & Arenas, R. (2017). Leishmaniasis: A review. F1000Research, 6, 750. https://doi.org/10.12688/f1000research.11120.1. eCollection 2017.

  • Torres-Sangiao, E., Holban, A. M., & Gestal, M. C. (2016). Advanced nanobiomaterials: Vaccines, diagnosis and treatment of infectious diseases. Molecules, 21(7), 867. https://doi.org/10.3390/molecules21070867.

  • Toubanaki, D. K., Athanasiou, E., & Karagouni, E. (2016). Gold nanoparticle-based lateral flow biosensor for rapid visual detection of Leishmania-specific DNA amplification products. Journal of Microbiological Methods, 127, 51–58.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Yu, L., Kong, X., & Sun, L. (2017). Application of nanodiagnostics in point-of-care tests for infectious diseases. International Journal of Nanomedicine, 12, 4789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (2018). Leishmaniasis, background information. [Online]. Available: http://www.who.int/leishmaniasis/en/. Accessed 19/02/2018.

  • Yasinzai, M., Khan, M., Nadhman, A., & Shahnaz, G. (2013). Drug resistance in leishmaniasis: Current drug-delivery systems and future perspectives. Future Medicinal Chemistry, 5(15), 1877–1888.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by Department of Science & Technology (SR/NM/NS-57/2016), New Delhi (Under nano-mission), and in part by the Extramural Program of the National Institute of Allergy and Infectious Diseases, National Institutes of Health (TMRC grant number U19AI074321). The funders had no role in design, decision to publish, or preparation of the report.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gedda, M.R., Singh, O.P., Srivastava, O.N., Sundar, S. (2019). Therapeutic Leishmaniasis: Recent Advancement and Developments in Nanomedicines. In: Singh, S., Maurya, P. (eds) Nanotechnology in Modern Animal Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-13-6004-6_6

Download citation

Publish with us

Policies and ethics